1
|
Zhang H, Corredor ALG, Messina-Pacheco J, Li Q, Zogopoulos G, Kaddour N, Wang Y, Shi BY, Gregorieff A, Liu JL, Gao ZH. REG3A/REG3B promotes acinar to ductal metaplasia through binding to EXTL3 and activating the RAS-RAF-MEK-ERK signaling pathway. Commun Biol 2021; 4:688. [PMID: 34099862 PMCID: PMC8184755 DOI: 10.1038/s42003-021-02193-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
Persistent acinar to ductal metaplasia (ADM) is a recently recognized precursor of pancreatic ductal adenocarcinoma (PDAC). Here we show that the ADM area of human pancreas tissue adjacent to PDAC expresses significantly higher levels of regenerating protein 3A (REG3A). Exogenous REG3A and its mouse homolog REG3B induce ADM in the 3D culture of primary human and murine acinar cells, respectively. Both Reg3b transgenic mice and REG3B-treated mice with caerulein-induced pancreatitis develop and sustain ADM. Two out of five Reg3b transgenic mice with caerulein-induced pancreatitis show progression from ADM to pancreatic intraepithelial neoplasia (PanIN). Both in vitro and in vivo ADM models demonstrate activation of the RAS-RAF-MEK-ERK signaling pathway. Exostosin-like glycosyltransferase 3 (EXTL3) functions as the receptor for REG3B and mediates the activation of downstream signaling proteins. Our data indicates that REG3A/REG3B promotes persistent ADM through binding to EXTL3 and activating the RAS-RAF-MEK-ERK signaling pathway. Targeting REG3A/REG3B, its receptor EXTL3, or other downstream molecules could interrupt the ADM process and prevent early PDAC carcinogenesis.
Collapse
Affiliation(s)
- Huairong Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Andrea Liliam Gomez Corredor
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Julia Messina-Pacheco
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - George Zogopoulos
- Department of Surgery, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Nancy Kaddour
- Department of Medicine, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Yifan Wang
- Department of Surgery, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Bing-Yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Alex Gregorieff
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Jun-Li Liu
- Department of Medicine, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Zu-Hua Gao
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
2
|
Yang S, Liu Q, Liao Q. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Front Cell Dev Biol 2021; 8:607209. [PMID: 33505964 PMCID: PMC7829544 DOI: 10.3389/fcell.2020.607209] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy. PDAC is only cured by surgical resection in its early stage, but there remains a relatively high possibility of recurrence. The development of PDAC is closely associated with the tumor microenvironment. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations in the pancreatic tumor stroma. TAMs are inclined to M2 deviation in the tumor microenvironment, which promotes and supports tumor behaviors, including tumorigenesis, immune escape, metastasis, and chemotherapeutic resistance. Herein, we comprehensively reviewed the latest researches on the origin, polarization, functions, and reprogramming of TAMs in PDAC.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Cao Y, Tian Y, Liu Y, Su Z. Reg3β: A Potential Therapeutic Target for Tissue Injury and Inflammation-Associated Disorders. Int Rev Immunol 2021; 41:160-170. [PMID: 33426979 DOI: 10.1080/08830185.2020.1869731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since regenerating islet-derived 3β (Reg3β) was first reported, various studies have been conducted to explore the involvement of Reg3β in a gamut of maladies, such as diabetes, pancreatitis, pancreatic ductal adenocarcinoma, and extrapancreatic maladies such as inflammatory bowel disease, acute liver failure, and myocardial infarction. Surprisingly, there is currently no systematic review of Reg3β. Therefore, we summarize the structural characteristics, transcriptional regulation, putative receptors, and signaling pathways of Reg3β. The exact functional roles in various diseases, especially gastrointestinal and liver diseases, are also discussed. Reg3β plays multiple roles in promoting proliferation, inducing differentiation, preventing apoptosis, and resisting bacteria. The present review may provide new directions for the diagnosis and treatment of gastrointestinal, liver, and pancreatic diseases.
Collapse
Affiliation(s)
- Yuwen Cao
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Yueqin Liu
- Laboratory Center, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China.,Laboratory Center, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Zhou S, Jiang H, Wang H, Lu H, Chen R, Xu H, Su Z, Shao X. Reg3β from cardiomyocytes regulated macrophage migration, proliferation and functional skewing in experimental autoimmune myocarditis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2018; 7:8-15. [PMID: 29755853 PMCID: PMC5944813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Macrophages play critical roles in inflammatory initiation, development, resolution and cardiac regeneration of myocarditis. However, Reg3β, as a member of regenerating family of proteins, contributes to dedifferentiation of injury cardiomyocytes as well as cardiac function remodeling. It remains unclear whether Reg3β was associated with macrophages reprogramming during autoimmune myocarditis. Our results showed that Reg3β could effectively recruit macrophages, promoted their proliferation and phagocytosis, and facilitated their polarized into M2 macrophages. Macrophage, especially M1 phenotype contributed to Reg3β production by cardiomyocytes. Our data also indicated that Reg3β was involved in self-protection mechanism following cardiac injury or stress. This suggests that Reg3β might be a critically protective factor of myocardium.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, China
| | - Han Jiang
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, China
| | - Han Wang
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, China
| | - Hongxiang Lu
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, China
| | - Rong Chen
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, China
| | - Xiaoyi Shao
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, China
- Department of Immunology, Medical College, Nantong UniversityNantong 226001, Jiangsu, China
| |
Collapse
|
5
|
Petrosyan A, Da Sacco S, Tripuraneni N, Kreuser U, Lavarreda-Pearce M, Tamburrini R, De Filippo RE, Orlando G, Cravedi P, Perin L. A step towards clinical application of acellular matrix: A clue from macrophage polarization. Matrix Biol 2017; 57-58:334-346. [PMID: 27575985 PMCID: PMC6717660 DOI: 10.1016/j.matbio.2016.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 01/23/2023]
Abstract
The outcome of tissue engineered organ transplants depends on the capacity of the biomaterial to promote a pro-healing response once implanted in vivo. Multiple studies, including ours, have demonstrated the possibility of using the extracellular matrix (ECM) of animal organs as platform for tissue engineering and more recently, discarded human organs have also been proposed as scaffold source. In contrast to artificial biomaterials, natural ECM has the advantage of undergoing continuous remodeling which allows adaptation to diverse conditions. It is known that natural matrices present diverse immune properties when compared to artificial biomaterials. However, how these properties compare between diseased and healthy ECM and artificial scaffolds has not yet been defined. To answer this question, we used decellularized renal ECM derived from WT mice and from mice affected by Alport Syndrome at different time-points of disease progression as a model of renal failure with extensive fibrosis. We characterized the morphology and composition of these ECMs and compared their in vitro effects on macrophage activation with that of synthetic scaffolds commonly used in the clinic (collagen type I and poly-L-(lactic) acid, PLLA). We showed that ECM derived from Alport kidneys differed in fibrous protein deposition and cytokine content when compared to ECM derived from WT kidneys. Yet, both WT and Alport renal ECM induced macrophage differentiation mainly towards a reparative (M2) phenotype, while artificial biomaterials towards an inflammatory (M1) phenotype. Anti-inflammatory properties of natural ECMs were lost when homogenized, hence three-dimensional structure of ECM seems crucial for generating an anti-inflammatory response. Together, these data support the notion that natural ECM, even if derived from diseased kidneys promote a M2 protolerogenic macrophage polarization, thus providing novel insights on the applicability of ECM obtained from discarded organs as ideal scaffold for tissue engineering.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Nikita Tripuraneni
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Ursula Kreuser
- Radboud Institute for Molecular Life Sciences, Department of Physiology, 6525 GA Nijmegen, The Netherlands
| | - Maria Lavarreda-Pearce
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Riccardo Tamburrini
- Department of General Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Roger E De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Giuseppe Orlando
- Department of General Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Annenberg Building, New York, NY 10029, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|