1
|
Fojtík L, Kalaninová Z, Fiala J, Halada P, Chmelík J, Man P, Kukačka Z, Novák P. Structural Characterization of Monoclonal Antibodies and Epitope Mapping by FFAP Footprinting. Anal Chem 2024; 96:7386-7393. [PMID: 38698660 PMCID: PMC11099888 DOI: 10.1021/acs.analchem.3c04161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.
Collapse
Affiliation(s)
- Lukáš Fojtík
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
- Faculty
of Science, Charles University in Prague, Prague 128 00, Czech Republic
| | - Zuzana Kalaninová
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
- Faculty
of Science, Charles University in Prague, Prague 128 00, Czech Republic
| | - Jan Fiala
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Petr Halada
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Josef Chmelík
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Petr Man
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Zdeněk Kukačka
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Petr Novák
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
- Faculty
of Science, Charles University in Prague, Prague 128 00, Czech Republic
| |
Collapse
|
2
|
Reinert T, Houzé P, Francois YN, Gahoual R. Enhancing affinity purification of monoclonal antibodies from human serum for subsequent CZE-MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:123974. [PMID: 38271747 DOI: 10.1016/j.jchromb.2023.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Due to the separation technique employed, capillary electrophoresis coupled to mass spectrometry (CE-MS) analysis performances are significantly influenced by the chemical composition and the complexity of the sample. In various applications, that impact has prevented the use of CE-MS for the characterization and quantification of proteins in biological samples. Here we present the development and evaluation and a sample preparation procedure, based on affinity purification, for the specific extraction of the monoclonal antibody (mAbs) infliximab from human serum in order to perform subsequent proteolytic digestion and CE-MS/MS analysis. Three distinctive sample preparation strategies were envisaged. In each case, the different steps composing the protocol were thoroughly optimized and evaluated in order to provide a sample preparation addressing the important complexity of serums samples while providing an optimal compatibility with CE-MS/MS analysis. The different sample preparation strategies were assessed concerning the possibility to achieve an appropriate absolute quantification of the mAbs using CE-MS/MS for samples mimicking patient serum samples. Also, the possibility to perform the characterization of several types of post-translational modifications (PTMs) was evaluated. The sample preparation protocols allowed the quantification of the mAbs in serums samples for concentration as low as 0.2 µg·mL-1 (2.03 nM) using CE-MS/MS analysis, also the possibility to characterize and estimate the modification level of PTMs hotspots in a consistent manner. Results allowed to attribute the effect on the electrophoretic separation of the different steps composing sample preparation. Finally, they demonstrated that sample preparation for CE-MS/MS analysis could benefit greatly for the extended applicability of this type of analysis for complex biological matrices.
Collapse
Affiliation(s)
- Tessa Reinert
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France; Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France.
| | - Pascal Houzé
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France; Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Yannis-Nicolas Francois
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Rabah Gahoual
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France
| |
Collapse
|
3
|
Bhattacharya S, Rathore AS. A novel filter-assisted protein precipitation (FAPP) based sample pre-treatment method for LC-MS peptide mapping for biosimilar characterization. J Pharm Biomed Anal 2023; 234:115527. [PMID: 37364451 DOI: 10.1016/j.jpba.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Establishing analytical and functional comparability serves as the foundation of biosimilar development. A critical part of this exercise is sequence similarity search and categorization of post-translational modifications (PTMs), often by peptide mapping using liquid chromatography-mass spectrometry (LC-MS). When performing bottom-up proteomic sample preparation, efficient digestion of the protein and extraction of peptides for subsequent mass spectrometric analysis can be a challenge. Conventional sample preparation strategies face the risk of allowing interference of chemicals which are essential for extraction but are likely to interfere with digestion, resulting in complex chromatographic profiles due to semi-cleavages, insufficient peptide cleavages, and other unwanted reactions. Further, peptide cleanup through commonly used immobilized C-18 pipette tips can cause significant peptide loss as well as variability in individual peptide yields, thereby causing artifacts of various product-related modifications. In this study, we proposed a simple enzymatic digestion technique by incorporating different molecular weight filters and protein precipitation, with the objective to minimize interference of denaturing, reducing, and alkylating agents throughout overnight digestion. As a result, the need for peptide cleanup is significantly reduced and results in higher peptide yield. The proposed FAPP approach outperformed the conventional method across multiple metrics including, 30% more peptides, 8.19% more fully digested peptides, 14% higher sequence coverage rate, and 11.82% more site-specific alterations. Quantitative and qualitative repeatability of the proposed approach have been demonstrated. It can be concluded that the filter-assisted protein precipitation (FAPP) protocol proposed in this study offers an effective substitute for the traditional approach.
Collapse
Affiliation(s)
| | - Anurag S Rathore
- Chemical Engineering Department, Indian Institute of Technology Delhi, India.
| |
Collapse
|
4
|
Reinert T, Houzé P, Mignet N, Francois YN, Gahoual R. Post-translational modifications comparative identification and kinetic study of infliximab innovator and biosimilars in serum using capillary electrophoresis-tandem mass spectrometry. J Pharm Biomed Anal 2023; 234:115541. [PMID: 37399702 DOI: 10.1016/j.jpba.2023.115541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Despite reports indicating the potential impact of post-translational modifications on the activity of a monoclonal antibody, their prediction or monitoring post-administration remains a challenge. In addition, with the expiration of patents concerning the early generation of mAbs, the production of biosimilars is constantly increasing. Structural differences of biosimilars compared to the innovator product are commonly evaluated for the formulated product in the context of biosimilarity assessment. However, estimating their structural outcome after administration is particularly difficult. Due to the complexity of in vivo studies, there is a need to develop analytical strategies to predict PTMs consequently to their administration and their impact on mAbs potency. Here, we identified and evaluated the modification kinetics of 4 asparagine deamidations and 2 aspartate isomerizations of infliximab innovator product (Remicade®) and two biosimilars (Inflectra® and Remsima®) in vitro using serum incubation at 37 °C. The methodology was based on a bottom-up approach with capillary electrophoresis hyphenated with mass spectrometry analysis for an unequivocal assignment of modified and unmodified forms. 2 asparagines demonstrated a gradual deamidation correlated with incubation time. The specific extraction efficiency was evaluated to determine possible changes in the antigen binding affinity of infliximab with the incubation. Results showed the possibility to achieve an additional aspect concerning biosimilarity assessment, oriented on the study of the structural stability after administration.
Collapse
Affiliation(s)
- Tessa Reinert
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France; Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France
| | - Pascal Houzé
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France; Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Nathalie Mignet
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France
| | - Yannis-Nicolas Francois
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Rabah Gahoual
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France.
| |
Collapse
|
5
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Abstract
Isotachophoresis (ITP) is a versatile electrophoretic technique that can be used for sample preconcentration, separation, purification, and mixing, and to control and accelerate chemical reactions. Although the basic technique is nearly a century old and widely used, there is a persistent need for an easily approachable, succinct, and rigorous review of ITP theory and analysis. This is important because the interest and adoption of the technique has grown over the last two decades, especially with its implementation in microfluidics and integration with on-chip chemical and biochemical assays. We here provide a review of ITP theory starting from physicochemical first-principles, including conservation of species, conservation of current, approximation of charge neutrality, pH equilibrium of weak electrolytes, and so-called regulating functions that govern transport dynamics, with a strong emphasis on steady and unsteady transport. We combine these generally applicable (to all types of ITP) theoretical discussions with applications of ITP in the field of microfluidic systems, particularly on-chip biochemical analyses. Our discussion includes principles that govern the ITP focusing of weak and strong electrolytes; ITP dynamics in peak and plateau modes; a review of simulation tools, experimental tools, and detection methods; applications of ITP for on-chip separations and trace analyte manipulation; and design considerations and challenges for microfluidic ITP systems. We conclude with remarks on possible future research directions. The intent of this review is to help make ITP analysis and design principles more accessible to the scientific and engineering communities and to provide a rigorous basis for the increased adoption of ITP in microfluidics.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department
of Aeronautics and Astronautics, Stanford
University, Stanford, California 94305, United States
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
N-Glycosylation of monoclonal antibody therapeutics: A comprehensive review on significance and characterization. Anal Chim Acta 2022; 1209:339828. [DOI: 10.1016/j.aca.2022.339828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/02/2023]
|
8
|
Nupur N, Joshi S, Gulliarme D, Rathore AS. Analytical Similarity Assessment of Biosimilars: Global Regulatory Landscape, Recent Studies and Major Advancements in Orthogonal Platforms. Front Bioeng Biotechnol 2022; 10:832059. [PMID: 35223794 PMCID: PMC8865741 DOI: 10.3389/fbioe.2022.832059] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Biopharmaceuticals are one of the fastest-growing sectors in the biotechnology industry. Within the umbrella of biopharmaceuticals, the biosimilar segment is expanding with currently over 200 approved biosimilars, globally. The key step towards achieving a successful biosimilar approval is to establish analytical and clinical biosimilarity with the innovator. The objective of an analytical biosimilarity study is to demonstrate a highly similar profile with respect to variations in critical quality attributes (CQAs) of the biosimilar product, and these variations must lie within the range set by the innovator. This comprises a detailed comparative structural and functional characterization using appropriate, validated analytical methods to fingerprint the molecule and helps reduce the economic burden towards regulatory requirement of extensive preclinical/clinical similarity data, thus making biotechnological drugs more affordable. In the last decade, biosimilar manufacturing and associated regulations have become more established, leading to numerous approvals. Biosimilarity assessment exercises conducted towards approval are also published more frequently in the public domain. Consequently, some technical advancements in analytical sciences have also percolated to applications in analytical biosimilarity assessment. Keeping this in mind, this review aims at providing a holistic view of progresses in biosimilar analysis and approval. In this review, we have summarized the major developments in the global regulatory landscape with respect to biosimilar approvals and also catalogued biosimilarity assessment studies for recombinant DNA products available in the public domain. We have also covered recent advancements in analytical methods, orthogonal techniques, and platforms for biosimilar characterization, since 2015. The review specifically aims to serve as a comprehensive catalog for published biosimilarity assessment studies with details on analytical platform used and critical quality attributes (CQAs) covered for multiple biotherapeutic products. Through this compilation, the emergent evolution of techniques with respect to each CQA has also been charted and discussed. Lastly, the information resource of published biosimilarity assessment studies, created during literature search is anticipated to serve as a helpful reference for biopharmaceutical scientists and biosimilar developers.
Collapse
Affiliation(s)
- Neh Nupur
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| | - Srishti Joshi
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| | - Davy Gulliarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
9
|
Legrand P, Dembele O, Alamil H, Lamoureux C, Mignet N, Houzé P, Gahoual R. Structural identification and absolute quantification of monoclonal antibodies in suspected counterfeits using capillary electrophoresis and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2022; 414:2699-2712. [PMID: 35099584 PMCID: PMC8802745 DOI: 10.1007/s00216-022-03913-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
Monoclonal antibodies (mAbs) represent a major category of biopharmaceutical products which due to their success as therapeutics have recently experienced the emergence of mAbs originating from different types of trafficking. We report the development of an analytical strategy which enables the structural identification of mAbs in addition to comprehensive characterization and quantification in samples in potentially counterfeit samples. The strategy is based on the concomitant use of capillary zone electrophoresis analysis (CZE-UV), size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) and liquid chromatography hyphenated to tandem mass spectrometry (LC-MS/MS). This analytical strategy was applied to the investigation of different samples having unknown origins seized by the authorities, and potentially incorporating an IgG 4 or an IgG 1. The results achieved from the different techniques demonstrated to provide orthogonal and complementary information regarding the nature and the structure of the different mAbs. Therefore, they allowed to conclude unequivocally on the identification of the mAbs in the potentially counterfeit samples. Finally, a LC-MS/MS quantification method was developed which specificity was to incorporate a different mAbs labeled with stable isotopes as internal standard. The LC-MS/MS quantification method was validated and thus demonstrated the possibility to use common peptides with the considered IgG in order to achieve limit of quantification as low as 41.4 nM. The quantification method was used to estimate the concentration in the investigated samples using a single type of internal standard and experimental conditions, even in the case of mAbs with no stable isotope labeled homologues available.
Collapse
Affiliation(s)
- Pauline Legrand
- Faculté de Sciences Pharmaceutiques et Biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1022, Université de Paris, Paris, France.,Département Recherche Et Développement Pharmaceutique, Agence Générale Des Equipements Et Produits de Santé (AGEPS), Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Oumar Dembele
- Faculté de Sciences Pharmaceutiques et Biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1022, Université de Paris, Paris, France
| | - Héléna Alamil
- Faculté de Sciences Pharmaceutiques et Biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1022, Université de Paris, Paris, France
| | - Catherine Lamoureux
- Service Commun de Laboratoire DGCCRF-DGCCI (SCL), Laboratoire de Paris, Massy, France
| | - Nathalie Mignet
- Faculté de Sciences Pharmaceutiques et Biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1022, Université de Paris, Paris, France
| | - Pascal Houzé
- Faculté de Sciences Pharmaceutiques et Biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1022, Université de Paris, Paris, France.,Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Rabah Gahoual
- Faculté de Sciences Pharmaceutiques et Biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1022, Université de Paris, Paris, France. .,Unité de Technologies Biologiques Et Chimiques Pour La Santé (UTCBS), Faculté de Pharmacie, Université Paris Descartes, 4, avenue de l'observatoire, 75270, Cedex 06, Paris, France.
| |
Collapse
|
10
|
Kaya SI, Cetinkaya A, Caglayan MG, Ozkan SA. Recent biopharmaceutical applications of capillary electrophoresis methods on recombinant DNA technology-based products. Electrophoresis 2021; 43:1035-1049. [PMID: 34529858 DOI: 10.1002/elps.202100193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 11/11/2022]
Abstract
Biopharmaceuticals (recombinant technology-based products, vaccines, whole blood and blood components, gene therapy, cells, tissues, etc.,) are described as biological medical products produced from various living sources such as human, microbial, animal, and so on by manufacturing, extraction, or semi-synthesis. They are complex molecules having high molecular weights. For their safety and efficacy, their structural, clinical, physicochemical, and chemical features must be carefully controlled, and they must be well characterized by analytical techniques before the approval of the final product. Capillary electrophoresis (CE) having versatile modes can provide valuable safety and efficacy information, such as amino acid sequence, size variants (low and high molecular weight variants), charged variants (acidic and basic impurities), aggregates, N-linked glycosylation, and O-linked glycosylation. There are numerous applications of CE in the literature. In this review, the most significant and recent studies on the analysis of recombinant DNA technology-based products using different CE modes in the last ten years have been overviewed. It was seen that the researches mostly focus on the analysis of mAbs and IgG. In addition, in recent years, researchers have started to prefer CE combined mass spectrometry (MS) techniques to provide a more detailed characterization for protein and peptide fragments.
Collapse
Affiliation(s)
- S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Mehmet G Caglayan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Li N, He S, Li C, Yang F, Dong Y. Sensitive Analysis of Metoprolol Tartrate and Diltiazem Hydrochloride in Human Serum by Capillary Zone Electrophoresis Combining on Column Field-Amplified Sample Injection. J Chromatogr Sci 2021; 59:465-472. [PMID: 33675354 DOI: 10.1093/chromsci/bmab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/29/2020] [Accepted: 02/06/2021] [Indexed: 11/12/2022]
Abstract
A sensitive capillary zone electrophoresis (CZE) combined with field-amplified sample injection (FASI) method was investigated to simultaneously determine diltiazem (DI) hydrochloride and metoprolol (ME) tartrate in human serum. This method was validated by linearity, limits of detection (LOD), stability, precision and accuracy, and the related parameters are linearity (r2 > 0.9980), intra- and inter-day precisions (intra-day relative standard deviation (RSD) is 2.3-3.4%, and inter-day RSD is 3.8-7.5%) and the LOD (0.02 ng/mL for ME tartrate and 0.01 ng/mL for DI hydrochloride). So the proposed method is rapid, sensitive and accurate for determination of these two anti-anginal drugs in human serum. As for enrichment conditions, it was helpful to add phosphoric acid and isopropanol into samples for enrichment efficiency. A model was established to illustrate the possible enrichment mechanism of analytes, and a theory of half-width was also applied in CZE combined with FASI method to evaluate the peak performance.
Collapse
Affiliation(s)
- Ning Li
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, 199 # West Donggang Road Lanzhou 730000, PR China.,Department of Clinical Pharmacy, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, 333# South Binhe Road Lanzhou 730050, PR China
| | - Shujuan He
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, 199 # West Donggang Road Lanzhou 730000, PR China
| | - Chunlan Li
- Department of Cardiology, the Third People's Hospital of Gansu Province, 763# Duanjiatan Road Lanzhou 730020, PR China
| | - Fatang Yang
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, 199 # West Donggang Road Lanzhou 730000, PR China
| | - Yuming Dong
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, 199 # West Donggang Road Lanzhou 730000, PR China
| |
Collapse
|
12
|
Dadouch M, Ladner Y, Bich C, Montels J, Morel J, Perrin C. Fast in-line bottom-up analysis of monoclonal antibodies: Toward an electrophoretic fingerprinting approach. Electrophoresis 2021; 42:1229-1237. [PMID: 33650106 DOI: 10.1002/elps.202000375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
For their characterization and quality control, monoclonal antibodies are frequently analyzed at the bottom-up level to generate specific fingerprints that can be used to tackle post-translational modifications or ensure production consistency between lots. To circumvent time-consuming and labor-intensive off-line sample preparation steps, the implementation of integrated methodologies from sample preparation to separation and detection is highly valuable. In this perspective, capillary zone electrophoresis appears as a choice technique since the capillary can subsequently be used as a vessel for sample preparation and electrophoretic discrimination/detection of the reaction products. Here, a fast in-line methodology for the routine quality control of mAbs at the bottom-up level is reported. Simultaneous denaturation and reduction (pretreatment step) were conducted with RapiGest® surfactant and dithiothreitol before in-line tryptic digestion. Reactant mixing was realized by transverse diffusion of laminar flow profile under controlled temperature. In-line digestion was carried out with a resistant trypsin to autolysis. The main parameters affecting the digestion efficiency (trypsin concentration and incubation conditions) were optimized to generate mAb electrophoretic profiles free from trypsin interferences. An acidic MS-compatible BGE was used to obtain high resolution separation of released peptides and in-line surfactant cleavage. The whole methodology was performed in less than two hours with good repeatability of migration times (RSD = 0.91%, n = 5) and corrected peak areas (RSD = 9.6%, n = 5). CE-fingerprints were successfully established for different mAbs and an antibody-drug conjugate.
Collapse
Affiliation(s)
- Meriem Dadouch
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Yoann Ladner
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Claudia Bich
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Jérôme Montels
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Jacques Morel
- Département de Rhumatologie, Université de Montpellier, Hôpital Lapeyronie, Montpellier Cedex 5, 34295, France
| | - Catherine Perrin
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
14
|
Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for peptide mapping for monoclonal antibodies. J Chromatogr A 2020; 1620:460954. [DOI: 10.1016/j.chroma.2020.460954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
|
15
|
Melzer T, Wimmer B, Bock S, Posch TN, Huhn C. Challenges and applications of isotachophoresis coupled to mass spectrometry: A review. Electrophoresis 2020; 41:1045-1059. [DOI: 10.1002/elps.201900454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Tanja Melzer
- Institute of Physical and Theoretical ChemistryEberhard Karls Universität Tübingen Germany
| | - Benedikt Wimmer
- Institute of Physical and Theoretical ChemistryEberhard Karls Universität Tübingen Germany
| | - Stephanie Bock
- Institute of Physical and Theoretical ChemistryEberhard Karls Universität Tübingen Germany
| | | | - Carolin Huhn
- Institute of Physical and Theoretical ChemistryEberhard Karls Universität Tübingen Germany
| |
Collapse
|
16
|
Füssl F, Trappe A, Carillo S, Jakes C, Bones J. Comparative Elucidation of Cetuximab Heterogeneity on the Intact Protein Level by Cation Exchange Chromatography and Capillary Electrophoresis Coupled to Mass Spectrometry. Anal Chem 2020; 92:5431-5438. [PMID: 32105056 DOI: 10.1021/acs.analchem.0c00185] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Charge sensitive separation methods such as ion exchange chromatography (CEX) and capillary electrophoresis (CE) have recently been coupled to mass spectrometry to facilitate high resolution profiling of proteoforms present within the charge variant profile of complex biopharmaceuticals. Here we apply pH gradient cation exchange chromatography and microfluidic capillary electrophoresis using the ZipChip platform for comparative characterization of the monoclonal antibody Cetuximab. Cetuximab harbors four glycans per molecule, two on each heavy chain, of which the Fab glycans have been reported to be complex and multiply sialylated. The presence of these extra glycosylation sites in the variable region of the molecule causes significant charge variant and glycan heterogeneity, which makes comprehensive analysis on the intact protein level challenging. Both pH gradient CEX-MS and CE-MS were found to be powerful for the separation of Cetuximab charge variants with eight major peaks being baseline resolved using both separation platforms. Informative native-like mass spectra were collected for each charge variant peak using both platforms that facilitated deconvolution and further analysis. The total proteoform coverage was exceptionally high with >100 isoforms identified and relatively quantified with CEX-MS, in case of CE-MS the proteoform coverage was >200. A deep insight into the heterogeneity of Cetuximab was unveiled, the high level of sensitivity achievable enables the implementation of the presented technologies even at early stages of the biopharmaceutical development platform, such as in developability assessment, process development and also for monitoring process consistency.
Collapse
Affiliation(s)
- Florian Füssl
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Anne Trappe
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Sara Carillo
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Craig Jakes
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Jonathan Bones
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
17
|
Beck A, Guillarme D, Fleury-Souverain S, Bodier-Montagutelli E, Respaud R. Anticorps monoclonaux biosimilaires. Med Sci (Paris) 2020; 35:1146-1152. [DOI: 10.1051/medsci/2019215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
La mise sur le marché de biosimilaires requiert une démonstration stricte de la similarité avec l’anticorps de référence, au travers d’études précliniques et cliniques. Cet article synthétise l’ensemble des analyses physicochimiques et fonctionnelles mises en œuvre in vitro, préalables à la réalisation d’études cliniques. Pour chaque caractéristique critique de l’anticorps, nous avons détaillé les techniques analytiques communément employées, leur principe de fonctionnement, ainsi que le type d’informations que ces techniques permettent d’obtenir.
Collapse
|
18
|
Saadé J, Gahoual R, Beck A, Leize-Wagner E, François YN. Characterization of the Primary Structure of Cysteine-Linked Antibody-Drug Conjugates Using Capillary Electrophoresis with Mass Spectrometry. Methods Mol Biol 2020; 2078:263-272. [PMID: 31643063 DOI: 10.1007/978-1-4939-9929-3_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) enables the characterization of the primary structure of ADCs. An analytical method based on a derived bottom-up proteomic workflow is designed to provide detailed information about the amino acid sequence, the glycosylation profiling, and the location on the peptide backbone of the conjugated drugs. Here we describe the experimental protocol applied on the characterization of cysteine-linked brentuximab vedotin (Adcetris®).
Collapse
Affiliation(s)
- Josiane Saadé
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Rabah Gahoual
- Laboratoire Vecteurs Pour l'Imagerie Moléculaire et le Ciblage Thérapeutique (VICT), Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Alain Beck
- Pierre Fabre Laboratories, IRPF-Centre d'Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
19
|
Révész Á, Rokob TA, Jeanne Dit Fouque D, Hüse D, Háda V, Turiák L, Memboeuf A, Vékey K, Drahos L. Optimal Collision Energies and Bioinformatics Tools for Efficient Bottom-up Sequence Validation of Monoclonal Antibodies. Anal Chem 2019; 91:13128-13135. [PMID: 31518108 DOI: 10.1021/acs.analchem.9b03362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rigorous validation of amino acid sequence is fundamental in the characterization of original and biosimilar protein biopharmaceuticals. Widely accepted workflows are based on bottom-up mass spectrometry, and they often require multiple techniques and significant manual work. Here, we demonstrate that optimization of a set of tandem mass spectroscopy (MS/MS) collision energies and automated combination of all available information in the measurements can increase the sequence validated by one technique close to the inherent limits. We created a software (called "Serac") that consumes results of the Mascot database search engine and identifies the amino acids validated by bottom-up MS/MS experiments using the most rigorous, industrially acceptable definition of sequence coverage (we term this "confirmed sequence coverage"). The software can combine spectra at the level of amino acids or fragment ions to exploit complementarity, provides full transparency to justify validation, and reduces manual effort. With its help, we investigated collision energy dependence of confirmed sequence coverage of individual peptides and full proteins on trypsin-digested monoclonal antibody samples (rituximab and trastuzumab). We found the energy dependence to be modest, but we demonstrated the benefit of using spectra taken at multiple energies. We describe a workflow based on 2-3 LC-MS/MS runs, carefully selected collision energies, and a fragment ion level combination, which yields ∼85% confirmed sequence coverage, 25%-30% above that from a basic proteomics protocol. Further increase can mainly be expected from alternative digestion enzymes or fragmentation techniques, which can be seamlessly integrated to the processing, thereby allowing effortless validation of full sequences.
Collapse
Affiliation(s)
- Ágnes Révész
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Tibor András Rokob
- Theoretical Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Dany Jeanne Dit Fouque
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Dániel Hüse
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Viktor Háda
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Antony Memboeuf
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| |
Collapse
|
20
|
|
21
|
Gahoual R, Leize-Wagner E, Houzé P, François YN. Revealing the potential of capillary electrophoresis/mass spectrometry: the tipping point. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:11-19. [PMID: 30022554 DOI: 10.1002/rcm.8238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
The hyphenation of capillary electrophoresis and mass spectrometry (CE/MS) remains a minor technique compared with liquid chromatography/mass spectrometry (LC/MS), which represents nowadays the standard instrumentation, regardless of its introduction thirty years ago. However, from a theoretical point of view, CE coupling should be quite favorable especially with electrospray ionization mass spectrometry (ESI-MS). At the time, the sensitivity provided by CE/MS was often limited, due to hyphenation requirements, which at some point appeared to disqualify CE/MS from benefiting from the performance gain driving the evolution of MS instruments. However, this context has been significantly modified in a matter of a few years. The development of innovative CE/MS interfacing systems has enabled an important improvement regarding sensitivity and reinforced robustness in order to provide an instrumentation accessible to the largest scientific community. Because of the unique selectivity delivered by the electrophoretic separation, CE/MS has proved to be particularly relevant for the analysis of biological molecules. The conjunction of these aspects is motivating the interest in CE/MS analysis and shows that CE/MS is mature enough to enrich the toolbox of analytical techniques for the analysis of complex biological samples. Here we discuss the characteristics of the major types of high-sensitivity CE/ESI-MS instrumentation and emphasize the late evolution and future positioning of CE/MS analysis for the characterization of biological molecules like peptides and proteins, through some pertinent applications.
Collapse
Affiliation(s)
- Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de spectrométrie de masse des interactions et des systèmes (LSMIS), Unistra-CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| | - Pascal Houzé
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
- Laboratoire de Biochimie, Hôpital Universitaire Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yannis-Nicolas François
- Laboratoire de spectrométrie de masse des interactions et des systèmes (LSMIS), Unistra-CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
22
|
Hanck-Silva G, Fatori Trevizan LN, Petrilli R, de Lima FT, Eloy JO, Chorilli M. A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab. Crit Rev Anal Chem 2019; 50:125-135. [DOI: 10.1080/10408347.2019.1581984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Felipe Tita de Lima
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josimar O. Eloy
- College of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
23
|
Liu P, Zhu X, Wu W, Ludwig R, Song H, Li R, Zhou J, Tao L, Leone AM. Subunit mass analysis for monitoring multiple attributes of monoclonal antibodies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:31-40. [PMID: 30286260 DOI: 10.1002/rcm.8301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Multi-Attribute Methods (MAMs) are appealing due to their ability to provide data on multiple molecular attributes from a single assay. If fully realized, such tests could reduce the number of assays required to support a product control strategy while providing equivalent or greater product understanding relative to the conventional approach. In doing so, MAMs have the potential to decrease development and manufacturing costs by reducing the number of tests in a release panel. METHODS In this work, we report a MAM which is based on subunit mass analysis. RESULTS The MAM assay is shown to be suitable for use as a combined method for identity testing, glycan profiling, and protein ratio determination for co-formulated monoclonal antibody (mAb) drugs. This is achieved by taking advantage of the high mass accuracy and relative quantification capabilities of intact mass analysis using quadrupole time-of-flight mass spectrometry (Q-TOF MS). Protein identification is achieved by comparing the measured masses of light chain (LC) and heavy chain (HC) mAbs against their theoretical values. Specificity is based on instrument mass accuracy. Glycan profiling and relative protein ratios are determined by the relative peak intensities of the protein HC glycoforms and LC glycoforms, respectively. Results for these relative quantifications agree well with those obtained by the conventional hydrophilic interaction liquid chromatography (HILIC) and reversed-phase LC methods. CONCLUSIONS The suitability of this MAM for use in a quality control setting is demonstrated through assessment specificity for mAb identity, and accuracy, precision, linearity and robustness for glycan profiling and ratio determination. Results from this study indicate that a MAM with subunit mass analysis has the potential to replace three conventional methods widely used for mAb release testing including identification assay, glycosylation profiling, and ratio determination for co-formulated mAbs.
Collapse
Affiliation(s)
- Peiran Liu
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Xin Zhu
- Agilent Technologies, Wilmington, DE, USA
| | - Wei Wu
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Richard Ludwig
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Hangtian Song
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Ruojia Li
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Jiping Zhou
- Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, NJ, 08903, USA
| | - Li Tao
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Anthony M Leone
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| |
Collapse
|
24
|
Dai J, Zhang Y. A Middle-Up Approach with Online Capillary Isoelectric Focusing/Mass Spectrometry for In-Depth Characterization of Cetuximab Charge Heterogeneity. Anal Chem 2018; 90:14527-14534. [DOI: 10.1021/acs.analchem.8b04396] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jun Dai
- Separation and Analysis Technology Team, Bristol-Myers Squibb Research and Development, Post Office
Box 4000, Princeton, New Jersey 08543, United States
| | - Yingru Zhang
- Separation and Analysis Technology Team, Bristol-Myers Squibb Research and Development, Post Office
Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
25
|
Lu G, Crihfield CL, Gattu S, Veltri LM, Holland LA. Capillary Electrophoresis Separations of Glycans. Chem Rev 2018; 118:7867-7885. [PMID: 29528644 PMCID: PMC6135675 DOI: 10.1021/acs.chemrev.7b00669] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 01/04/2023]
Abstract
Capillary electrophoresis has emerged as a powerful approach for carbohydrate analyses since 2014. The method provides high resolution capable of separating carbohydrates by charge-to-size ratio. Principle applications are heavily focused on N-glycans, which are highly relevant to biological therapeutics and biomarker research. Advances in techniques used for N-glycan structural identification include migration time indexing and exoglycosidase and lectin profiling, as well as mass spectrometry. Capillary electrophoresis methods have been developed that are capable of separating glycans with the same monosaccharide sequence but different positional isomers, as well as determining whether monosaccharides composing a glycan are alpha or beta linked. Significant applications of capillary electrophoresis to the analyses of N-glycans in biomarker discovery and biological therapeutics are emphasized with a brief discussion included on carbohydrate analyses of glycosaminoglycans and mono-, di-, and oligosaccharides relevant to food and plant products. Innovative, emerging techniques in the field are highlighted and the future direction of the technology is projected based on the significant contributions of capillary electrophoresis to glycoscience from 2014 to the present as discussed in this review.
Collapse
Affiliation(s)
- Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Cassandra L. Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
26
|
Chen H, Shi P, Fan F, Tu M, Xu Z, Xu X, Du M. Complementation of UPLC-Q-TOF-MS and CESI-Q-TOF-MS on identification and determination of peptides from bovine lactoferrin. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:150-157. [DOI: 10.1016/j.jchromb.2018.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/05/2018] [Accepted: 03/10/2018] [Indexed: 12/27/2022]
|
27
|
Faserl K, Sarg B, Gruber P, Lindner HH. Investigating capillary electrophoresis-mass spectrometry for the analysis of common post-translational modifications. Electrophoresis 2018; 39:1208-1215. [PMID: 29389038 PMCID: PMC6001557 DOI: 10.1002/elps.201700437] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Capillary electrophoresis coupled to mass spectrometry is a very efficient analytical method for the analysis of post-translational modifications because of its high separation efficiency and high detection sensitivity. Here we applied CE-MS using three differently coated separation capillaries for in-depth analysis of a set of 70 synthetic post-translationally modified peptides (including phosphorylation, acetylation, methylation, and nitration). We evaluated the results in terms of peptide detection and separation characteristics and found that the use of a neutrally coated capillary resulted in highest overall signal intensity of singly modified peptides. In contrast, the use of a bare-fused silica capillary was superior in the identification of multi-phosphorylated peptides (12 out of 15 were identified). Fast separations of approximately 12 min could be achieved using a positively coated capillary, however, at the cost of separation efficiency. A comparison to nanoLC-MS revealed that multi-phosphorylated peptides interact with the RP material very poorly so that these peptides were either washed out or elute as very broad peaks from the nano column which results in a reduced peptide identification rate (7 out of 15). Moreover, the methods applied were found to be very well suited for the analysis of the acetylated, nitrated and methylated peptides. All 36 synthetic peptides, which exhibit one of those modifications, could be identified regardless of the method applied. As a final step in this study and as a proof of principle, the phosphoproteome enriched from PC-12 pheochromocytoma cells was analyzed by CE-MS resulting in 5686 identified and 4088 quantified phosphopeptides. We compared the characterized analytes to those identified by a nanoLC-MS proteomics study and found that less than one third of the phosphopeptides were identical, which demonstrates the benefit by combining different approaches quite impressively.
Collapse
Affiliation(s)
- Klaus Faserl
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Bettina Sarg
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Peter Gruber
- Division of Medical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Herbert H. Lindner
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| |
Collapse
|
28
|
Dada OO, Zhao Y, Jaya N, Salas-Solano O. High-Resolution Capillary Zone Electrophoresis with Mass Spectrometry Peptide Mapping of Therapeutic Proteins: Improved Separation with Mixed Aqueous–Aprotic Dipolar Solvents (N,N-Dimethylacetamide and N,N-Dimethylformamide) as the Background Electrolyte. Anal Chem 2017; 89:11227-11235. [DOI: 10.1021/acs.analchem.7b03405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Oluwatosin O. Dada
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Yimeng Zhao
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Nomalie Jaya
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Oscar Salas-Solano
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
29
|
Dada OO, Zhao Y, Jaya N, Salas-Solano O. High-Resolution Capillary Zone Electrophoresis with Mass Spectrometry Peptide Mapping of Therapeutic Proteins: Peptide Recovery and Post-translational Modification Analysis in Monoclonal Antibodies and Antibody–Drug Conjugates. Anal Chem 2017; 89:11236-11242. [DOI: 10.1021/acs.analchem.7b03643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Oluwatosin O. Dada
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Yimeng Zhao
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Nomalie Jaya
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Oscar Salas-Solano
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
30
|
Giorgetti J, D'Atri V, Canonge J, Lechner A, Guillarme D, Colas O, Wagner-Rousset E, Beck A, Leize-Wagner E, François YN. Monoclonal antibody N-glycosylation profiling using capillary electrophoresis - Mass spectrometry: Assessment and method validation. Talanta 2017; 178:530-537. [PMID: 29136858 DOI: 10.1016/j.talanta.2017.09.083] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Characterization of therapeutic proteins represents a major challenge for analytical sciences due to their heterogeneity caused by post-translational modifications (PTM). Among these PTM, glycosylation which is possibly the most prominent, require comprehensive identification because of their major influence on protein structure and effector functions of monoclonal antibodies (mAbs). As a consequence, glycosylation profiling must be deeply characterized. For this application, several analytical methods such as separation-based or MS-based methods, were evaluated. However, no CE-ESI-MS approach has been assessed and validated. Here, we illustrate how the use of CE-ESI-MS method permits the comprehensive characterization of mAbs N-glycosylation at the glycopeptide level to perform relative quantitation of N-glycan species. Validation of the CE-ESI-MS method in terms of robustness and reproducibility was demonstrated through the relative quantitation of glycosylation profiles for ten different mAbs produced in different cell lines. Glycosylation patterns obtained for each mAbs were compared to Hydrophilic Interaction Chromatography of 2-aminobenzamide labelled glycans with fluorescence detector (HILIC-FD) analysis considered as a reference method. Very similar glycoprofiling were obtained with the CE-ESI-MS and HILIC-FD demonstrating the attractiveness of CE-ESI-MS method to characterize and quantify the glycosylation heterogeneity of a wide range of therapeutic mAbs with high accuracy and precision.
Collapse
Affiliation(s)
- Jérémie Giorgetti
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Julie Canonge
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Antony Lechner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Olivier Colas
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | | | - Alain Beck
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France.
| |
Collapse
|
31
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
32
|
Biacchi M, Said N, Beck A, Leize-Wagner E, François YN. Top-down and middle-down approach by fraction collection enrichment using off-line capillary electrophoresis – mass spectrometry coupling: Application to monoclonal antibody F c/2 charge variants. J Chromatogr A 2017; 1498:120-127. [DOI: 10.1016/j.chroma.2017.02.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 12/22/2022]
|
33
|
Largy E, Cantais F, Van Vyncht G, Beck A, Delobel A. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A 2017; 1498:128-146. [PMID: 28372839 DOI: 10.1016/j.chroma.2017.02.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
Proteins are increasingly used as therapeutics. Their characterization is challenging due to their size and inherent heterogeneity notably caused by post-translational modifications, among which glycosylation is probably the most prominent. The glycosylation profile of therapeutic proteins must therefore be thoroughly analyzed. Here, we illustrate how the use of a combination of various cutting-edge LC or LC/MS(/MS) methods, and operating at different levels of analysis allows the comprehensive characterization of both the N- and O-glycosylations of therapeutic proteins without the need for other approaches (capillary electrophoresis, MALDI-TOF). This workflow does not call for the use of highly specialized/custom hardware and software nor an extensive knowledge of glycan analysis. Most notably, we present the point of view of a contract research organization, with the constraints associated to the work in a regulated environment (GxP). Two salient points of this work are i) the use of mixed-mode chromatography as a fast and straightforward mean of profiling N-glycans sialylation as well as an orthogonal method to separate N-glycans co-eluting in the HILIC mode; and ii) the use of widepore HILIC/MS to analyze challenging N/O-glycosylation profiles at both the peptide and subunit levels. A particular attention was given to the sample preparations in terms of duration, specificity, versatility, and robustness, as well as the ease of data processing.
Collapse
Affiliation(s)
- Eric Largy
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Fabrice Cantais
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Géry Van Vyncht
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Arnaud Delobel
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium.
| |
Collapse
|
34
|
KAWAI T. Recent Studies on Online Sample Preconcentration Methods inCapillary Electrophoresis Coupled with Mass Spectrometry. CHROMATOGRAPHY 2017. [DOI: 10.15583/jpchrom.2017.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takayuki KAWAI
- Quantitative Biology Center, RIKEN
- Japan Science and Technology Agency, PRESTO
- Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
35
|
Mitra I, Snyder CM, Zhou X, Campos MI, Alley WR, Novotny MV, Jacobson SC. Structural Characterization of Serum N-Glycans by Methylamidation, Fluorescent Labeling, and Analysis by Microchip Electrophoresis. Anal Chem 2016; 88:8965-71. [PMID: 27504786 DOI: 10.1021/acs.analchem.6b00882] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To characterize the structures of N-glycans derived from human serum, we report a strategy that combines microchip electrophoresis, standard addition, enzymatic digestion, and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). We compared (i) electrophoretic mobilities of known N-glycans from well-characterized (standard) glycoproteins through standard addition, (ii) the electrophoretic mobilities of N-glycans with their molecular weights determined by MALDI-MS, and (iii) electrophoretic profiles of N-glycans enzymatically treated with fucosidase. The key step to identify the sialylated N-glycans was to quantitatively neutralize the negative charge on both α2,3- and α2,6-linked sialic acids by covalent derivatization with methylamine. Both neutralized and nonsialylated N-glycans from these samples were then reacted with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) to provide a fluorescent label and a triple-negative charge, separated by microchip electrophoresis, and detected by laser-induced fluorescence. The methylamidation step leads to a 24% increase in the peak capacity of the separation and direct correlation of electrophoretic and MALDI-MS results. In total, 37 unique N-glycan structures were assigned to 52 different peaks recorded in the electropherograms of the serum samples. This strategy ensures the needed separation efficiency and detectability, easily resolves linkage and positional glycan isomers, and is highly reproducible.
Collapse
Affiliation(s)
- Indranil Mitra
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Christa M Snyder
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Xiaomei Zhou
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Margit I Campos
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - William R Alley
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Milos V Novotny
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Stephen C Jacobson
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
36
|
Malá Z, Gebauer P, Boček P. Analytical capillary isotachophoresis after 50 years of development: Recent progress 2014-2016. Electrophoresis 2016; 38:9-19. [DOI: 10.1002/elps.201600289] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences; v.v.i; Brno Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences; v.v.i; Brno Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry of the Czech Academy of Sciences; v.v.i; Brno Czech Republic
| |
Collapse
|
37
|
Sorensen M, Harmes DC, Stoll DR, Staples GO, Fekete S, Guillarme D, Beck A. Comparison of originator and biosimilar therapeutic monoclonal antibodies using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. MAbs 2016; 8:1224-1234. [PMID: 27362833 DOI: 10.1080/19420862.2016.1203497] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As research, development, and manufacturing of biosimilar protein therapeutics proliferates, there is great interest in the continued development of a portfolio of complementary analytical methods that can be used to efficiently and effectively characterize biosimilar candidate materials relative to the respective reference (i.e., originator) molecule. Liquid phase separation techniques such as liquid chromatography and capillary electrophoresis are powerful tools that can provide both qualitative and quantitative information about similarities and differences between reference and biosimilar materials, especially when coupled with mass spectrometry. However, the inherent complexity of these protein materials challenges even the most modern one-dimensional (1D) separation methods. Two-dimensional (2D) separations present a number of potential advantages over 1D methods, including increased peak capacity, 2D peak patterns that can facilitate unknown identification, and improvement in the compatibility of some separation methods with mass spectrometry. In this study, we demonstrate the use of comprehensive 2D-LC separations involving cation-exchange (CEX) and reversed-phase (RP) separations in the first and second dimensions to compare 3 reference/biosimilar pairs of monoclonal antibodies (cetuximab, trastuzumab and infliximab) that cover a range of similarity/disimilarity in a middle-up approach. The second dimension RP separations are coupled to time-of-flight mass spectrometry, which enables direct identification of features in the chromatograms obtained from mAbs digested with the IdeS enzyme, or digestion with IdeS followed by reduction with dithiothreitol. As many as 23 chemically unique mAb fragments were detected in a single sample. Our results demonstrate that these rich datasets enable facile assesment of the degree of similarity between reference and biosimilar materials.
Collapse
Affiliation(s)
- Matthew Sorensen
- a Gustavus Adolphus College , Department of Chemistry , St. Peter , MN , USA
| | - David C Harmes
- a Gustavus Adolphus College , Department of Chemistry , St. Peter , MN , USA
| | - Dwight R Stoll
- a Gustavus Adolphus College , Department of Chemistry , St. Peter , MN , USA
| | | | - Szabolcs Fekete
- c School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy , Geneva , Switzerland
| | - Davy Guillarme
- c School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy , Geneva , Switzerland
| | - Alain Beck
- d Center of Immunology Pierre Fabre , Saint-Julien-en-Genevois , France
| |
Collapse
|
38
|
Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:61-78. [PMID: 27265157 DOI: 10.1016/j.jchromb.2016.05.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
Out of all categories, monoclonal antibodies (mAbs), biosimilar, antibody-drug conjugates (ADCs) and Fc-fusion proteins attract the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need of analytical methods to provide comprehensive in-depth characterization of these molecules. CE presents some obvious benefits as high resolution separation and miniaturized format to be widely applied to the analysis of biopharmaceuticals. CE is an effective method for the separation of proteins at different levels. capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) have been particularly relevant for the characterization of size and charge variants of intact and reduced mAbs, while CE-MS appears to be a promising analytical tool to assess the primary structure of mAbs and related products. This review will be dedicated to detail the current and state-of-the-art CE-based methods for the characterization of mAbs and related products.
Collapse
|
39
|
Ibrahim M, Gahoual R, Enkler L, Becker HD, Chicher J, Hammann P, François YN, Kuhn L, Leize-Wagner E. Improvement of Mitochondria Extract from Saccharomyces cerevisiae Characterization in Shotgun Proteomics Using Sheathless Capillary Electrophoresis Coupled to Tandem Mass Spectrometry. J Chromatogr Sci 2016; 54:653-63. [PMID: 26860395 PMCID: PMC4885408 DOI: 10.1093/chromsci/bmw005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/11/2015] [Indexed: 12/16/2022]
Abstract
In this work, we describe the characterization of a quantity-limited sample (100 ng) of yeast mitochondria by shotgun bottom-up proteomics. Sample characterization was carried out by sheathless capillary electrophoresis, equipped with a high sensitivity porous tip and coupled to tandem mass spectrometry (CESI-MS-MS) and concomitantly with a state-of-art nano flow liquid chromatography coupled to a similar mass spectrometry (MS) system (nanoLC-MS-MS). With single injections, both nanoLC-MS-MS and CESI-MS-MS 60 min-long separation experiments allowed us to identify 271 proteins (976 unique peptides) and 300 proteins (1,765 unique peptides) respectively, demonstrating a significant specificity and complementarity in identification depending on the physicochemical separation employed. Such complementary, maximizing the number of analytes detected, presents a powerful tool to deepen a biological sample's proteomic characterization. A comprehensive study of the specificity provided by each separating technique was also performed using the different properties of the identified peptides: molecular weight, mass-to-charge ratio (m/z), isoelectric point (pI), sequence coverage or MS-MS spectral quality enabled to determine the contribution of each separation. For example, CESI-MS-MS enables to identify larger peptides and eases the detection of those having extreme pI without impairing spectral quality. The addition of peptides, and therefore proteins identified by both techniques allowed us to increase significantly the sequence coverages and then the confidence of characterization. In this study, we also demonstrated that the two yeast enolase isoenzymes were both characterized in the CESI-MS-MS data set. The observation of discriminant proteotypic peptides is facilitated when a high number of precursors with high-quality MS-MS spectra are generated.
Collapse
Affiliation(s)
- Marianne Ibrahim
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| | - Rabah Gahoual
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| | - Ludovic Enkler
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Hubert Dominique Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| |
Collapse
|
40
|
Said N, Gahoual R, Kuhn L, Beck A, François YN, Leize-Wagner E. Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis - Tandem mass spectrometry as nanoESI infusion platform and separation method. Anal Chim Acta 2016; 918:50-9. [PMID: 27046210 DOI: 10.1016/j.aca.2016.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
Antibody-drug conjugates (ADCs) represent a fast growing class of biotherapeutic products. Their production leads to a distribution of species exhibiting different number of conjugated drugs overlaying the inherent complexity resulting from the monoclonal antibody format, such as glycoforms. ADCs require an additional level of characterization compared to first generation of biotherapeutics obtained through multiple analytical techniques for complete structure assessment. We report the development of complementary approaches implementing sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) to characterize the different aspects defining the structure of brentuximab vedotin. Native MS using sheathless CE-MS instrument as a nanoESI infusion platform enabled accurate mass measurements and estimation of the average drug to antibody ratio alongside to drug load distribution. Middle-up analysis performed after limited IdeS proteolysis allowed to study independently the light chain, Fab and F(ab')2 subunits incorporating 1, 0 to 4 and 0 to 8 payloads respectively. Finally, a CZE-ESI-MS/MS methodology was developed in order to be compatible with hydrophobic drug composing ADCs. From a single injection, complete sequence coverage could be achieved. Using the same dataset, glycosylation and drug-loaded peptides could be simultaneously identified revealing robust information regarding their respective localization and abundance. Drug-loaded peptide fragmentation mass spectra study demonstrated drug specific fragments reinforcing identification confidence, undescribed so far. Results reveal the method ability to characterize ADCs primary structure in a comprehensive manner while reducing tremendously the number of experiments required. Data generated showed that sheathless CZE-ESI-MS/MS characteristics position the methodology developed as a relevant alternative for comprehensive multilevel characterization of these complex biomolecules.
Collapse
Affiliation(s)
- Nassur Said
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| | - Rabah Gahoual
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France; Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, CNRS, Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France.
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Gahoual R, Beck A, François YN, Leize-Wagner E. Independent highly sensitive characterization of asparagine deamidation and aspartic acid isomerization by sheathless CZE-ESI-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:150-158. [PMID: 26889931 DOI: 10.1002/jms.3735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/02/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Amino acids residues are commonly submitted to various physicochemical modifications occurring at physiological pH and temperature. Post-translational modifications (PTMs) require comprehensive characterization because of their major influence on protein structure and involvement in numerous in vivo process or signaling. Mass spectrometry (MS) has gradually become an analytical tool of choice to characterize PTMs; however, some modifications are still challenging because of sample faint modification levels or difficulty to separate an intact peptide from modified counterparts before their transfer to the ionization source. Here, we report the implementation of capillary zone electrophoresis coupled to electrospray ionization tandem mass spectrometry (CZE-ESI-MS/MS) by the intermediate of a sheathless interfacing for independent and highly sensitive characterization of asparagine deamidation (deaN) and aspartic acid isomerization (isoD). CZE selectivity regarding deaN and isoD was studied extensively using different sets of synthetic peptides based on actual tryptic peptides. Results demonstrated CZE ability to separate the unmodified peptide from modified homologous exhibiting deaN, isoD or both independently with a resolution systematically superior to 1.29. Developed CZE-ESI-MS/MS method was applied for the characterization of monoclonal antibodies and complex protein mixture. Conserved CZE selectivity could be demonstrated even for complex samples, and foremost results obtained showed that CZE selectivity is similar regardless of the composition of the peptide. Separation of modified peptides prior to the MS analysis allowed to characterize and estimate modification levels of the sample independently for deaN and isoD even for peptides affected by both modifications and, as a consequence, enables to distinguish the formation of l-aspartic acid or d-aspartic acid generated from deaN. Separation based on peptide modification allowed, as supported by the ESI efficiency provided by CZE-ESI-MS/MS properties, and enabled to characterize and estimate studied PTMs with an unprecedented sensitivity and proved the relevance of implementing an electrophoretic driven separation for MS-based peptide analysis.
Collapse
Affiliation(s)
- Rabah Gahoual
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (UdS-CNRS), Université de Strasbourg, Strasbourg, France
- Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (UdS-CNRS), Université de Strasbourg, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
43
|
Characterization of cetuximab Fc/2 dimers by off-line CZE-MS. Anal Chim Acta 2016; 908:168-76. [PMID: 26826699 DOI: 10.1016/j.aca.2015.12.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/12/2015] [Accepted: 12/17/2015] [Indexed: 11/30/2022]
Abstract
Monoclonal antibody (mAb) therapeutics attract the largest concern due to their strong therapeutic potency and specificity. The Fc region of mAbs is common to many new biotherapeutics as biosimilar, antibody drug conjugate or fusion protein. Fc region has consequences for Fc-mediated effector functions that might be desirable for therapeutic applications. As a consequence, there is a continuous need for improvement of analytical methods to enable fast and accurate characterization of biotherapeutics. Capillary zone electrophoresis-Mass spectrometry couplings (CZE-MS) appear really attractive methods for the characterization of biological samples. In this report, we used CZE-MS systems developed in house and native MS infusion to allow precise middle-up characterization of Fc/2 variant of cetuximab. Molecular weights were measured for three Fc/2 charge variants detected in the CZE separation of cetuximab subunits. Two Fc/2 C-terminal lysine variants were identified and separated. As the aim is to understand the presence of three peaks in the CZE separation for two Fc/2 subunits, we developed a strategy using CZE-UV/MALDI-MS and CZE-UV/ESI-MS to evaluate the role of N-glycosylation and C-terminal lysine truncation on the CZE separation. The chemical structure of N-glycosylation expressed on the Fc region of cetuximab does not influence CZE separation while C-terminal lysine is significantly influencing separation. In addition, native MS infusion demonstrated the characterization of Fc/2 dimers at pH 5.7 and 6.8 and the first separation of these dimers using CZE-MS.
Collapse
|
44
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|
45
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
46
|
Campa M, Ryan C, Menter A. An overview of developing TNF-α targeted therapy for the treatment of psoriasis. Expert Opin Investig Drugs 2015; 24:1343-54. [PMID: 26289788 DOI: 10.1517/13543784.2015.1076793] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Three biologic drugs targeting TNF-α are approved to treat moderate-to-severe cutaneous psoriasis. These are adalimumab, etanercept and infliximab. These drugs are given by subcutaneous injection or intravenous infusion, and while generally safe and effective, they are expensive with potential for side effects. Thus, numerous new drug candidates are under development that also target TNF-α. AREAS COVERED In this review, the authors detail several drugs under development that target TNF-α, focusing on those drugs in preclinical, Phase I and II trials. The authors describe emerging biologic psoriasis therapies, including biosimilars and novel biologics, in addition to several synthetic and naturally derived small-molecule drug candidates. EXPERT OPINION The currently approved TNF-α antagonists benefit from over 10 years of safety and efficacy data. The expense and method of administration of these biologics, however, can be cumbersome, and less expensive alternatives have the potential to benefit patients with psoriasis. It is inevitable, despite the introduction of new anti-IL-17 therapies, that established TNF-α targeted therapies, as well as newcomers targeting TNF-α, will continue to play an important role in the lifelong management of psoriasis.
Collapse
Affiliation(s)
- Molly Campa
- a Baylor University Medical Center, Division of Dermatology , Dallas, TX, USA
| | - Caitriona Ryan
- a Baylor University Medical Center, Division of Dermatology , Dallas, TX, USA
| | - Alan Menter
- a Baylor University Medical Center, Division of Dermatology , Dallas, TX, USA
| |
Collapse
|
47
|
Bodnar E, Ferreira Nascimento T, Girard L, Komatsu E, Lopez P, Gomes de Oliveira AG, Roy R, Smythe T, Zogbi Y, Spearman M, Tayi VS, Butler M, Perreault H. An integrated approach to analyze EG2-hFc monoclonal antibody N-glycosylation by MALDI-MS. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The characterization of the N-glycan portion of antibodies has been the subject of several studies involving mass spectrometry. In this article, a workflow is presented that starts with the expression of a monoclonal antibody (EG2-hFc) in Chinese hamster ovary cells and continues with Protein A purification of the antibody. Then the protocol continues with gel electrophoresis. Bands containing the heavy chain are cut and isolated from the gel followed by tryptic digestion to obtain peptides and glycopeptides. The enrichment of glycopeptides by C18 chromatography is described followed by characterization using positive and negative modes MALDI-MS and MS/MS. An exoglycosidase, beta-galactosidase, is used to verify anomericity of linkages in the glycan portion of glycopeptides. In the last step, glycans are detached from glycopeptides using PNGase F labelled with phehylhydrazine and characterized by MALDI-MS/MS. This workflow is reported for the first time for this particular antibody and presents a valuable approach for the analysis of N-glycans on most antibodies and glycoproteins.
Collapse
Affiliation(s)
- Edward Bodnar
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Lauren Girard
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Emy Komatsu
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Paul Lopez
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Rini Roy
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Tristan Smythe
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yann Zogbi
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Maureen Spearman
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Venkata S. Tayi
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hélène Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
48
|
Biacchi M, Gahoual R, Said N, Beck A, Leize-Wagner E, François YN. Glycoform Separation and Characterization of Cetuximab Variants by Middle-up Off-Line Capillary Zone Electrophoresis-UV/Electrospray Ionization-MS. Anal Chem 2015; 87:6240-50. [DOI: 10.1021/acs.analchem.5b00928] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael Biacchi
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| | - Rabah Gahoual
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| | - Nassur Said
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| | - Alain Beck
- Centre d’Immunologie Pierre Fabre, Saint-Julien-en-Genevois 74164, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| |
Collapse
|