1
|
Majumder A. HER3: Toward the Prognostic Significance, Therapeutic Potential, Current Challenges, and Future Therapeutics in Different Types of Cancer. Cells 2023; 12:2517. [PMID: 37947595 PMCID: PMC10648638 DOI: 10.3390/cells12212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is the only family member of the EGRF/HER family of receptor tyrosine kinases that lacks an active kinase domain (KD), which makes it an obligate binding partner with other receptors for its oncogenic role. When HER3 is activated in a ligand-dependent (NRG1/HRG) or independent manner, it can bind to other receptors (the most potent binding partner is HER2) to regulate many biological functions (growth, survival, nutrient sensing, metabolic regulation, etc.) through the PI3K-AKT-mTOR pathway. HER3 has been found to promote tumorigenesis, tumor growth, and drug resistance in different cancer types, especially breast and non-small cell lung cancer. Given its ubiquitous expression across different solid tumors and role in oncogenesis and drug resistance, there has been a long effort to target HER3. As HER3 cannot be targeted through its KD with small-molecule kinase inhibitors via the conventional method, pharmaceutical companies have used various other approaches, including blocking either the ligand-binding domain or extracellular domain for dimerization with other receptors. The development of treatment options with anti-HER3 monoclonal antibodies, bispecific antibodies, and different combination therapies showed limited clinical efficiency for various reasons. Recent reports showed that the extracellular domain of HER3 is not required for its binding with other receptors, which raises doubt about the efforts and applicability of the development of the HER3-antibodies for treatment. Whereas HER3-directed antibody-drug conjugates showed potentiality for treatment, these drugs are still under clinical trial. The currently understood model for dimerization-induced signaling remains incomplete due to the absence of the crystal structure of HER3 signaling complexes, and many lines of evidence suggest that HER family signaling involves more than the interaction of two members. This review article will significantly expand our knowledge of HER3 signaling and shed light on developing a new generation of drugs that have fewer side effects than the current treatment regimen for these patients.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Heinhuis KM, Carlino M, Joerger M, Di Nicola M, Meniawy T, Rottey S, Moreno V, Gazzah A, Delord JP, Paz-Ares L, Britschgi C, Schilder RJ, O'Byrne K, Curigliano G, Romano E, Patah P, Wang R, Liu Y, Bajaj G, Siu LL. Safety, Tolerability, and Potential Clinical Activity of a Glucocorticoid-Induced TNF Receptor-Related Protein Agonist Alone or in Combination With Nivolumab for Patients With Advanced Solid Tumors: A Phase 1/2a Dose-Escalation and Cohort-Expansion Clinical Trial. JAMA Oncol 2020; 6:100-107. [PMID: 31697308 DOI: 10.1001/jamaoncol.2019.3848] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Multiple immunostimulatory agonist antibodies have been clinically tested in solid tumors to evaluate the role of targeting glucocorticoid-induced tumor necrosis factor (TNF) receptor-related protein in anticancer treatments. Objective To evaluate the safety and activity of the fully human glucocorticoid-induced TNF receptor-related protein agonist IgG1 monoclonal antibody BMS-986156 with or without nivolumab in patients with advanced solid tumors. Design, Setting, and Participants This global, open-label, phase 1/2a study of BMS-986156 with or without nivolumab enrolled 292 patients 18 years or older with advanced solid tumors and an Eastern Cooperative Oncology Group performance status of 1 or less. Prior checkpoint inhibitor therapy was allowed. Monotherapy and combination dose-escalation cohorts ran concurrently to guide expansion doses beginning October 16, 2015; the study is ongoing. Interventions The protein agonist BMS-986156 was administered intravenously at a dose of 10, 30, 100, 240, or 800 mg every 2 weeks as monotherapy, and in the combination group 30, 100, 240, or 800 mg plus 240 mg of nivolumab every 2 weeks; same-dose cohorts were pooled for analysis. One cohort also received 480 mg of BMS-986156 plus 480 mg of nivolumab every 4 weeks. Main Outcomes and Measures The primary end points were safety, tolerability, and dose-limiting toxic effects. Additional end points included antitumor activity per Response Evaluation Criteria in Solid Tumors, version 1.1, and exploratory biomarker analyses. Results With a follow-up range of 1.4 to 101.7 weeks (follow-up ongoing), 34 patients (16 women and 18 men; median age, 56.6 years [range, 28-75 years]) received monotherapy (4 patients completed initial treatment), and 258 patients (140 women and 118 men; median age, 60 years [range, 21-87 years]) received combination therapy (65 patients completed initial treatment). No grade 3 to 5 treatment-related adverse events occurred with BMS-986156 monotherapy; grade 3 to 4 treatment-related adverse events occurred in 24 patients (9.3%) receiving BMS-986156 plus nivolumab, with no grade 5 treatment-related adverse events. One dose-limiting toxic effect (grade 4 elevated creatine phosphokinase levels) occurred in a patient receiving 800 mg of BMS-986156 plus 240 mg of nivolumab every 2 weeks; BMS-986156 with or without nivolumab exhibited linear pharmacokinetics with dose-related increase after a single dose. Peripheral T-cell and natural killer-cell proliferation increased after administration of BMS-986156 with or without nivolumab. No consistent and significant modulation of intratumoral CD8+ T cells and FoxP3+ regulatory T cells was observed. No responses were seen with BMS-986156 alone; objective response rates ranged from 0% to 11.1% (1 of 9) across combination therapy cohorts, with a few responses observed in patients previously treated with anti-programmed death receptor (ligand) 1 therapy. Conclusions and Relevance Based on this cohort, BMS-986156 appears to have had a manageable safety profile, and BMS-986156 plus nivolumab demonstrated safety and efficacy comparable to historical data reported for nivolumab monotherapy. Trial Registration ClinicalTrials.gov identifier: NCT02598960.
Collapse
Affiliation(s)
- Kimberley M Heinhuis
- Division of Pharmacology, The Netherlands Cancer Institute Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Matteo Carlino
- Department of Medical Oncology, Crown Princess Mary Cancer Centre Westmead Hospital, Westmead, Australia
| | - Markus Joerger
- Department of Internal Medicine, Clinic for Medical Oncology and Hematology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Massimo Di Nicola
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori Milano, Milano, Italy
| | | | - Sylvie Rottey
- Department of Medical Oncology, Universitair Ziekenhuis Ghent, Ghent, Belgium
| | - Victor Moreno
- South Texas Accelerated Research Therapeutics Madrid-Fundacion Jimenez Diaz, Fundacion Jimenez Diaz Hospital, Madrid, Spain
| | - Anas Gazzah
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Jean-Pierre Delord
- Medical Oncology Departement, Institut Claudius Regaud and Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Christian Britschgi
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Russell J Schilder
- Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Kenneth O'Byrne
- Princess Alexandra Hospital and Queensland University of Technology, Brisbane, Australia
| | - Giuseppe Curigliano
- New Drugs Development Division for Innovative Therapies, University of Milano and Istituto Europeo Di Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Emanuela Romano
- Department of Oncology, Center of Cancer Immunotherapy, U932, Institut Curie, Paris, France
| | | | - Rui Wang
- Bristol-Myers Squibb, Princeton, New Jersey
| | - Yali Liu
- Bristol-Myers Squibb, Princeton, New Jersey
| | | | - Lillian L Siu
- Bras and Family Drug Development Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Liu X, Liu S, Lyu H, Riker AI, Zhang Y, Liu B. Development of Effective Therapeutics Targeting HER3 for Cancer Treatment. Biol Proced Online 2019; 21:5. [PMID: 30930695 PMCID: PMC6425631 DOI: 10.1186/s12575-019-0093-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
HER3 is the third member of the human epidermal growth factor receptor (HER/EGFR) family, and unlike its other family members, is unique due to its minimal intrinsic kinase activity. As a result, HER3 has to interact with another receptor tyrosine kinase (RTK), such as EGFR or HER2, in order to activate the PI-3 K/Akt, MEK/MAPK, Jak/Stat pathways, as well as Src kinase. Over-expression of HER3 in various human cancers promotes tumor progression by increasing metastatic potential and acting as a major cause of treatment failure. Effective inhibition of HER3, and/or the key downstream mediators of HER3 signaling, is thought to be required to overcome resistance and enhance therapeutic efficacy. To date, there is no known HER3-targeted therapy that is approved for breast cancer, with a number of anti-HER3 antibodies current in various stages of development and clinical testing. Recent data suggests that the epigenetic strategy of using a histone deacetylase (HDAC) inhibitor, or functional cooperative miRNAs, may be an effective way to abrogate HER3 signaling. Here, we summarize the latest advances in our understanding of the mechanism of HER3 signaling in tumor progression, with continuing research towards the identification of therapeutic anti-HER3 antibodies. We will also examine the potential to develop novel epigenetic approaches that specifically target the HER3 receptor, along with important key downstream mediators that are involved in cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Liu
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Shuang Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Hui Lyu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Adam I Riker
- 3Department of Surgery, Section of Surgical Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Yamin Zhang
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Bolin Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
4
|
Nguyen DQ, Hoang DH, Nguyen Vo TT, Huynh V, Ghoda L, Marcucci G, Nguyen LXT. The role of ErbB3 binding protein 1 in cancer: Friend or foe? J Cell Physiol 2018; 233:9110-9120. [PMID: 30076717 DOI: 10.1002/jcp.26951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
ErbB3, a member of the epidermal growth factor receptor family, reportedly plays an essential role in the regulation of cancer progression and therapeutic resistance. Numerous studies have indicated that ErbB3 binding protein 1 (Ebp1), a binding partner for ErbB3, plays an important regulatory role in the expression and function of ErbB3, but there is no agreement as to whether Ebp1 also has an ErbB3-independent function in cancer and how it might contribute to tumorigenesis. In this review, we will discuss the different functions of the two Ebp1 isoforms, p48 and p42, that may be responsible for the potentially dual role of Ebp1 in cancer growth.
Collapse
Affiliation(s)
- Dang Quan Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Thanh Thao Nguyen Vo
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Huynh
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Le Xuan Truong Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
5
|
Understanding the biology of HER3 receptor as a therapeutic target in human cancer. Acta Pharm Sin B 2018; 8:503-510. [PMID: 30109175 PMCID: PMC6090011 DOI: 10.1016/j.apsb.2018.05.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
HER3 belongs to the human epidermal growth factor receptor (HER) family which also includes HER1/EGFR/erbB1, HER2/erbB2, and HER4/erbB4. As a unique member of the HER family, HER3 lacks or has little intrinsic tyrosine kinase activity. It frequently co-expresses and forms heterodimers with other receptor tyrosine kinases (RTKs) in cancer cells to activate oncogenic signaling, especially the PI-3K/Akt pathway and Src kinase. Elevated expression of HER3 has been observed in a wide variety of human cancers and associates with a worse survival in cancer patients with solid tumors. Studies on the underlying mechanism implicate HER3 expression as a major cause of treatment failure in cancer therapy. Activation of HER3 signaling has also been shown to promote cancer metastasis. These data strongly support the notion that therapeutic inactivation of HER3 and/or its downstream signaling is required to overcome treatment resistance and improve the outcomes of cancer patients.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- Ab, antibody
- Cell signaling
- Dimerization
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- FDA, Food and Drug Administration
- HER, Human epidermal growth factor receptor
- HER3
- HRG, heregulin
- IGF-1R, insulin-like growth factor-I receptor
- MAPK, mitogen-activated protein kinase
- MEK, MAPK kinase
- NSCLC, non-small cell lung cancer
- OS, overall survival
- PI-3K, phosphoinositide 3-kinase
- RTK, receptor tyrosine kinase
- TKI, tyrosine kinase inhibitor
- Targeted therapy
- Therapeutic resistance
- Tumor metastasis
- lncRNA, long ncRNA
- miRNA, microRNA
- ncRNA, noncoding RNA
Collapse
|
6
|
ErbB Family Signalling: A Paradigm for Oncogene Addiction and Personalized Oncology. Cancers (Basel) 2017; 9:cancers9040033. [PMID: 28417948 PMCID: PMC5406708 DOI: 10.3390/cancers9040033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
ErbB family members represent important biomarkers and drug targets for modern precision therapy. They have gained considerable importance as paradigms for oncoprotein addiction and personalized medicine. This review summarizes the current understanding of ErbB proteins in cell signalling and cancer and describes the molecular rationale of prominent cases of ErbB oncoprotein addiction in different cancer types. In addition, we have highlighted experimental technologies for the development of innovative cancer cell models that accurately predicted clinical ErbB drug efficacies. In the future, such cancer models might facilitate the identification and validation of physiologically relevant novel forms of oncoprotein and non-oncoprotein addiction or synthetic lethality. The identification of genotype-drug response relationships will further advance personalized oncology and improve drug efficacy in the clinic. Finally, we review the most important drugs targeting ErbB family members that are under investigation in clinical trials or that made their way already into clinical routine. Taken together, the functional characterization of ErbB oncoproteins have significantly increased our knowledge on predictive biomarkers, oncoprotein addiction and patient stratification and treatment.
Collapse
|
7
|
Bon G, Loria R, Amoreo CA, Verdina A, Sperduti I, Mastrofrancesco A, Soddu S, Diodoro MG, Mottolese M, Todaro M, Stassi G, Milella M, De Maria R, Falcioni R. Dual targeting of HER3 and MEK may overcome HER3-dependent drug-resistance of colon cancers. Oncotarget 2016; 8:108463-108479. [PMID: 29312543 PMCID: PMC5752456 DOI: 10.18632/oncotarget.11400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/10/2016] [Indexed: 01/06/2023] Open
Abstract
Although the medical treatment of colorectal cancer has evolved greatly in the last years, a significant portion of early-stage patients develops recurrence after therapies. The current clinical trials are directed to evaluate new drug combinations and treatment schedules. By the use of patient-derived or established colon cancer cell lines, we found that the tyrosine kinase receptor HER3 is involved in the mechanisms of resistance to therapies. In agreement, the immunohistochemical analysis of total and phospho-HER3 expression in 185 colorectal cancer specimens revealed a significant correlation with lower disease-free survival. Targeting HER3 by the use of the monoclonal antibody patritumab we found induction of growth arrest in all cell lines. Despite the high efficiency of patritumab in abrogating the HER3-dependent activation of PI3K pathway, the HER2 and EGFR-dependent MAPK pathway is activated as a compensatory mechanism. Interestingly, we found that the MEK-inhibitor trametinib inhibits, as expected, the MAPK pathway but induces the HER3-dependent activation of PI3K pathway. The combined treatment results in the abrogation of both PI3K and MAPK pathways and in a significant reduction of cell proliferation and survival. These data suggest a new strategy of therapy for HER3-overexpressing colon cancers.
Collapse
Affiliation(s)
- Giulia Bon
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Loria
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carla Azzurra Amoreo
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Verdina
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Sperduti
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Arianna Mastrofrancesco
- Physiopathology Laboratory of Skin, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Silvia Soddu
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcella Mottolese
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matilde Todaro
- Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Michele Milella
- Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Rita Falcioni
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
8
|
Malm M, Frejd FY, Ståhl S, Löfblom J. Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. MAbs 2016; 8:1195-1209. [PMID: 27532938 PMCID: PMC5058629 DOI: 10.1080/19420862.2016.1212147] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) has in recent years been recognized as a key node in the complex signaling network of many different cancers. It is implicated in de novo and acquired resistance against therapies targeting other growth factor receptors, e.g., EGFR, HER2, and it is a major activator of the PI3K/Akt signaling pathway. Consequently, HER3 has attracted substantial attention, and is today a key target for drugs in clinical development. Sophisticated protein engineering approaches have enabled the generation of a range of different affinity proteins targeting this receptor, including antibodies and alternative scaffolds that are either mono- or bispecific. Here, we describe HER3 and its role as a key tumor target, and give a comprehensive review of HER3-targeted proteins currently in development, including discussions on the opportunities and challenges of targeting this receptor.
Collapse
Affiliation(s)
- Magdalena Malm
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - Fredrik Y Frejd
- b Affibody AB, SE, Stockholm , Sweden.,c Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | - Stefan Ståhl
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - John Löfblom
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| |
Collapse
|
9
|
Sundar R, Soong R, Cho BC, Brahmer JR, Soo RA. Immunotherapy in the treatment of non-small cell lung cancer. Lung Cancer 2014; 85:101-9. [PMID: 24880938 PMCID: PMC4332778 DOI: 10.1016/j.lungcan.2014.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
Advances in the understanding of the role of the immune system in tumor immunosurveillance have resulted in the recognition that tumors can evade immune destruction via the dysregulation of co-inhibitory or checkpoint signals. This has led to the development of a generation immunotherapeutic agents targeting the immune checkpoint pathway. Recent early phase studies of immune checkpoint modulators, such as CTLA-4, PD-1 and PD-L1 inhibitors in NSCLC have reported promising results with prolonged clinical responses and tolerable toxicity. This article provides an overview of co-stimulatory and inhibitory molecules that regulate the immune response to tumors, recent therapies that have been developed to exploit these interactions and the role of predictive biomarkers in treatment selection.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pathology, National University Health System, Singapore
| | - Byoung-Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Seoul, South Korea
| | - Julie R Brahmer
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, United States
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, University of Western Australia, Australia.
| |
Collapse
|
10
|
Ma J, Lyu H, Huang J, Liu B. Targeting of erbB3 receptor to overcome resistance in cancer treatment. Mol Cancer 2014; 13:105. [PMID: 24886126 PMCID: PMC4022415 DOI: 10.1186/1476-4598-13-105] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/02/2014] [Indexed: 01/12/2023] Open
Abstract
The erbB receptors, including the epidermal growth factor receptor (EGFR), erbB2 (also known as HER2/neu), erbB3 (or HER3), and erbB4 (or HER4), are often aberrantly activated in a wide variety of human cancers. They are excellent targets for selective anti-cancer therapies because of their transmembrane location and pro-oncogenic activity. While several therapeutic agents against erbB2 and/or EGFR have been used in the treatment of human cancers with efficacy, there has been relatively less emphasis on erbB3 as a molecular target. Elevated expression of erbB3 is frequently observed in various malignancies, where it promotes tumor progression via interactions with other receptor tyrosine kinases (RTKs) due to its lack of or weak intrinsic kinase activity. Studies on the underlying mechanisms implicate erbB3 as a major cause of treatment failure in cancer therapy, mainly through activation of the PI-3 K/Akt, MEK/MAPK, and Jak/Stat signaling pathways as well as Src kinase. It is believed that inhibition of erbB3 signaling may be required to overcome therapeutic resistance and effectively treat cancers. To date, no erbB3-targeted therapy has been approved for cancer treatment. Targeting of erbB3 receptor with a monoclonal antibody (Ab) is the only strategy currently under preclinical study and clinical evaluation. In this review, we focus on the role of erbB3-initiated signaling in the development of cancer drug resistance and discuss the latest advances in identifying therapeutic strategies inactivating erbB3 to overcome the resistance and enhance efficacy of cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - Bolin Liu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Morrison MM, Hutchinson K, Williams MM, Stanford JC, Balko JM, Young C, Kuba MG, Sánchez V, Williams AJ, Hicks DJ, Arteaga CL, Prat A, Perou CM, Earp HS, Massarweh S, Cook RS. ErbB3 downregulation enhances luminal breast tumor response to antiestrogens. J Clin Invest 2013; 123:4329-43. [PMID: 23999432 DOI: 10.1172/jci66764] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022] Open
Abstract
Aberrant regulation of the erythroblastosis oncogene B (ErbB) family of receptor tyrosine kinases (RTKs) and their ligands is common in human cancers. ErbB3 is required in luminal mammary epithelial cells (MECs) for growth and survival. Since breast cancer phenotypes may reflect biological traits of the MECs from which they originate, we tested the hypothesis that ErbB3 drives luminal breast cancer growth. We found higher ERBB3 expression and more frequent ERBB3 gene copy gains in luminal A/B breast cancers compared with other breast cancer subtypes. In cell culture, ErbB3 increased growth of luminal breast cancer cells. Targeted depletion of ErbB3 with an anti-ErbB3 antibody decreased 3D colony growth, increased apoptosis, and decreased tumor growth in vivo. Treatment of clinical breast tumors with the antiendocrine drug fulvestrant resulted in increased ErbB3 expression and PI3K/mTOR signaling. Depletion of ErbB3 in fulvestrant-treated tumor cells reduced PI3K/mTOR signaling, thus decreasing tumor cell survival and tumor growth. Fulvestrant treatment increased phosphorylation of all ErbB family RTKs; however, phospho-RTK upregulation was not seen in tumors treated with both fulvestrant and anti-ErbB3. These data indicate that upregulation of ErbB3 in luminal breast cancer cells promotes growth, survival, and resistance to fulvestrant, thus suggesting ErbB3 as a target for breast cancer treatment.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents, Hormonal/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Cell Proliferation
- Cell Survival
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm
- Drug Synergism
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Receptor Modulators/pharmacology
- Female
- Fulvestrant
- Gene Dosage
- Gene Expression
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Oligonucleotide Array Sequence Analysis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/immunology
- Receptor, ErbB-3/metabolism
- Signal Transduction
- Survival Analysis
- Transcriptome
- Xenograft Model Antitumor Assays
Collapse
|
12
|
Yee NS. Toward the goal of personalized therapy in pancreatic cancer by targeting the molecular phenotype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:91-143. [PMID: 23288637 DOI: 10.1007/978-1-4614-6176-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this article is to provide a critical review of the molecular alterations in pancreatic cancer that are clinically investigated as therapeutic targets and their potential impact on clinical outcomes. Adenocarcinoma of exocrine pancreas is generally associated with poor prognosis and the conventional therapies are marginally effective. Advances in understanding the genetic regulation of normal and neoplastic development of pancreas have led to development and clinical evaluation of new therapeutic strategies that target the signaling pathways and molecular alterations in pancreatic cancer. Applications have begun to utilize the genetic targets as biomarkers for prediction of therapeutic responses and selection of treatment options. The goal of accomplishing personalized tumor-specific therapy with tolerable side effects for patients with pancreatic cancer is hopefully within reach in the foreseeable future.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033-0850, USA.
| |
Collapse
|
13
|
Abstract
HER3 (ErbB3) is a unique member of the human epidermal growth factor receptor (EGFR) family (ErbB family). It functions only through dimerization with other members of the ErbB family and modulates activity and sensitivity to targeted cancer therapies. This paper briefly describes the mechanism of HER3 in signal transduction and its potential role in acquired resistance to EGFR- and HER2-targeted therapies. We also consider recent developments in HER3-targeting therapeutics and their combination with inhibitors of other ErbB members in clinical applications.
Collapse
|
14
|
May C, Sapra P, Gerber HP. Advances in bispecific biotherapeutics for the treatment of cancer. Biochem Pharmacol 2012; 84:1105-12. [PMID: 22858161 DOI: 10.1016/j.bcp.2012.07.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 12/16/2022]
Abstract
Conventional monoclonal antibody (mAb) therapeutics interfering with cellular signaling of their respective target antigens are frequently limited in their ability to induce significant anti-tumor activities when administered as single agents in patients with solid tumors. To overcome these limitations, several new technologies are being developed to empower biotherapeutics and to improve their anti-tumor activities, while maintaining their high tumor selectivity and superior safety profiles. The various efficacy enhancement technologies developed for mAbs can be divided broadly into two categories: First, technologies that improve the intrinsic anti-tumor activities of conventional immunoglobulin mAb formats, including the enhancement of effector cell functions and modulations of target binding properties, including interference with multiple signaling pathways. The second category of empowered biologics combines complementary anti-tumor modalities independent of the IgG format, including antibody drug conjugates (ADCs). In addition, bispecific compounds designed to recruit different subsets of inflammatory cells to the tumor environment, also belong to the mechanistic complementation strategy. This approach termed redirected immune cell killing, belongs to one the most promising new biotherapeutic platforms developed in oncology. Over 20 bispecific compounds are currently being developed pre-clinically, and several compounds are undergoing early stage clinical trials. In this report, we review the progress made in the development of bispecific biotherapeutics in the context of ADCs, redirected T- and B-cell killing and targeting of multiple signaling pathways. We also discuss the status of the clinical development of this class of compounds in oncology and the promises and challenges this field is currently facing.
Collapse
Affiliation(s)
- Chad May
- Bioconjugate Discovery and Development, Oncology Research Unit, Pfizer Worldwide Research and Development, 401 North Middletown Road, Pearl River, NY 10965, USA
| | | | | |
Collapse
|
15
|
Reichert JM. mAbs’s communication networks. MAbs 2012; 4:133. [DOI: 10.4161/mabs.4.2.19485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Nilvebrant J, Dunlop DC, Sircar A, Wurch T, Falkowska E, Reichert JM, Helguera G, Piccione EC, Brack S, Berger S. IBC's 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics International Conferences and the 2011 Annual Meeting of The Antibody Society, December 5-8, 2011, San Diego, CA. MAbs 2012; 4:153-81. [PMID: 22453091 DOI: 10.4161/mabs.4.2.19495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics international conferences, and the 2011 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5-8, 2011 in San Diego, CA. The meeting drew ~800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a preview to the main events, a pre-conference workshop held on December 4, 2011 focused on antibodies as probes of structure. The Antibody Engineering Conference comprised eight sessions: (1) structure and dynamics of antibodies and their membrane receptor targets; (2) model-guided generation of binding sites; (3) novel selection strategies; (4) antibodies in a complex environment: targeting intracellular and misfolded proteins; (5) rational vaccine design; (6) viral retargeting with engineered binding molecules; (7) the biology behind potential blockbuster antibodies and (8) antibodies as signaling modifiers: where did we go right, and can we learn from success? The Antibody Therapeutics session comprised five sessions: (1)Twenty-five years of therapeutic antibodies: lessons learned and future challenges; (2) preclinical and early stage development of antibody therapeutics; (3) next generation anti-angiogenics; (4) updates of clinical stage antibody therapeutics and (5) antibody drug conjugates and bispecific antibodies.
Collapse
Affiliation(s)
- Johan Nilvebrant
- School of Biotechnology; Department of Proteomics; Royal Institute of Technology (KTH); AlbaNova University Center; Stockholm, Sweden
| | | | - Aroop Sircar
- EMD Serono Research Institute; Billlerica, MA USA
| | - Thierry Wurch
- Oncology Research Division, Institut de Recherche SERVIER; Croissy sur Seine, France
| | | | | | - Gustavo Helguera
- Farmacotecnia I, Facultad de Farmacia y Bioquímica; University of Buenos Aires; Ciudad Autónoma de Buenos Aires, Argentina
| | - Emily C Piccione
- Standford Cancer Institute; Stanford University School of Medicine; Stanford, CA USA
| | | | - Sven Berger
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre; St Julien en Genevois, France
| |
Collapse
|
17
|
Cornes P. The economic pressures for biosimilar drug use in cancer medicine. Target Oncol 2012; 7 Suppl 1:S57-67. [PMID: 22249658 PMCID: PMC3291824 DOI: 10.1007/s11523-011-0196-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 01/22/2023]
Abstract
The main rationale for using biosimilar drugs is for cost saving. The market development for biosimilar drugs will therefore depend on the degree to which cost saving measures are required by nations, medical insurers and individuals and the absolute savings that could be gained by switching from original drugs. This paper is designed to discover the degree to which financial constraints will drive future health spending and to discover if legal or safety issues could impact on any trend. A structured literature search was performed for papers and documents to 27 August 2011. Where multiple sources of data were available on a topic, data from papers and reports by multinational or national bodies were used in preference to data from regions or individual hospitals. Almost all health systems face current significant cost pressures. The twin driver of increasing cancer prevalence as populations age and cancer medicine costs rising faster than inflation places oncology as the most significant single cost problem. For some countries, this is predicted to make medicine unaffordable within a decade. Most developed countries have planned to embrace biosimilar use as a cost-control measure. Biosimilar introduction into the EU has already forced prices down, both the price of biosimilar drugs and competitive price reductions in originator drugs. Compound annual growth rates of use have been predicted at 65.8% per year. Most developed countries have planned to embrace biosimilar use as a major cost-control measure. Only legal blocks and safety concerns are likely to act against this trend. For centralised healthcare systems, and those with a strong tradition of generic medicine use, biosimilar use will clearly rise with predictions of more than 80% of prescriptions of some biologic drugs within 1 year of market entry in the USA. Delaying the implementation of such programmes however risks a real crisis in healthcare delivery for many countries and hospitals that few can now afford.
Collapse
Affiliation(s)
- Paul Cornes
- Bristol Haematology & Oncology Centre, Bristol, UK.
| |
Collapse
|
18
|
Froude JW, Stiles B, Pelat T, Thullier P. Antibodies for biodefense. MAbs 2011; 3:517-27. [PMID: 22123065 PMCID: PMC3242838 DOI: 10.4161/mabs.3.6.17621] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/03/2011] [Indexed: 12/11/2022] Open
Abstract
Potential bioweapons are biological agents (bacteria, viruses, and toxins) at risk of intentional dissemination. Biodefense, defined as development of therapeutics and vaccines against these agents, has seen an increase, particularly in the US following the 2001 anthrax attack. This review focuses on recombinant antibodies and polyclonal antibodies for biodefense that have been accepted for clinical use. These antibodies aim to protect against primary potential bioweapons, or category A agents as defined by the Centers for Disease Control and Prevention (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox virus, and certain others causing viral hemorrhagic fevers) and certain category B agents. Potential for prophylactic use is presented, as well as frequent use of oligoclonal antibodies or synergistic effect with other molecules. Capacities and limitations of antibodies for use in biodefense are discussed, and are generally applicable to the field of infectious diseases.
Collapse
Affiliation(s)
- Jeffrey W Froude
- US Army Medical Research and Material Command; Fort Detrick, MD USA
- Unité de biotechnologie des anticorps et des toxines; Département de Microbiologie; Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); La Tronche Cedex, France
| | - Bradley Stiles
- US Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | - Thibaut Pelat
- Unité de biotechnologie des anticorps et des toxines; Département de Microbiologie; Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); La Tronche Cedex, France
| | - Philippe Thullier
- Unité de biotechnologie des anticorps et des toxines; Département de Microbiologie; Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); La Tronche Cedex, France
| |
Collapse
|
19
|
|