1
|
Arroyo M, Casas-Delucchi C, Pabba M, Prorok P, Pradhan S, Rausch C, Lehmkuhl A, Maiser A, Buschbeck M, Pasque V, Bernstein E, Luck K, Cardoso M. Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome. Nucleic Acids Res 2024; 52:11659-11688. [PMID: 39189450 PMCID: PMC11514477 DOI: 10.1093/nar/gkae734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Maruthi K Pabba
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sunil K Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Andreas Maiser
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich 81377, Germany
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Camí de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, NY, NY 10029, USA
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
3
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
García-Giménez JL, Garcés C, Romá-Mateo C, Pallardó FV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radic Biol Med 2021; 170:6-18. [PMID: 33689846 DOI: 10.1016/j.freeradbiomed.2021.02.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation of gene expression provides a finely tuned response capacity for cells when undergoing environmental changes. However, in the context of human physiology or disease, any cellular imbalance that modulates homeostasis has the potential to trigger molecular changes that result either in physiological adaptation to a new situation or pathological conditions. These effects are partly due to alterations in the functionality of epigenetic regulators, which cause long-term and often heritable changes in cell lineages. As such, free radicals resulting from unbalanced/extended oxidative stress have been proved to act as modulators of epigenetic agents, resulting in alterations of the epigenetic landscape. In the present review we will focus on the particular effect that oxidative stress and free radicals produce in histone post-translational modifications that contribute to altering the histone code and, consequently, gene expression. The pathological consequences of the changes in this epigenetic layer of regulation of gene expression are thoroughly evidenced by data gathered in many physiological adaptive processes and in human diseases that range from age-related neurodegenerative pathologies to cancer, and that include respiratory syndromes, infertility, and systemic inflammatory conditions like sepsis.
Collapse
Affiliation(s)
- José-Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Concepción Garcés
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain
| | - Carlos Romá-Mateo
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
5
|
de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience 2021; 43:463-485. [PMID: 33825176 PMCID: PMC8110674 DOI: 10.1007/s11357-021-00358-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.
Collapse
|
6
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
7
|
Histone variant macroH2A: from chromatin deposition to molecular function. Essays Biochem 2019; 63:59-74. [DOI: 10.1042/ebc20180062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Abstract
The eukaryotic genome is regulated in the context of chromatin. Specialized histones, known as histone variants, incorporate into chromatin to replace their canonical counterparts and represent an important layer of regulation to diversify the structural characteristics and functional outputs of chromatin. MacroH2A is an unusual histone variant with a bulky C-terminal non-histone domain that distinguishes it from all other histones. It is a critical player in stabilizing differentiated cell identity by posing as a barrier to somatic cell reprogramming toward pluripotency and acts as a tumor suppressor in a wide range of cancers. MacroH2A histones are generally regarded as repressive variants that are enriched at the inactive X chromosome (Xi) and broad domains across autosomal chromatin. Recent studies have shed light on to how macroH2A influences transcriptional outputs within distinct genomic contexts and revealed new intriguing molecular functions of macroH2A variants beyond transcriptional regulation. Furthermore, the mechanisms of its mysterious chromatin deposition are beginning to be unraveled, facilitating our understanding of its complex regulation of genome function.
Collapse
|
8
|
Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 2017; 18:299-314. [DOI: 10.1038/nrm.2016.166] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Abstract
Over the past decade, a growing number of studies have revealed that progressive changes to epigenetic information accompany aging in both dividing and nondividing cells. Functional studies in model organisms and humans indicate that epigenetic changes have a huge influence on the aging process. These epigenetic changes occur at various levels, including reduced bulk levels of the core histones, altered patterns of histone posttranslational modifications and DNA methylation, replacement of canonical histones with histone variants, and altered noncoding RNA expression, during both organismal aging and replicative senescence. The end result of epigenetic changes during aging is altered local accessibility to the genetic material, leading to aberrant gene expression, reactivation of transposable elements, and genomic instability. Strikingly, certain types of epigenetic information can function in a transgenerational manner to influence the life span of the offspring. Several important conclusions emerge from these studies: rather than being genetically predetermined, our life span is largely epigenetically determined; diet and other environmental influences can influence our life span by changing the epigenetic information; and inhibitors of epigenetic enzymes can influence life span of model organisms. These new findings provide better understanding of the mechanisms involved in aging. Given the reversible nature of epigenetic information, these studies highlight exciting avenues for therapeutic intervention in aging and age-associated diseases, including cancer.
Collapse
Affiliation(s)
- Sangita Pal
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Genes and Development Graduate Program, University of Texas Graduate School of the Biomedical Sciences at Houston, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Corresponding author.
| |
Collapse
|
10
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
11
|
Osamor VC, Chinedu SN, Azuh DE, Iweala EJ, Ogunlana OO. The interplay of post-translational modification and gene therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:861-71. [PMID: 27013864 PMCID: PMC4778776 DOI: 10.2147/dddt.s80496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery.
Collapse
Affiliation(s)
- Victor Chukwudi Osamor
- Covenant University Bioinformatics Research (CUBRe) Unit, Department of Computer and Information Sciences, College of Science and Technology (CST), Covenant University, Ota, Ogun State, Nigeria; Institute of Informatics (Computational biology and Bioinformatics), Faculty of Mathematics, Informatics and Mechanics, University of Warsaw (Uniwersytet Warszawski), Warszawa, Poland; Covenant University Public Health and Well-being Research Group (CUPHWERG), Covenant University, Canaan Land, Nigeria
| | - Shalom N Chinedu
- Covenant University Public Health and Well-being Research Group (CUPHWERG), Covenant University, Canaan Land, Nigeria; Biochemistry and Molecular Biology Unit, Department of Biological Sciences, College of Science and Technology, Covenant University, Canaan Land, Nigeria
| | - Dominic E Azuh
- Covenant University Public Health and Well-being Research Group (CUPHWERG), Covenant University, Canaan Land, Nigeria; Department of Economics and Development Studies, Covenant University, Ota, Ogun State, Nigeria
| | - Emeka Joshua Iweala
- Covenant University Public Health and Well-being Research Group (CUPHWERG), Covenant University, Canaan Land, Nigeria; Biochemistry and Molecular Biology Unit, Department of Biological Sciences, College of Science and Technology, Covenant University, Canaan Land, Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Public Health and Well-being Research Group (CUPHWERG), Covenant University, Canaan Land, Nigeria; Biochemistry and Molecular Biology Unit, Department of Biological Sciences, College of Science and Technology, Covenant University, Canaan Land, Nigeria
| |
Collapse
|
12
|
De Loof A, Schoofs L, Huybrechts R. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? Gen Comp Endocrinol 2016; 226:56-71. [PMID: 26707056 DOI: 10.1016/j.ygcen.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022]
Abstract
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| |
Collapse
|
13
|
Chen Q, Gao S, He W, Kou X, Zhao Y, Wang H, Gao S. Xist repression shows time-dependent effects on the reprogramming of female somatic cells to induced pluripotent stem cells. Stem Cells 2015; 32:2642-56. [PMID: 24965076 DOI: 10.1002/stem.1775] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/17/2014] [Accepted: 05/23/2014] [Indexed: 11/10/2022]
Abstract
Although the reactivation of silenced X chromosomes has been observed as part of the process of reprogramming female somatic cells into induced pluripotent stem cells (iPSCs), it remains unknown whether repression of the X-inactive specific transcript (Xist) can greatly enhance female iPSC induction similar to that observed in somatic cell nuclear transfer studies. In this study, we discovered that the repression of Xist plays opposite roles in the early and late phases of female iPSCs induction. Our results demonstrate that the downregulation of Xist by an isopropyl β-d-1-thiogalactopyranoside (IPTG)-inducible short hairpin RNA (shRNA) system can greatly impair the mesenchymal-to-epithelial transition (MET) in the early phase of iPSC induction but can significantly promote the transition of pre-iPSCs to iPSCs in the late phase. Furthermore, we demonstrate that although the knockdown of Xist did not affect the H3K27me3 modification on the X chromosome, macroH2A was released from the inactivated X chromosome (Xi). This enables the X chromosome silencing to be a reversible event. Moreover, we demonstrate that the supplementation of vitamin C (Vc) can augment and stabilize the reversible X chromosome by preventing the relocalization of macroH2A to the Xi. Therefore, our study reveals an opposite role of Xist repression in the early and late stages of reprogramming female somatic cells to pluripotency and demonstrates that the release of macroH2A by Xist repression enables the transition from pre-iPSCs to iPSCs.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Gayen S, Maclary E, Buttigieg E, Hinten M, Kalantry S. A Primary Role for the Tsix lncRNA in Maintaining Random X-Chromosome Inactivation. Cell Rep 2015; 11:1251-65. [PMID: 25981039 DOI: 10.1016/j.celrep.2015.04.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/27/2015] [Accepted: 04/18/2015] [Indexed: 11/30/2022] Open
Abstract
Differentiating pluripotent epiblast cells in eutherians undergo random X-inactivation, which equalizes X-linked gene expression between the sexes by silencing one of the two X-chromosomes in females. Tsix RNA is believed to orchestrate the initiation of X-inactivation, influencing the choice of which X remains active by preventing expression of the antisense Xist RNA, which is required to silence the inactive-X. Here we profile X-chromosome activity in Tsix-mutant (X(ΔTsix)) mouse embryonic epiblasts, epiblast stem cells, and embryonic stem cells. Unexpectedly, we find that Xist is stably repressed on the X(ΔTsix) in both sexes in undifferentiated epiblast cells in vivo and in vitro, resulting in stochastic X-inactivation in females despite Tsix-heterozygosity. Tsix is instead required to silence Xist on the active-X as epiblast cells differentiate in both males and females. Thus, Tsix is not required at the onset of random X-inactivation; instead, it protects the active-X from ectopic silencing once X-inactivation has commenced.
Collapse
Affiliation(s)
- Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Emily Buttigieg
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Michael Hinten
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
15
|
Chemical “Diversity” of Chromatin Through Histone Variants and Histone Modifications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Abstract
The term "epigenetics" was originally used to denote the poorly understood processes by which a fertilized zygote developed into a mature, complex organism. With the understanding that all cells of an organism carry the same DNA, and with increased knowledge of mechanisms of gene expression, the definition was changed to focus on ways in which heritable traits can be associated not with changes in nucleotide sequence, but with chemical modifications of DNA, or of the structural and regulatory proteins bound to it. Recent discoveries about the role of these mechanisms in early development may make it desirable to return to the original definition of epigenetics.
Collapse
Affiliation(s)
- Gary Felsenfeld
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0540
| |
Collapse
|
17
|
Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq. Nat Cell Biol 2013; 15:1244-52. [PMID: 23995732 PMCID: PMC4100556 DOI: 10.1038/ncb2835] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 07/30/2013] [Indexed: 12/15/2022]
Abstract
Molecular insights into somatic cell reprogramming to induced pluripotent stem cells (iPS) would aid regenerative medicine, but are difficult to elucidate in iPS because of their heterogeneity, as relatively few cells undergo reprogramming (0.1-1%; refs , ). To identify early acting regulators, we capitalized on non-dividing heterokaryons (mouse embryonic stem cells fused to human fibroblasts), in which reprogramming towards pluripotency is efficient and rapid, enabling the identification of transient regulators required at the onset. We used bi-species transcriptome-wide RNA-seq to quantify transcriptional changes in the human somatic nucleus during reprogramming towards pluripotency in heterokaryons. During heterokaryon reprogramming, the cytokine interleukin 6 (IL6), which is not detectable at significant levels in embryonic stem cells, was induced 50-fold. A 4-day culture with IL6 at the onset of iPS reprogramming replaced stably transduced oncogenic c-Myc such that transduction of only Oct4, Klf4 and Sox2 was required. IL6 also activated another Jak/Stat target, the serine/threonine kinase gene Pim1, which accounted for the IL6-mediated twofold increase in iPS frequency. In contrast, LIF, another induced GP130 ligand, failed to increase iPS frequency or activate c-Myc or Pim1, thereby revealing a differential role for the two Jak/Stat inducers in iPS generation. These findings demonstrate the power of heterokaryon bi-species global RNA-seq to identify early acting regulators of reprogramming, for example, extrinsic replacements for stably transduced transcription factors such as the potent oncogene c-Myc.
Collapse
|
18
|
De Loof A, Boerjan B, Ernst UR, Schoofs L. The mode of action of juvenile hormone and ecdysone: towards an epi-endocrinological paradigm? Gen Comp Endocrinol 2013; 188:35-45. [PMID: 23454668 DOI: 10.1016/j.ygcen.2013.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
In some insect species, two sites of juvenile hormone (JH) synthesis have been reported: the very well documented corpora allata that secrete JH for "general use", and the reproductive system, in particular the male accessory glands, in which the function of the sometimes huge amounts of JH (e.g. in Hyalophora cecropia) remains to be clarified. A recent finding in Schistocerca gregaria, namely that suppression of the ecdysteroid peak preceding a molt by RNAi of the Halloween genes spook, phantom and shade does not impede normal molting, challenges the (never experimentally proven) classical concept that such a peak is causally linked to a molt. Recent developments in epigenetic control of gene expression in both the honey bee and in locusts suggest that, in addition to the classical scheme of hormone-receptor (membrane- and/or nuclear) mode of action, there may be a third way. Upon combining these and other orphan data that do not fit in the commonly accepted textbook schemes, we here advance the working hypothesis that both JH and ecdysone might be important but overlooked players in epigenetic control of gene expression, in particular at extreme concentrations (peak values or total absence). In this review, we put forward how epi-endocrinology can complement classical arthropod endocrinology.
Collapse
Affiliation(s)
- Arnold De Loof
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, Bus 2465, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
19
|
Posavec M, Timinszky G, Buschbeck M. Macro domains as metabolite sensors on chromatin. Cell Mol Life Sci 2013; 70:1509-24. [PMID: 23455074 PMCID: PMC11113152 DOI: 10.1007/s00018-013-1294-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
Abstract
How metabolism and epigenetics are molecularly linked and regulate each other is poorly understood. In this review, we will discuss the role of direct metabolite-binding to chromatin components and modifiers as a possible regulatory mechanism. We will focus on globular macro domains, which are evolutionarily highly conserved protein folds that can recognize NAD(+)-derived metabolites. Macro domains are found in histone variants, histone modifiers, and a chromatin remodeler among other proteins. Here we summarize the macro domain-containing chromatin proteins and the enzymes that generate relevant metabolites. Focusing on the histone variant macroH2A, we further discuss possible implications of metabolite binding for chromatin function.
Collapse
Affiliation(s)
- Melanija Posavec
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona Spain
| | - Gyula Timinszky
- Butenandt Institute of Physiological Chemistry, Ludwig Maximilian University of Munich, Butenandtstrasse 5, 81377 Munich, Germany
| | - Marcus Buschbeck
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona Spain
| |
Collapse
|
20
|
Halley-Stott RP, Gurdon JB. Epigenetic memory in the context of nuclear reprogramming and cancer. Brief Funct Genomics 2013; 12:164-73. [PMID: 23585580 PMCID: PMC3662891 DOI: 10.1093/bfgp/elt011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic memory represents a natural mechanism whereby the identity of a cell is maintained through successive cell cycles, allowing the specification and maintenance of differentiation during development and in adult cells. Cancer is a loss or reversal of the stable differentiated state of adult cells and may be mediated in part by epigenetic changes. The identity of somatic cells can also be reversed experimentally by nuclear reprogramming. Nuclear reprogramming experiments reveal the mechanisms required to activate embryonic gene expression in adult cells and thus provide insight into the reversal of epigenetic memory. In this article, we will introduce epigenetic memory and the mechanisms by which it may operate. We limit our discussion primarily to the context of nuclear reprogramming and briefly discuss the relevance of memory and reprogramming to cancer biology.
Collapse
Affiliation(s)
- Richard P Halley-Stott
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN United Kingdom
| | | |
Collapse
|
21
|
Cantariño N, Douet J, Buschbeck M. MacroH2A--an epigenetic regulator of cancer. Cancer Lett 2013; 336:247-52. [PMID: 23531411 DOI: 10.1016/j.canlet.2013.03.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/22/2023]
Abstract
Epigenetic regulation is one of the most promising and expanding areas of cancer research. One of the emerging, but least understood aspects of epigenetics is the facultative and locus-specific incorporation of histone variants and their function in chromatin. With the characterization of the first loss of function phenotypes of the macroH2A histone variants, previously unrecognized epigenetic mechanisms have now moved into the spotlight of cancer research. Here, we summarize data supporting different molecular mechanisms that could mediate the primarily tumor suppressive function of macroH2A. We further discuss context-dependent and isoform-specific functions. The aim of this review is to provide guidance for those assessing macroH2A's potential as biomarker or therapeutic intervention point.
Collapse
Affiliation(s)
- Neus Cantariño
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona, Spain
| | | | | |
Collapse
|
22
|
Pasque V, Radzisheuskaya A, Gillich A, Halley-Stott RP, Panamarova M, Zernicka-Goetz M, Surani MA, Silva JCR. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J Cell Sci 2012; 125:6094-104. [PMID: 23077180 PMCID: PMC3585521 DOI: 10.1242/jcs.113019] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 01/05/2023] Open
Abstract
How cell fate becomes restricted during somatic cell differentiation is a long-lasting question in biology. Epigenetic mechanisms not present in pluripotent cells and acquired during embryonic development are expected to stabilize the differentiated state of somatic cells and thereby restrict their ability to convert to another fate. The histone variant macroH2A acts as a component of an epigenetic multilayer that heritably maintains the silent X chromosome and has been shown to restrict tumor development. Here we show that macroH2A marks the differentiated cell state during mouse embryogenesis. MacroH2A.1 was found to be present at low levels upon the establishment of pluripotency in the inner cell mass and epiblast, but it was highly enriched in the trophectoderm and differentiated somatic cells later in mouse development. Chromatin immunoprecipitation revealed that macroH2A.1 is incorporated in the chromatin of regulatory regions of pluripotency genes in somatic cells such as mouse embryonic fibroblasts and adult neural stem cells, but not in embryonic stem cells. Removal of macroH2A.1, macroH2A.2 or both increased the efficiency of induced pluripotency up to 25-fold. The obtained induced pluripotent stem cells reactivated pluripotency genes, silenced retroviral transgenes and contributed to chimeras. In addition, overexpression of macroH2A isoforms prevented efficient reprogramming of epiblast stem cells to naïve pluripotency. In summary, our study identifies for the first time a link between an epigenetic mark and cell fate restriction during somatic cell differentiation, which helps to maintain cell identity and antagonizes induction of a pluripotent stem cell state.
Collapse
Affiliation(s)
- Vincent Pasque
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, CB2 1QN Cambridge, UK
| | - Aliaksandra Radzisheuskaya
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Astrid Gillich
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Richard P. Halley-Stott
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, CB2 1QN Cambridge, UK
| | - Maryna Panamarova
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Magdalena Zernicka-Goetz
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - M. Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - José C. R. Silva
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
23
|
Abstract
Various studies have demonstrated that somatic differentiated cells can be reprogrammed into other differentiated states or into pluripotency, thus showing that the differentiated cellular state is not irreversible. These findings have generated intense interest in the process of reprogramming and in mechanisms that govern the pluripotent state. However, the realization that differentiated cells can be triggered to switch to considerably different lineages also emphasizes that we need to understand how the identity of mature cells is normally maintained. Here we review recent studies on how the differentiated state is controlled at the transcriptional level and discuss how new insights have begun to elucidate mechanisms underlying the stable maintenance of mature cell identities.
Collapse
Affiliation(s)
- Johan Holmberg
- Ludwig Institute for Cancer Research Ltd, BOX 240, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
24
|
Creppe C, Posavec M, Douet J, Buschbeck M. MacroH2A in stem cells: a story beyond gene repression. Epigenomics 2012; 4:221-7. [PMID: 22449192 DOI: 10.2217/epi.12.8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The importance of epigenetic mechanisms is most clearly illustrated during early development when a totipotent cell goes through multiple cell fate transitions to form the many different cell types and tissues that constitute the embryo and the adult. The exchange of a canonical H2A histone for the ‘repressive’ macroH2A variant is one of the most striking epigenetic chromatin alterations that can occur at the level of the nucleosome. Here, we discuss recent data on macroH2A in zebrafish and mouse embryos, in embryonic and adult stem cells and also in nuclear reprogramming. We highlight the role of macroH2A in the establishment and maintenance of differentiated states and we discuss its still poorly recognized function in transcriptional activation.
Collapse
Affiliation(s)
- Catherine Creppe
- Institute for Predictive & Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Melanija Posavec
- Institute for Predictive & Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Julien Douet
- Institute for Predictive & Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Marcus Buschbeck
- Institute for Predictive & Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona, Spain
| |
Collapse
|