1
|
Murer P, Brannetti B, Rondeau JM, Petersen L, Egli N, Popp S, Regnier C, Richter K, Katopodis A, Huber C. Discovery and development of ANV419, an IL-2/anti-IL-2 antibody fusion protein with potent CD8+ T and natural killer cell-stimulating capacity for cancer immunotherapy. MAbs 2024; 16:2381891. [PMID: 39041287 PMCID: PMC11268257 DOI: 10.1080/19420862.2024.2381891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Novel engineered IL-2 agonists strive to increase the therapeutic window of aldesleukin (human IL-2) by increasing selectivity toward effector over regulatory T cells and reducing dose-limiting toxicities. Here we describe ANV419, an IL-2/anti-IL2 antibody fusion protein designed for selective IL-2 receptor βγ (IL-2 Rβγ) activation by sterically hindering IL-2 from binding to IL-2 Rα. The fusion protein has an IL-2 connected to the light chain complementarity-determining region (CDR) domain of a humanized antibody that binds to IL-2 at the same epitope as IL-2 Rα. Optimization of the selectivity and pharmacological properties led to the selection of ANV419. ANV419 preferentially expands CD8+ T cells and natural killer (NK) cells over Tregs and can be safely administered at doses that elicit strong pharmacodynamic effects and efficacy in mouse tumor models. Its anti-tumor efficacy was enhanced when combined with programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) checkpoint inhibitors. ANV419 also enhances the NK cell killing capacity and increases tumor growth inhibition when used alongside trastuzumab in a Her-2+ xenograft mouse model. In cynomolgus monkeys, the estimated half-life of ANV419 is 24 h, and doses that induced sustained expansion of effector cells were well tolerated without the severe toxicities typically observed with high-dose IL-2. These data support the clinical development of ANV419 in solid tumors and hematological malignancies as monotherapy and in combination with checkpoint inhibitors or agents that induce antibody-dependent cellular cytotoxicity. ANV419 is currently in Phase 1/2 clinical development and may provide cancer patients with a wider therapeutic window than aldesleukin.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone Popp
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
2
|
Kang JJ, Ohoka A, Sarkar CA. Designing Multivalent and Multispecific Biologics. Annu Rev Chem Biomol Eng 2023; 15:293-314. [PMID: 38064501 DOI: 10.1146/annurev-chembioeng-100722-112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design-domain affinities, valency, and spatial presentation-must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer J Kang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
- Present affiliation: AbbVie Inc., North Chicago, Illinois, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| |
Collapse
|
3
|
Cavallero GJ, Wang Y, Nwosu C, Gu S, Meiyappan M, Zaia J. O-Glycoproteomic analysis of engineered heavily glycosylated fusion proteins using nanoHILIC-MS. Anal Bioanal Chem 2022; 414:7855-7863. [PMID: 36136114 PMCID: PMC9568489 DOI: 10.1007/s00216-022-04318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
Recombinant protein engineering design affects therapeutic properties including protein efficacy, safety, and immunogenicity. Importantly, glycosylation modulates glycoprotein therapeutic pharmacokinetics, pharmacodynamics, and effector functions. Furthermore, the development of fusion proteins requires in-depth characterization of the protein integrity and its glycosylation to evaluate their critical quality attributes. Fc-fusion proteins can be modified by complex glycosylation on the active peptide, the fragment crystallizable (Fc) domain, and the linker peptides. Moreover, the type of glycosylation and the glycan distribution at a given glycosite depend on the host cell line and the expression system conditions that significantly impact safety and efficacy. Because of the inherent heterogeneity of glycosylation, it is necessary to assign glycan structural detail for glycoprotein quality control. Using conventional reversed-phase LC-MS methods, the different glycoforms at a given glycosite elute over a narrow retention time window, and glycopeptide ionization is suppressed by co-eluting non-modified peptides. To overcome this drawback, we used nanoHILIC-MS to characterize the complex glycosylation of UTI-Fc, a fusion protein that greatly increases the half-life of ulinastatin. By this methodology, we identified and characterized ulinastatin glycopeptides at the Fc domain and linker peptide. The results described herein demonstrate the advantages of nanoHILIC-MS to elucidate glycan features on glycotherapeutics that fail to be detected using traditional reversed-phase glycoproteomics.
Collapse
Affiliation(s)
- Gustavo J Cavallero
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yan Wang
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Charles Nwosu
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Sheng Gu
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Muthuraman Meiyappan
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
4
|
Wu Z, Wang H, Wu J, Huang Y, Zhao X, Nguyen J, Rosconi M, Pyles EA, Qiu H, Li N. High-Sensitivity and High-Resolution Therapeutic Antibody Charge Variant and Impurity Characterization by Microfluidic Native Capillary Electrophoresis-Mass Spectrometry. J Pharm Biomed Anal 2022; 223:115147. [DOI: 10.1016/j.jpba.2022.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
5
|
Effect of non-repetitive linker on in vitro and in vivo properties of an anti-VEGF scFv. Sci Rep 2022; 12:5449. [PMID: 35361822 PMCID: PMC8971466 DOI: 10.1038/s41598-022-09324-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 11/08/2022] Open
Abstract
Single chain antibody fragments (scFvs) are favored in diagnostic and therapeutic fields thanks to their small size and the availability of various engineering approaches. Linker between variable heavy (VH) and light (VL) chains of scFv covalently links these domains and it can affect scFv’s bio-physical/chemical properties and in vivo activity. Thus, scFv linker design is important for a successful scFv construction, and flexible linkers are preferred for a proper pairing of VH–VL. The flexibility of the linker is determined by length and sequence content and glycine-serine (GS) linkers are commonly preferred for scFvs based on their highly flexible profiles. Despite the advantage of this provided flexibility, GS linkers carry repeated sequences which can cause problems for PCR-based engineering approaches and immunogenicity. Here, two different linkers, a repetitive GS linker and an alternative non-repetitive linker with similar flexibility but lower immunogenicity are employed to generate anti-Vascular Endothelial Growth Factor scFvs derived from bevacizumab. Our findings highlight a better in vitro profile of the non-repetitive linker such as a higher monomer ratio, higher thermal stability while there was no significant difference in in vivo efficacy in a zebrafish embryonic angiogenesis model. This is the first study to compare in vivo efficacy of scFvs with different linkers in a zebrafish model.
Collapse
|
6
|
Zhang A, Sun Y, Du J, Dong Y, Pang H, Ma L, Si S, Zhang Z, He M, Yue Y, Zhang X, Zhao W, Pi J, Chang M, Wang Q, Zhang Y. Reducing Hinge Flexibility of CAR-T Cells Prolongs Survival In Vivo With Low Cytokines Release. Front Immunol 2021; 12:724211. [PMID: 34675920 PMCID: PMC8524077 DOI: 10.3389/fimmu.2021.724211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 01/11/2023] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in B cell malignancies. However, high tumor burden limits clinical efficacy and increases the risk of cytokine release syndrome and neurotoxicity, which is associated with over-activation of the CAR-T cells. The hinge domain plays an important role in the function of CAR-T cells. We hypothesized that deletion of glycine, an amino acid with good flexibility, may reduce the flexibility of the hinge region, thereby mitigating CAR-T cell over-activation. This study involved generating a novel CAR by deletion of two consecutive glycine residues in the CD8 hinge domain of second-generation (2nd) CAR, thereafter named 2nd-GG CAR. The 2nd-GG CAR-T cells showed similar efficacy of CAR expression but lower hinge flexibility, and its protein affinity to CD19 protein was lower than that of 2nd CAR-T cells. Compared to the 2nd CAR-T cells, 2nd-GG CAR-T cells reduced proinflammatory cytokine secretion without diminishing the specific cytotoxicity toward tumor cells in vitro. Furthermore, 2nd-GG CAR-T cells prolonged overall survival in an immunodeficient mouse model bearing NALM-6 when tumor burden was high. This study demonstrated that a lower-flexibility of CD8α hinge improved survival under high tumor burden and reduced proinflammatory cytokines in preclinical studies. While there is potential for improved safety and efficacy, yet this needs validation with clinical trials.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphocyte Transfusion
- Mice
- Mice, SCID
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Survival Analysis
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transduction, Genetic
- Tumor Burden
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ang Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Yao Sun
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jie Du
- SAFE Pharmaceutical Research Institute Co. Ltd, HeBei, China
| | - Yansheng Dong
- SAFE Pharmaceutical Research Institute Co. Ltd, HeBei, China
| | - Honggang Pang
- Department of Emergency, Affiliated Zhongshan Hospital, Dalian University, Dalian, China
| | - Lei Ma
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Shaoyan Si
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- Comprehensive Basic Experiment, Beijing, China
| | - Zhong Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Cardiovascular Medicine, Beijing, China
| | - Mingyi He
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Yang Yue
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Xiaoli Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Weichao Zhao
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Respiratory Medicine, Beijing, China
| | - Jianjun Pi
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Respiratory Medicine, Beijing, China
| | - Mindong Chang
- Strategic Support Force Medical Center, The Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Quanjun Wang
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Medical Countermeasures and Toxicology, Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Yikun Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| |
Collapse
|
7
|
Haberger M, Heidenreich AK, Hook M, Fichtl J, Lang R, Cymer F, Adibzadeh M, Kuhne F, Wegele H, Reusch D, Bonnington L, Bulau P. Multiattribute Monitoring of Antibody Charge Variants by Cation-Exchange Chromatography Coupled to Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2062-2071. [PMID: 33687195 DOI: 10.1021/jasms.0c00446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study was to characterize the product variants of a therapeutic T-cell bispecific humanized monoclonal antibody (TCB Mab, ∼200 kDa, asymmetric) and to develop an online cation-exchange chromatography native electrospray mass spectrometry method (CEC-UV-MS) for direct TCB Mab charge variant monitoring during bioprocess and formulation development. For the identification and functional evaluation of the diverse and complex TCB Mab charge variants, offline fractionation combined with comprehensive analytical testing was applied. The offline fractionation of abundant product variant peaks enabled identification of coeluting acid charge variants such as asparagine deamidation, primary and secondary Fab glycosylation (with and without sialic acid), and the presence of O-glycosylation in the G4S-linker region. Consequently, a new nonconsensus N-glycosylation motif (N-338-FG) in the heavy chain CDR region was discovered. Functional evaluation by cell-based potency testing demonstrated a clear and negative impact of both asparagine deamidations, whereas the O-glycosylation did not affect the TCB Mab biological activity. We established an online native CEC-UV-MS method, with an ammonium acetate buffer and pH gradient, to directly monitor the TCB Mab charge variants. All abundant chemical degradations and post-translational amino acid modifications already identified by offline fraction experiments and liquid chromatography mass spectrometry peptide mapping could also be monitored by the online CEC-UV-MS method. The herein reported online native CEC-UV-MS methodology represents a complementary or even alternative approach for multiattribute monitoring of biologics, offering multiple benefits, including increased throughput and reduced sample handling and intact protein information in the near-native state.
Collapse
Affiliation(s)
- Markus Haberger
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | | | - Michaela Hook
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Jürgen Fichtl
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Rainer Lang
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Florian Cymer
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., c, 4070 Basel, Switzerland
| | - Mahdi Adibzadeh
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., c, 4070 Basel, Switzerland
| | - Felix Kuhne
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Harald Wegele
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Lea Bonnington
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Patrick Bulau
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| |
Collapse
|
8
|
Hashii N, Suzuki J. Site-Specific O-Glycosylation Analysis by Liquid Chromatography-Mass Spectrometry with Electron-Transfer/Higher-Energy Collisional Dissociation. Methods Mol Biol 2021; 2271:169-178. [PMID: 33908007 DOI: 10.1007/978-1-0716-1241-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
O-glycosylation is a major post-translational modification of proteins. Accurate and detailed analysis to reveal O-glycosylation patterns at each site (site-specific O-glycosylation analysis) is essential to deeply understand glycoprotein function. Recent reports also demonstrated that unintended O-glycosylation occurs on therapeutic fusion glycoproteins; therefore, it is increasingly important to perform detailed and exhaustive O-glycosylation analysis during the development of therapeutic glycoproteins. Here, we describe a method of in-depth site-specific O-glycosylation analysis by liquid chromatography-mass spectrometry using electron-transfer/higher-energy collisional dissociation (EThcD) and database analysis.
Collapse
Affiliation(s)
- Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| | - Junya Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
9
|
Recent advances in LC–MS based characterization of protein-based bio-therapeutics – mastering analytical challenges posed by the increasing format complexity. J Pharm Biomed Anal 2020; 186:113251. [DOI: 10.1016/j.jpba.2020.113251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022]
|
10
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
In-depth site-specific O-Glycosylation analysis of therapeutic Fc-fusion protein by electron-transfer/higher-energy collisional dissociation mass spectrometry. Biologicals 2019; 58:35-43. [DOI: 10.1016/j.biologicals.2019.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 11/22/2022] Open
|
12
|
Hashii N, Ishii-Watabe A. [Site-specific O-Glycosylation Analysis of Therapeutic Fc-fusion Protein by Mass Spectrometry]. YAKUGAKU ZASSHI 2018; 138:1483-1494. [PMID: 30504662 DOI: 10.1248/yakushi.18-00020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Therapeutic Fc-fusion proteins, created by linking bioactive peptides or receptor proteins to the Fc moiety of IgG, are currently being developed. In this development process, a Gly-Gly-Gly-Ser linker (G4S linker) is often used to link the peptide/protein and the Fc portion. O-xylose-type core glycans of glycosaminoglycan are known to attach to the Ser residue on the GSG motif in the G4S linker peptide repeats of the Fc fusion protein produced using the Chinese hamster ovary (CHO) cell expression system. In addition, a recent report demonstrated that unexpected mucin-type O-glycosylations occurred on a peptide in a bioactive peptide-Fc fusion protein; this glycosylation affected the bioactivity of the peptide. Therapeutic proteins with non-natural structures, such as Fc-fusion proteins, undergo unintended O-glycosylations; therefore, it is increasingly important to conduct detailed O-glycosylation analysis of fusion proteins during the developmental stages. In this paper, we have summarized recent reports on the unexpected O-glycosylation in fusion proteins, general O-glycosylation types and sequence motifs, and O-glycosylation analytical techniques involving O-linked oligosaccharide analysis and site-specific O-glycosylation analysis using LC/MS. In addition, we have introduced site-specific O-glycosylation analysis of Fc-fusion proteins with GS linker peptides by LC/MS using higher-energy collisional dissociation-tandem mass spectrometry (HCD-MS/MS) and electron-transfer dissociation (ETD)-MS/MS to obtain preferential dissociation of the peptide moiety in the glycopeptide.
Collapse
Affiliation(s)
- Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
| |
Collapse
|
13
|
Spahr CS, Daris ME, Graham KC, Soriano BD, Stevens JL, Shi SDH. Discovery, characterization, and remediation of a C-terminal Fc-extension in proteins expressed in CHO cells. MAbs 2018; 10:1291-1300. [PMID: 30148415 DOI: 10.1080/19420862.2018.1511197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Protein-based biotherapeutics are produced in engineered cells through complex processes and may contain a wide variety of variants and post-translational modifications that must be monitored or controlled to ensure product quality. Recently, a low level (~1-5%) impurity was observed in a number of proteins derived from stably transfected Chinese hamster ovary (CHO) cells using mass spectrometry. These molecules include antibodies and Fc fusion proteins where Fc is on the C-terminus of the construct. By liquid chromatography-mass spectrometry (LC-MS), the impurity was found to be ~1177 Da larger than the expected mass. After tryptic digestion and analysis by LC-MS/MS, the impurity was localized to the C-terminus of Fc in the form of an Fc sequence extension. Targeted higher-energy collision dissociation was performed using various normalized collision energies (NCE) on two charge states of the extended peptide, resulting in nearly complete fragment ion coverage. The amino acid sequence, SLSLSPEAEAASASELFQ, obtained by the de novo sequencing effort matches a portion of the vector sequence used in the transfection of the CHO cells, specifically in the promoter region of the selection cassette downstream of the protein coding sequence. The modification was the result of an unexpected splicing event, caused by the resemblance of the commonly used GGU codon of the C-terminal glycine to a consensus splicing donor. Three alternative codons for glycine were tested to alleviate the modification, and all were found to completely eliminate the undesirable C-terminal extension, thus improving product quality.
Collapse
Affiliation(s)
- Christopher S Spahr
- a Discovery Attribute Sciences, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Mark E Daris
- b Biologics Optimization, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Kevin C Graham
- b Biologics Optimization, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Brian D Soriano
- a Discovery Attribute Sciences, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Jennitte L Stevens
- b Biologics Optimization, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Stone D-H Shi
- a Discovery Attribute Sciences, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| |
Collapse
|
14
|
Spahr C, Gunasekaran K, Walker KW, Shi SDH. High-resolution mass spectrometry confirms the presence of a hydroxyproline (Hyp) post-translational modification in the GGGGP linker of an Fc-fusion protein. MAbs 2017; 9:812-819. [PMID: 28506197 DOI: 10.1080/19420862.2017.1325556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Flexible and protease resistant (G4S)n linkers are used extensively in protein engineering to connect various protein domains. Recently, several groups have observed xylose-based O-glycosylation at linker Ser residues that yield unwanted heterogeneity and may affect product quality. Because of this, an engineering effort was implemented to explore different linker sequence constructs. Here, we demonstrate the presence of an unexpected hydroxylation of a prolyl residue in the linker, made possible through the use of high-resolution mass spectrometry (HR-MS) and MSn. The discovery started with the detection of a poorly resolved ∼+17 Da mass addition at the reduced protein chain level of an Fc-fusion construct by liquid chromatography-MS. Upon further investigation at the peptide level using HR-MS, the mass increase was determined to be +15.99 Da and was localized to the linker peptide SLSLSPGGGGGPAR [210-223]. This peptide corresponds to the C-terminus of Fc [210-216], the G4P linker [217-221], and first 2 amino acids of a growth factor [222-223]. The linker peptide was first subjected to MS2 with collision-induced dissociation (CID) activation. The fragmentation profile localized the modification to the GGGPA [218-222] portion of the peptide. Accurate mass measurement indicated that the modification is an addition of an oxygen and cannot be CH4, thus eliminating several possibilities such as Pro→Leu. However, other possibilities cannot be ruled out. Higher-energy collision-induced dissociation (HCD)-MS2 and MS3 using CID/CID were both unable to differentiate between Ala222→ Ser222 or Pro221→ Hyp221. Finally, MS3 using high-resolution CID/HCD confirmed the mass increase to be a Pro221→Hyp221 post-translational modification.
Collapse
Affiliation(s)
- Chris Spahr
- a Discovery Attribute Sciences, Therapeutic Discovery, Amgen Inc. , Thousand Oaks , CA , USA
| | - Kannan Gunasekaran
- b Biologics Optimization, Therapeutic Discovery, Amgen Inc. , Thousand Oaks , CA , USA
| | - Kenneth W Walker
- b Biologics Optimization, Therapeutic Discovery, Amgen Inc. , Thousand Oaks , CA , USA
| | - Stone D-H Shi
- a Discovery Attribute Sciences, Therapeutic Discovery, Amgen Inc. , Thousand Oaks , CA , USA
| |
Collapse
|
15
|
Tyshchuk O, Völger HR, Ferrara C, Bulau P, Koll H, Mølhøj M. Detection of a phosphorylated glycine-serine linker in an IgG-based fusion protein. MAbs 2016; 9:94-103. [PMID: 27661266 PMCID: PMC5240648 DOI: 10.1080/19420862.2016.1236165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular mass determination by electrospray ionization mass spectrometry of a recombinant IgG-based fusion protein (mAb1-F) produced in human embryonic kidney (HEK) cells demonstrated the presence of a dominant +79 Da product variant. Using LC-MS tryptic peptide mapping analysis and collision-induced dissociation (CID) and electron-transfer/higher-energy collision dissociation fragmentations, the modification was localized to the C-terminal serine residue of a glycine-serine linker [(G4S)2] of a fused heavy chain containing in total 2 (G4S)2-linkers. The modification was identified as a phosphorylation (+79.97 Da) by the presence of a 98 Da neutral loss reaction with CID, by spiking a synthetic phosphoserine peptide, and by dephosphorylation with alkaline phosphatase. A thermolysin digest combined with higher-energy collision dissociation (HCD) positioned the phosphoserine to one specific glycine-serine linker of the fused heavy chain, and the relative level of phosphorylated linker was determined to be 11.3% and 0.4% by LC-MS when the fusion protein was transiently expressed in HEK or in stably transformed Chinese hamster ovary cells, respectively. This observation demonstrates that fusions with glycine-serine linker sequences should be carefully evaluated during drug development to prevent the introduction of a phosphorylation site in therapeutic fusion proteins.
Collapse
Affiliation(s)
- Oksana Tyshchuk
- a Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH , Penzberg , Germany
| | - Hans Rainer Völger
- a Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH , Penzberg , Germany
| | - Claudia Ferrara
- b Oncology Discovery & Translational Area, Roche Innovation Center Zurich , Schlieren , Switzerland
| | - Patrick Bulau
- c Roche Pharma Technical Development Penzberg, Roche Diagnostics GmbH , Penzberg , Germany
| | - Hans Koll
- a Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH , Penzberg , Germany
| | - Michael Mølhøj
- a Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH , Penzberg , Germany
| |
Collapse
|
16
|
Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction. Proc Natl Acad Sci U S A 2016; 113:1208-13. [PMID: 26787887 DOI: 10.1073/pnas.1516214113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The large plasma glycoprotein von Willebrand factor (VWF) senses hydrodynamic forces in the bloodstream and responds to elevated forces with abrupt elongation, thereby increasing its adhesiveness to platelets and collagen. Remarkably, forces on VWF are elevated at sites of vascular injury, where VWF's hemostatic potential is important to mediate platelet aggregation and to recruit platelets to the subendothelial layer. Adversely, elevated forces in stenosed vessels lead to an increased risk of VWF-mediated thrombosis. To dissect the remarkable force-sensing ability of VWF, we have performed atomic force microscopy (AFM)-based single-molecule force measurements on dimers, the smallest repeating subunits of VWF multimers. We have identified a strong intermonomer interaction that involves the D4 domain and critically depends on the presence of divalent ions, consistent with results from small-angle X-ray scattering (SAXS). Dissociation of this strong interaction occurred at forces above [Formula: see text]50 pN and provided [Formula: see text]80 nm of additional length to the elongation of dimers. Corroborated by the static conformation of VWF, visualized by AFM imaging, we estimate that in VWF multimers approximately one-half of the constituent dimers are firmly closed via the strong intermonomer interaction. As firmly closed dimers markedly shorten VWF's effective length contributing to force sensing, they can be expected to tune VWF's sensitivity to hydrodynamic flow in the blood and to thereby significantly affect VWF's function in hemostasis and thrombosis.
Collapse
|
17
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|