1
|
Li J, Liu W, Zhang J, Sun C. The Role of Mitochondrial Quality Control in Liver Diseases: Dawn of a Therapeutic Era. Int J Biol Sci 2025; 21:1767-1783. [PMID: 39990657 PMCID: PMC11844277 DOI: 10.7150/ijbs.107777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The liver is a vital metabolic organ that detoxifies substances, produces bile, stores nutrients, and regulates versatile metabolic processes. Maintaining normal liver cell function requires the prompt and delicate modulation of mitochondrial quality control (MQC), which encompasses a spectrum of processes such as mitochondrial fission, fusion, biogenesis, and mitophagy. Recent studies have shown that disruptions to this homeostatic status are closely linked to the advent and progression of a variety of acute and chronic liver diseases, including but not limited to alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease. However, the explicit mechanisms by which mitochondrial dysfunction impacts inflammatory pathways and cell death in the context of liver diseases remain unclear. In this narrative review, we provide a detailed description of MQC, analyze the mechanisms underpinning mitochondrial dysfunction induced by different detrimental insults, and further elucidate how imbalanced/disrupted MQC promotes the progression and aggravation of liver diseases, ultimately shedding light on the mitochondrion-centric therapeutic strategies for these pathophysiological entities.
Collapse
Affiliation(s)
- Jia Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Wenqin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
2
|
Zhou J, Hu D, Feng N, Liu S, Li J. An Investigation of the Saccharides Profile and Metabolic Gene Expression in Muskrat Scented Glands in Different Secretion Seasons. Animals (Basel) 2024; 14:3705. [PMID: 39765609 PMCID: PMC11672420 DOI: 10.3390/ani14243705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The adult male muskrat has a pair of scented glands, which show clear seasonal changes in their developmental status between the secretion season and non-secretion season. During the secretion season, the scented glands are much larger than in the non-secretion season, with the metabolism of glandular cells increasing and a large amount of musk being produced. In this work, the blood, musk, and scented gland tissue were collected from three healthy adult male muskrats during secretion season (September). And the blood and scented gland tissue from another three healthy adult male muskrats during the non-secretion season (November) were also sampled. The saccharides from blood and musk were detected by liquid chromatography-mass spectrometry (LC-MS), indicating the saccharides are concentrated in the scented glands during the secretion season. What is more, transcriptome analysis was employed to investigate the expression patterns of saccharides' pathways, suggesting some saccharides' metabolism-related genes undergo significant seasonal changes. Above all, scented gland saccharides' metabolism displays seasonal differences, and the enhancement in saccharides' metabolic activity during the secretion phase maintains glandular proliferation and secretion function.
Collapse
Affiliation(s)
| | - Defu Hu
- Department of Ecology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.Z.); (N.F.); (S.L.); (J.L.)
| | | | | | | |
Collapse
|
3
|
Lee SJ, Yang J, Keum GB, Kwak J, Doo H, Choi S, Park DG, Kim CH, Kim HB, Lee JH. Therapeutic Potential of Lactiplantibacillus plantarum FB091 in Alleviating Alcohol-Induced Liver Disease through Gut-Liver Axis. J Microbiol Biotechnol 2024; 34:2100-2111. [PMID: 39300956 PMCID: PMC11540612 DOI: 10.4014/jmb.2407.07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
Alcoholic liver disease (ALD) poses a significant global health burden, often requiring liver transplantation and resulting in fatalities. Current treatments, like corticosteroids, effectively reduce inflammation but carry significant immunosuppressive risks. This study evaluates Lactiplantibacillus plantarum FB091, a newly isolated probiotic strain, as a safer alternative for ALD treatment. Using an in vivo mouse model, we assessed the effects of L. plantarum FB091 on alcohol-induced liver damage and gut microbiota composition. Alcohol and probiotics administration did not significantly impact water/feed intake or body weight. Histopathological analysis showed that L. plantarum FB091 reduced hepatocellular ballooning and inflammatory cell infiltration in liver tissues and mitigated structural damage in colon tissues, demonstrating protective effects against alcohol-induced damage. Biomarker analysis indicated that L. plantarum FB091 decreased aspartate aminotransferase levels, suggesting reduced liver damage, and increased alcohol dehydrogenase activity, indicating enhanced alcohol metabolism. Additionally, cytokine assays revealed a reduction in pro-inflammatory TNF-α and an increase in anti-inflammatory IL-10 levels in colon tissues of the L. plantarum FB091 group, suggesting an anti-inflammatory effect. Gut microbiota analysis showed changes in the L. plantarum FB091 group, including a reduction in Cyanobacteria and an increase in beneficial bacteria such as Akkermansia and Lactobacillus. These changes correlated with the recovery and protection of liver and colon health. Overall, L. plantarum FB091 shows potential as a therapeutic probiotic for managing ALD through its protective effects on liver and colon tissues, enhancement of alcohol metabolism, and beneficial modulation of gut microbiota. Further clinical studies are warranted to confirm these findings in humans.
Collapse
Affiliation(s)
- Soo-Jeong Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihye Yang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Sungwoo Choi
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Geun Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Hong Kim
- Binggrae Company, Namyangju 12253, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Song G, Han H, Park S, Sa S, Chung W, Lee BY. Effects of GSH on Alcohol Metabolism and Hangover Improvement in Humans: A Randomized Double-Blind Placebo-Controlled Crossover Clinical Trial. Nutrients 2024; 16:3262. [PMID: 39408229 PMCID: PMC11479010 DOI: 10.3390/nu16193262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The definition of alcohol hangovers refers to a combination of mental and physical side effects that occur after drinking. One of the ways that hangovers can be ameliorated is by promoting the rapid and effective elimination of acetaldehyde to alleviate the discomfort it causes. This study aimed to investigate the effects of GSH (yeast extract containing 50 mg of glutathione) on the hangover-relieving effect. METHODS A randomized double-blind placebo-controlled crossover clinical trial was conducted with 40 participants who reported experiencing hangover symptoms. Participants consumed alcohol at a rate of 0.78 g per kg body weight with 40% whiskey, adjusted according to their weight. Alcohol and acetaldehyde concentrations in serum were analyzed at 0, 0.25, 1, 2, 4, 6, and 15 h after alcohol consumption. RESULTS In the GSH group, the serum alcohol concentration decreased, although this change was not statistically significant. The serum acetaldehyde concentration was significantly lower in the GSH group in comparison to the placebo group (at 0.25, 1, 4, and 6 h (p < 0.01) and at 0.5, 2, and 15 h (p < 0.001) after alcohol consumption). However, there was no significant difference between the two groups on questionnaires such as the Acute Hangover Scale and the Alcohol Hangover Severity Scale. CONCLUSIONS Overall, we consider the discovery that GSH lowered acetaldehyde concentration, a crucial factor in alcohol metabolism, to be more considerable. Therefore, GSH administration effectively reduces acetaldehyde levels in serum. This result suggests that this effect may contribute to the relief of hangover symptoms.
Collapse
Affiliation(s)
- Gunju Song
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam-si 13488, Republic of Korea; (G.S.); (H.H.)
| | - Hyein Han
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam-si 13488, Republic of Korea; (G.S.); (H.H.)
| | - Seyoung Park
- Food R&D, Samyang Corp., Seongnam-si 13488, Republic of Korea; (S.P.); (S.S.); (W.C.)
| | - Soonok Sa
- Food R&D, Samyang Corp., Seongnam-si 13488, Republic of Korea; (S.P.); (S.S.); (W.C.)
| | - Wookyung Chung
- Food R&D, Samyang Corp., Seongnam-si 13488, Republic of Korea; (S.P.); (S.S.); (W.C.)
| | - Boo Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam-si 13488, Republic of Korea; (G.S.); (H.H.)
| |
Collapse
|
5
|
Lee HL, Kim JM, Go MJ, Joo SG, Kim TY, Lee HS, Kim JH, Son JS, Heo HJ. Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways. J Microbiol Biotechnol 2024; 34:606-621. [PMID: 38111317 PMCID: PMC11016765 DOI: 10.4014/jmb.2310.10003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/20/2023]
Abstract
This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Sung Son
- HMO Health Dream Agricultural Association Corporation, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Yoladı FB, Burmaoğlu E, Palabıyık ŞS. Experimental In Vivo Toxicity Models for Alcohol Toxicity. Eurasian J Med 2023; 55:82-90. [PMID: 39109811 PMCID: PMC11075036 DOI: 10.5152/eurasianjmed.2023.23345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 08/11/2024] Open
Abstract
Alcohol consumption poses a significant risk for the development of chronic illnesses, one of the leading causes of "preventable" disease and death worldwide. Harmful consumption of alcohol is thought to result in approximately 2.5-3 million deaths each year, the majority of which are caused by alcohol-related liver diseases. Hepatocellular carcinoma, cirrhosis, fibrosis, steatosis, and steatohepatitis are among the liver illnesses caused by alcohol. The mechanisms behind human diseases are often mimicked and understood through the use of animal models. Rodents are the ideal animals to study alcohol-related liver diseases. In these experimental models using rodents, the ethanol ratio, method of administration, and diet to be applied vary. Within the scope of this review, it is aimed at providing information about the experimental models used today for alcohol toxicity and the advantages and disadvantages of these models.
Collapse
Affiliation(s)
- Fatma Betül Yoladı
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | | | - Şaziye Sezin Palabıyık
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Zhou H, Wan S, Luo Y, Liu H, Jiang J, Guo Y, Xiao J, Wu B. Hepatitis B virus X protein induces ALDH2 ubiquitin-dependent degradation to enhance alcoholic steatohepatitis. Gastroenterol Rep (Oxf) 2023; 11:goad006. [PMID: 36875742 PMCID: PMC9978578 DOI: 10.1093/gastro/goad006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 03/06/2023] Open
Abstract
Background Excessive alcohol intake with hepatitis B virus (HBV) infection accelerates chronic liver disease progression and patients with HBV infection are more susceptible to alcohol-induced liver disease. Hepatitis B virus X protein (HBx) plays a crucial role in disease pathogenesis, while its specific role in alcoholic liver disease (ALD) progression has not yet been elucidated. Here, we studied the role of HBx on the development of ALD. Methods HBx-transgenic (HBx-Tg) mice and their wild-type littermates were exposed to chronic plus binge alcohol feeding. Primary hepatocytes, cell lines, and human samples were used to investigate the interaction between HBx and acetaldehyde dehydrogenase 2 (ALDH2). Lipid profiles in mouse livers and cells were assessed by using liquid chromatography-mass spectrometry. Results We identified that HBx significantly aggravated alcohol-induced steatohepatitis, oxidative stress, and lipid peroxidation in mice. In addition, HBx induced worse lipid profiles with high lysophospholipids generation in alcoholic steatohepatitis, as shown by using lipidomic analysis. Importantly, serum and liver acetaldehyde were markedly higher in alcohol-fed HBx-Tg mice. Acetaldehyde induced lysophospholipids generation through oxidative stress in hepatocytes. Mechanistically, HBx directly bound to mitochondrial ALDH2 to induce its ubiquitin-proteasome degradation, resulting in acetaldehyde accumulation. More importantly, we also identified that patients with HBV infection reduced ALDH2 protein levels in the liver. Conclusions Our study demonstrated that HBx-induced ubiquitin-dependent degradation of mitochondrial ALDH2 aggravates alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Haoxiong Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Alcoholic Liver Disease Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| | - Sizhe Wan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Alcoholic Liver Disease Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| | - Yujun Luo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Alcoholic Liver Disease Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Alcoholic Liver Disease Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Alcoholic Liver Disease Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| | - Yunwei Guo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Alcoholic Liver Disease Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| | - Jia Xiao
- Clinial Medical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China.,Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Alcoholic Liver Disease Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
8
|
Liu Z, Wu X, Wang Q, Li Z, Liu X, Sheng X, Zhu H, Zhang M, Xu J, Feng X, Wu B, Lv X. CD73-Adenosine A 1R Axis Regulates the Activation and Apoptosis of Hepatic Stellate Cells Through the PLC-IP 3-Ca 2+/DAG-PKC Signaling Pathway. Front Pharmacol 2022; 13:922885. [PMID: 35784730 PMCID: PMC9245432 DOI: 10.3389/fphar.2022.922885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol-related liver fibrosis (ALF) is a form of alcohol-related liver disease (ALD) that generally occurs in response to heavy long-term drinking. Ecto-5'-nucleotidase (NT5E), also known as CD73, is a cytomembrane protein linked to the cell membrane via a GPI anchor that regulates the conversion of extracellular ATP to adenosine. Adenosine and its receptors are important regulators of the cellular response. Previous studies showed that CD73 and adenosine A1 receptor (A1R) were important in alcohol-related liver disease, however the exact mechanism is unclear. The aim of this study was to elucidate the role and mechanism of the CD73-A1R axis in both a murine model of alcohol and carbon tetrachloride (CCl4) induced ALF and in an in vitro model of fibrosis induced by acetaldehyde. The degree of liver injury was determined by measuring serum AST and ALT levels, H & E staining, and Masson's trichrome staining. The expression levels of fibrosis indicators and PLC-IP3-Ca2+/DAG-PKC signaling pathway were detected by quantitative real-time PCR, western blotting, ELISA, and calcium assay. Hepatic stellate cell (HSC) apoptosis was detected using the Annexin V-FITC/PI cell apoptosis detection kit. Knockdown of CD73 significantly attenuated the accumulation of α-SMA and COL1a1 damaged the histological architecture of the mouse liver induced by alcohol and CCl4. In vitro, CD73 inhibition attenuated acetaldehyde-induced fibrosis and downregulated A1R expression in HSC-T6 cells. Inhibition of CD73/A1R downregulated the expression of the PLC-IP3-Ca2+/DAG-PKC signaling pathway. In addition, silencing of CD73/A1R promoted apoptosis in HSC-T6 cells. In conclusion, the CD73-A1R axis can regulate the activation and apoptosis of HSCs through the PLC-IP3-Ca2+/DAG-PKC signaling pathway.
Collapse
Affiliation(s)
- Zhenni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Qi Wang
- Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zixuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xueqi Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiaodong Sheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Mengda Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Junrui Xu
- General Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Baoming Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Zhang L, Meng B, Li L, Wang Y, Zhang Y, Fang X, Wang D. Boletus aereus protects against acute alcohol-induced liver damage in the C57BL/6 mouse via regulating the oxidative stress-mediated NF-κB pathway. PHARMACEUTICAL BIOLOGY 2020; 58:905-914. [PMID: 32915675 PMCID: PMC7534317 DOI: 10.1080/13880209.2020.1812672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/09/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Alcoholic liver disease, caused by abuse and consumption of alcohol, exhibits high morbidity and mortality. Boletus aereus Bull. (Boletaceae) (BA) shows antioxidant, anti-inflammatory and antimicrobial effects. OBJECTIVES To investigate the hepatoprotective effects of BA using an acute alcohol-induced hepatotoxicity mice model. MATERIALS AND METHODS The composition of BA fruit body was first systematically analyzed. Subsequently, a C57BL/6 mice model of acute alcohol-induced liver injury was established by intragastrically administration of alcohol, which was intragastrically received with BA powder at 200 mg/kg and 800 mg/kg for 2 weeks, 60 mg/kg silybin treatment was used as positive control group. By employing the pathological examination, ELISA, RT-PCR and western blot, the regulation of BA on oxidative stress signals was investigated. RESULTS The LD50 of BA was much higher than 4 g/kg/p.o. In acute alcohol-damaged mice, BA reduced the levels of alanine aminotransferase (>18.3%) and aspartate aminotransferase (>27.6%) in liver, increased the activity of liver alcohol dehydrogenase (>35.0%) and serum acetaldehyde dehydrogenase (>18.9%). BA increased the activity of superoxide dismutase (>13.4%), glutathione peroxidase (>11.0%) and 800 mg/kg BA strongly reduced chemokine (C-X-C motif) ligand 13 (14.9%) and chitinase-3 like-1 protein (13.4%) in serum. BA reversed mRNA over-expression (>70%) and phosphor-stimulated expression (>45.0%) of an inhibitor of nuclear factor κ-B kinase (NF-κB, an inhibitor of nuclear factor κ-B α and nuclear factor κ-B in the liver. CONCLUSIONS BA is effective in ameliorating alcohol-induced liver injury through regulating oxidative stress-mediated NF-κB signalling, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Bo Meng
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Lanzhou Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yanzhen Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Pharmacy Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Yuanzhu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xuexun Fang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Pharmacy Food Science, Zhuhai College of Jilin University, Zhuhai, China
| |
Collapse
|
10
|
Arab JP, Arrese M, Shah VH. Gut microbiota in non-alcoholic fatty liver disease and alcohol-related liver disease: Current concepts and perspectives. Hepatol Res 2020; 50:407-418. [PMID: 31840358 PMCID: PMC7187400 DOI: 10.1111/hepr.13473] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
The term, gut-liver axis, is used to highlight the close anatomical and functional relationship between the intestine and the liver. It has been increasingly recognized that the gut-liver axis plays an essential role in the development and progression of liver disease. In particular, in non-alcoholic fatty liver disease and alcohol-related liver disease, the two most common causes of chronic liver disease, a dysbiotic gut microbiota can influence intestinal permeability, allowing some pathogens or bacteria-derived factors from the gut reaching the liver through the enterohepatic circulation contributing to liver injury, steatohepatitis, and fibrosis progression. Pathways involved are multiple, including changes in bile acid metabolism, intestinal ethanol production, generation of short-chain fatty acids, and other by-products. Bile acids act through dedicated bile acid receptors, farnesoid X receptor and TGR5, in both the ileum and the liver, influencing lipid metabolism, inflammation, and fibrogenesis. Currently, both non-alcoholic fatty liver disease and alcohol-related liver disease lack effective therapies, and therapeutic targeting of gut microbiota and bile acids enterohepatic circulation holds promise. In this review, we summarize current knowledge about the role of gut microbiota in the pathogenesis of non-alcoholic fatty liver disease and alcohol-related liver disease, as well as the relevance of microbiota or bile acid-based approaches in the management of those liver diseases.
Collapse
Affiliation(s)
- Juan P. Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Seo W, Gao Y, He Y, Sun J, Xu H, Feng D, Park SH, Cho YE, Guillot A, Ren T, Wu R, Wang J, Kim SJ, Hwang S, Liangpunsakul S, Yang Y, Niu J, Gao B. ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles. J Hepatol 2019; 71:1000-1011. [PMID: 31279903 PMCID: PMC6801025 DOI: 10.1016/j.jhep.2019.06.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Excessive alcohol consumption is one of the major causes of hepatocellular carcinoma (HCC). Approximately 30-40% of the Asian population are deficient for aldehyde dehydrogenase 2 (ALDH2), a key enzyme that detoxifies the ethanol metabolite acetaldehyde. However, how ALDH2 deficiency affects alcohol-related HCC remains unclear. METHODS ALDH2 polymorphisms were studied in 646 patients with viral hepatitis B (HBV) infection, who did or did not drink alcohol. A new model of HCC induced by chronic carbon tetrachloride (CCl4) and alcohol administration was developed and studied in 3 lines of Aldh2-deficient mice: including Aldh2 global knockout (KO) mice, Aldh2*1/*2 knock-in mutant mice, and liver-specific Aldh2 KO mice. RESULTS We demonstrated that ALDH2 deficiency was not associated with liver disease progression but was associated with an increased risk of HCC development in cirrhotic patients with HBV who consumed excessive alcohol. The mechanisms underlying HCC development associated with cirrhosis and alcohol consumption were studied in Aldh2-deficient mice. We found that all 3 lines of Aldh2-deficient mice were more susceptible to CCl4 plus alcohol-associated liver fibrosis and HCC development. Furthermore, our results from in vivo and in vitro mechanistic studies revealed that after CCl4 plus ethanol exposure, Aldh2-deficient hepatocytes produced a large amount of harmful oxidized mitochondrial DNA via extracellular vesicles, which were then transferred into neighboring HCC cells and together with acetaldehyde activated multiple oncogenic pathways (JNK, STAT3, BCL-2, and TAZ), thereby promoting HCC. CONCLUSIONS ALDH2 deficiency is associated with an increased risk of alcohol-related HCC development from fibrosis in patients and in mice. Mechanistic studies reveal a novel mechanism that Aldh2-deficient hepatocytes promote alcohol-associated HCC by transferring harmful oxidized mitochondrial DNA-enriched extracellular vesicles into HCC and subsequently activating multiple oncogenic pathways in HCC. LAY SUMMARY Alcoholics with an ALDH2 polymorphism have an increased risk of digestive tract cancer development, however, the link between ALDH2 deficiency and hepatocellular carcinoma (HCC) development has not been well established. In this study, we show that ALDH2 deficiency exacerbates alcohol-associated HCC development both in patients and mouse models. Mechanistic studies revealed that after chronic alcohol exposure, Aldh2-deficient hepatocytes produce a large amount of harmful oxidized mitochondrial DNA via extracellular vesicles, which can be delivered into neighboring HCC cells and subsequently activate multiple oncogenic pathways, promoting HCC.
Collapse
Affiliation(s)
- Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yanhang Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA;,Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Sun
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Hongqin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seol Hee Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA;,Department of Food and Nutrition, Andong National University, Andong, South Korea
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Jingyun Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine;,Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA;,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Chao X, Ding WX. Role and mechanisms of autophagy in alcohol-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:109-131. [PMID: 31307584 PMCID: PMC7141786 DOI: 10.1016/bs.apha.2019.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is one of the major causes of chronic liver disease worldwide. Currently, no successful treatments are available for ALD. The pathogenesis of ALD is characterized as simple steatosis, fibrosis, cirrhosis, alcoholic hepatitis (AH), and eventually hepatocellular carcinoma (HCC). Autophagy is a highly conserved intracellular catabolic process, which aims at recycling cellular components and removing damaged organelles in response to starvation and stresses. Therefore, autophagy is considered as an important cellular adaptive and survival mechanism under various pathophysiological conditions. Recent studies from our lab and others suggest that chronic alcohol consumption may impair autophagy and contribute to the pathogenesis of ALD. In this chapter, we summarize recent progress on the role and mechanisms of autophagy in the development of ALD. Understanding the roles of autophagy in ALD may offer novel therapeutic avenues against ALD by targeting these pathways.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
13
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. Publisher Correction: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:785. [PMID: 29785003 PMCID: PMC7133393 DOI: 10.1038/s41575-018-0031-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the original version of Table 1 published online, upward arrows to indicate increased translocation of PAMPs were missing from the row entitled 'Translocation' for both the column on alcoholic liver disease and nonalcoholic fatty liver disease. This error has now been updated in the PDF and HTML version of the article.
Collapse
|
14
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:397-411. [PMID: 29748586 PMCID: PMC6319369 DOI: 10.1038/s41575-018-0011-z] [Citation(s) in RCA: 935] [Impact Index Per Article: 133.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, an exciting realization has been that diverse liver diseases - ranging from nonalcoholic steatohepatitis, alcoholic steatohepatitis and cirrhosis to hepatocellular carcinoma - fall along a spectrum. Work on the biology of the gut-liver axis has assisted in understanding the basic biology of both alcoholic fatty liver disease and nonalcoholic fatty liver disease (NAFLD). Of immense importance is the advancement in understanding the role of the microbiome, driven by high-throughput DNA sequencing and improved computational techniques that enable the complexity of the microbiome to be interrogated, together with improved experimental designs. Here, we review gut-liver communications in liver disease, exploring the molecular, genetic and microbiome relationships and discussing prospects for exploiting the microbiome to determine liver disease stage and to predict the effects of pharmaceutical, dietary and other interventions at a population and individual level. Although much work remains to be done in understanding the relationship between the microbiome and liver disease, rapid progress towards clinical applications is being made, especially in study designs that complement human intervention studies with mechanistic work in mice that have been humanized in multiple respects, including the genetic, immunological and microbiome characteristics of individual patients. These 'avatar mice' could be especially useful for guiding new microbiome-based or microbiome-informed therapies.
Collapse
Affiliation(s)
- Anupriya Tripathi
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Justine Debelius
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - David A Brenner
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael Karin
- Department of Pediatrics, University of California, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| |
Collapse
|
15
|
Xu D, Han H, He Y, Lee H, Wu D, Liu F, Liu X, Liu Y, Lu Y, Ji C. A Hepatocyte-Mimicking Antidote for Alcohol Intoxication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707443. [PMID: 29638019 PMCID: PMC6386471 DOI: 10.1002/adma.201707443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/13/2018] [Indexed: 05/24/2023]
Abstract
Alcohol intoxication causes serious diseases, whereas current treatments are mostly supportive and unable to remove alcohol efficiently. Upon alcohol consumption, alcohol is sequentially oxidized to acetaldehyde and acetate by the endogenous alcohol dehydrogenase and aldehyde dehydrogenase, respectively. Inspired by the metabolism of alcohol, a hepatocyte-mimicking antidote for alcohol intoxication through the codelivery of the nanocapsules of alcohol oxidase (AOx), catalase (CAT), and aldehyde dehydrogenase (ALDH) to the liver, where AOx and CAT catalyze the oxidation of alcohol to acetaldehyde, while ALDH catalyzes the oxidation of acetaldehyde to acetate. Administered to alcohol-intoxicated mice, the antidote rapidly accumulates in the liver and enables a significant reduction of the blood alcohol concentration. Moreover, blood acetaldehyde concentration is maintained at an extremely low level, significantly contributing to liver protection. Such an antidote, which can eliminate alcohol and acetaldehyde simultaneously, holds great promise for the treatment of alcohol intoxication and poisoning and can provide therapeutic benefits.
Collapse
Affiliation(s)
- Duo Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA,
| | - Hui Han
- Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA,
| | - Yuxin He
- Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA,
| | - Harrison Lee
- Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA,
| | - Di Wu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA,
| | - Fang Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA,
| | - Xiangsheng Liu
- California NanoSystem Institute, Los Angeles, CA 90095, USA
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA,
| | - Cheng Ji
- Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA,
| |
Collapse
|
16
|
Yalcin EB, Tong M, Gallucci G, de la Monte SM. Effects of Tobacco Nicotine-Derived Nitrosamine Ketone (NNK) Exposures on Brain Alcohol Metabolizing Enzyme Activities. Drug Metab Lett 2018; 12:117-124. [PMID: 29886839 PMCID: PMC9964543 DOI: 10.2174/1872312812666180611115418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND The high levels of blood alcohol achieved with chronic plus binge alcohol exposures are somewhat reduced by co-administration of tobacco-specific Nicotine-Derived Nitrosamine Ketone (NNK) suggesting that NNK may alter alcohol metabolism. OBJECTIVE We examined ethanol and acetaldehyde-metabolizing enzyme activities and malondialdehyde adduct formation in rats exposed to ethanol (chronic + binge), NNK, or both. METHODS 4-week old Long Evans rats were fed liquid diets containing 0% or 26% caloric ethanol for 8 weeks. Ethanol-fed rats were binge-administered ethanol (2 g/kg; on Mondays, Wednesdays, and Fridays) by intraperitoneal (i.p.) injection, while control group administered saline in weeks 7 and 8 (n=12/group). Six rats from each group were administered i.p. injections of NNK (2 mg/kg) or saline on Tuesdays, Thursdays, and Saturdays of weeks 3 through 8. Alcohol dehydrogenase, catalase, and aldehyde dehydrogenase activities were measured using commercial assays. Cytochrome P450 mRNA levels (17 isoforms) were measured by quantitative reverse transcription-polymerase chain reaction. Malondialdehyde immunoreactivity was measured by enzyme-linked immunosorbent assay. RESULTS Dual exposures to ethanol and NNK significantly increased frontal lobe ADH activity relative to control (P=0.01) and ethanol only (P=0.04) treatments, and ALDH relative to control (P=0.02). In contrast, malondialdehyde-protein expression was not significantly altered by ethanol+NNK. Ethanol decreased CYP1A1 mRNA expression relative to control (P=0.02), and combined ethanol+NNK exposures decreased the expression of CYP1A1 (P=0.01) and CYP2C6 (P=0.03). CONCLUSION Dual exposures to ethanol and NNK increase brain ethanol metabolism and inhibit the expression of CYP450s that regulate xenobiotic metabolism.
Collapse
Affiliation(s)
- Emine B. Yalcin
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI
| | - Ming Tong
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI
| | - Gina Gallucci
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI
| | - Suzanne M. de la Monte
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI;,Departments of Neurology, Neurosurgery, and Pathology, Rhode Island Hospital and the Alpert Medical School of Brown University, USA,Address correspondence to this author at the Pierre Galletti Research Building, Rhode Island Hospital, 55 Claverick Street, Room 419, Providence, RI 02903. Tel: 401-444-7364; Fax: 401-444-2939;
| |
Collapse
|
17
|
Yalcin EB, Tong M, de la Monte SM. Enzymatic Responses to Alcohol and Tobacco Nicotine-Derived Nitrosamine Ketone Exposures in Long Evans Rat Livers. AUSTIN LIVER 2016; 1:1003. [PMID: 29658012 PMCID: PMC5898820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Chronic feeding plus binge administration of ethanol causes very high blood alcohol concentrations. However, its co-administration with tobacco Nicotine-Derived Nitrosamine Ketone (NNK) results in somewhat lower blood alcohol levels, suggesting that NNK and therefore smoking, alters alcohol metabolism in the liver. To explore this hypothesis, we examined effects of ethanol and/or NNK exposures on the expression and activity levels of enzymes that regulate their metabolism in liver. METHODS This study utilized a 4-way model in which Long Evans rats were fed liquid diets containing 0% or 26% ethanol for 8 weeks, and respectively i.p injected with saline or 2 g/kg of ethanol 3 times/week during Weeks 7 and 8. The control and ethanol-exposed groups were each sub-divided and further i.p treated with 2 mg/kg of NNK or saline (3×/week) in Weeks 3-8. ADH, catalase and ALDH activities were measured using commercial kits. CYP450 mRNA levels (17 isoforms) were measured by qRT-PCR analysis. RESULTS Ethanol significantly increased hepatic ADH but not catalase or ALDH activity. NNK had no effect on ADH, ALDH, or catalase, but when combined with ethanol, it increased ADH activity above the levels measured in all other groups. Ethanol increased CYP2C7, while NNK increased CYP2B1 and CYP4A1mRNA levels relative to control. In contrast, dual ethanol + NNK exposures inhibited CYP2B1 and CYP4A1 expression relative to NNK. Conclusion: Dual exposures to ethanol and NNK increase hepatic ethanol metabolism, and ethanol and/or NNK exposures alter the expression of CYP450 isoforms that are utilized in NNK and fatty acid metabolism.
Collapse
Affiliation(s)
- E B Yalcin
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, USA
| | - M Tong
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, USA
| | - S M de la Monte
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, USA
- Departments of Neurology, Neurosurgery and Pathology, Rhode Island Hospital and the Alpert Medical School of Brown University, USA
| |
Collapse
|
18
|
Abstract
Alcoholic liver disease includes a broad clinical-histological spectrum from simple steatosis, cirrhosis, acute alcoholic hepatitis with or without cirrhosis to hepatocellular carcinoma as a complication of cirrhosis. The pathogenesis of alcoholic liver disease can be conceptually divided into (1) ethanol-mediated liver injury, (2) inflammatory immune response to injury, (3) intestinal permeability and microbiome changes. Corticosteroids may improve outcomes, but this is controversial and probably only impacts short-term survival. New pathophysiology-based therapies are under study, including antibiotics, caspase inhibition, interleukin-22, anakinra, FXR agonist and others. These studies provide hope for better future outcomes for this difficult disease.
Collapse
Affiliation(s)
- Winston Dunn
- Gastroenterology & Hepatology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS USA
| | - Vijay H. Shah
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
19
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of liver-related morbidity and mortality. ALD encompasses a spectrum of disorders ranging from asymptomatic steatosis, alcoholic steatohepatitis, fibrosis, cirrhosis and its related complications. Moreover, patients can develop an acute-on-chronic form of liver failure called alcoholic hepatitis (AH). Most patients are diagnosed at advanced stages of the disease with higher rates of complications and mortality. The mainstream of therapy of ALD patients, regardless of the disease stage, is prolonged alcohol abstinence. The current therapeutic regimens for AH (i.e. prednisolone) have limited efficacy and targeted therapies are urgently needed. The development of such therapies requires translational studies in human samples and suitable animal models that reproduce clinical and histological features of AH. In recent years, new animal models that simulate some of the features of human AH have been developed, and translational studies using human samples have identified potential pathogenic factors and histological parameters that predict survival. In this review, we discuss the pathogenesis and management of ALD, focusing on AH, its current therapies and potential treatment targets.
Collapse
Affiliation(s)
- M Omar Farooq
- Division of Gastroenterology and Hepatology, Department of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| | | |
Collapse
|
20
|
Guo R, Xu X, Babcock SA, Zhang Y, Ren J. Aldehyde dedydrogenase-2 plays a beneficial role in ameliorating chronic alcohol-induced hepatic steatosis and inflammation through regulation of autophagy. J Hepatol 2015; 62:647-56. [PMID: 25457208 PMCID: PMC4336638 DOI: 10.1016/j.jhep.2014.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/08/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Mitochondrial aldehyde dehydrogenase (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. This study was designed to examine the impact of global ALDH2 overexpression on alcohol-induced hepatic steatosis. METHODS Wild type Friend virus B (FVB) and ALDH2 transgenic mice were placed on a 4% alcohol or control diet for 12 weeks. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin and cholesterol, hepatic triglyceride, steatosis, fat metabolism-related proteins, pro-inflammatory cytokines, glutathione (GSH), oxidized glutathione (GSSG), autophagy and autophagy signalling were examined. The role of autophagy was evaluated in alcohol dehydrogenase 1 (ADH1)-transfected human hepatocellular liver carcinoma cells (VA-13) treated with or without the autophagy inducer rapamycin and lysosomal inhibitors. RESULTS Chronic alcohol intake led to elevated AST-, ALT-levels, bilirubin, AST/ALT ratio, cholesterol, hepatic triglycerides and hepatic fat deposition as evidenced by H&E and Oil Red O staining. Hepatic fat deposition was associated with disturbed levels of fat metabolism-related proteins (fatty acid synthase, SCD1), upregulated interleukin-6, TNF-α, cyclooxygenase, oxidative stress, and loss of autophagy, effects which were attenuated or ablated by the ALDH2 transgene. Moreover, ethanol (100 mM) and acetaldehyde (100 and 500 μM) increased levels of IL-6 and IFN-γ, and suppressed autophagy in VA-13 cells, effects which were markedly alleviated by rapamycin. In addition, lysosomal inhibitors mimicked ethanol-induced p62 accumulation with little additive effect with ethanol. Ethanol significantly suppressed LC3 conversion in the presence of lysosomal inhibitors. CONCLUSIONS In summary, our results revealed that ALDH2 plays a beneficial role in ameliorating chronic alcohol intake-induced hepatic steatosis and inflammation through regulation of autophagy.
Collapse
Affiliation(s)
- Rui Guo
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA
| | - Xihui Xu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA
| | - Sara A Babcock
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA
| | - Yingmei Zhang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Dolganiuc A. Alcohol and Viral Hepatitis: Role of Lipid Rafts. Alcohol Res 2015; 37:299-309. [PMID: 26695752 PMCID: PMC4590625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Both alcohol abuse and infection with hepatitis viruses can lead to liver disease, including chronic hepatitis. Alcohol and hepatitis viruses have synergistic effects in the development of liver disease. Some of these involve the cellular membranes and particularly their functionally active domains, termed lipid rafts, which contain many proteins with essential roles in signaling and other processes. These lipid rafts play a central role in the lifecycles of hepatitis viruses. Alcohol's actions at the lipid rafts may contribute to the synergistic harmful effects of alcohol and hepatitis viruses on the liver and the pathogenesis of liver disease.
Collapse
Affiliation(s)
- Angela Dolganiuc
- Department of Medicine/Gastroenterology, Hepatology, and Nutrition at the University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Kwon HJ, Won YS, Park O, Chang B, Duryee MJ, Thiele GE, Matsumoto A, Singh S, Abdelmegeed MA, Song BJ, Kawamoto T, Vasiliou V, Thiele GM, Gao B. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology 2014; 60:146-57. [PMID: 24492981 PMCID: PMC4077916 DOI: 10.1002/hep.27036] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/29/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme that metabolizes acetaldehyde produced from alcohol metabolism. Approximately 40-50% of East Asians carry an inactive ALDH2 gene and exhibit acetaldehyde accumulation after alcohol consumption. However, the role of ALDH2 deficiency in the pathogenesis of alcoholic liver injury remains obscure. In the present study, wild-type and ALDH2(-/-) mice were subjected to ethanol feeding and/or carbon tetrachloride (CCl4 ) treatment, and liver injury was assessed. Compared with wild-type mice, ethanol-fed ALDH2(-/-) mice had higher levels of malondialdehyde-acetaldehyde (MAA) adduct and greater hepatic inflammation, with higher hepatic interleukin (IL)-6 expression but surprisingly lower levels of steatosis and serum alanine aminotransferase (ALT). Higher IL-6 levels were also detected in ethanol-treated precision-cut liver slices from ALDH2(-/-) mice and in Kupffer cells isolated from ethanol-fed ALDH2(-/-) mice than those levels in wild-type mice. In vitro incubation with MAA enhanced the lipopolysaccharide (LPS)-mediated stimulation of IL-6 production in Kupffer cells. In agreement with these findings, hepatic activation of the major IL-6 downstream signaling molecule signal transducer and activator of transcription 3 (STAT3) was higher in ethanol-fed ALDH2(-/-) mice than in wild-type mice. An additional deletion of hepatic STAT3 increased steatosis and hepatocellular damage in ALDH2(-/-) mice. Finally, ethanol-fed ALDH2(-/-) mice were more prone to CCl4 -induced liver inflammation and fibrosis than ethanol-fed wild-type mice. CONCLUSION ALDH2(-/-) mice are resistant to ethanol-induced steatosis but prone to inflammation and fibrosis by way of MAA-mediated paracrine activation of IL-6 in Kupffer cells. These findings suggest that alcohol, by way of acetaldehyde and its associated adducts, stimulates hepatic inflammation and fibrosis independent from causing hepatocyte death, and that ALDH2-deficient individuals may be resistant to steatosis and blood ALT elevation, but are prone to liver inflammation and fibrosis following alcohol consumption.
Collapse
Affiliation(s)
- Hyo-Jung Kwon
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, South Korea
| | - Young-Suk Won
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
| | - Ogyi Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Binxia Chang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J. Duryee
- Experimental Immunology Laboratory, Omaha VA Medical Center and the University of Nebraska Medical Center, Omaha NE 68105, USA
| | - Geoffrey E. Thiele
- Experimental Immunology Laboratory, Omaha VA Medical Center and the University of Nebraska Medical Center, Omaha NE 68105, USA
| | - Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine, Saga 849-0935, Japan
| | - Surendra Singh
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Mohamed A. Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toshihiro Kawamoto
- Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Geoffrey M. Thiele
- Experimental Immunology Laboratory, Omaha VA Medical Center and the University of Nebraska Medical Center, Omaha NE 68105, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Orman ES, Odena G, Bataller R. Alcoholic liver disease: pathogenesis, management, and novel targets for therapy. J Gastroenterol Hepatol 2013; 28 Suppl 1:77-84. [PMID: 23855300 PMCID: PMC4405238 DOI: 10.1111/jgh.12030] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2013] [Indexed: 02/06/2023]
Abstract
Alcohol use is a leading cause of preventable morbidity and mortality worldwide, with much of its negative impact as the result of alcoholic liver disease (ALD). ALD is a broad term that encompasses a spectrum of phenotypes ranging from simple steatosis to steatohepatitis, progressive fibrosis, cirrhosis, and hepatocellular carcinoma. The mechanisms underlying the development of these different disease stages are incompletely understood. Standard treatment of ALD, which includes abstinence, nutritional support, and corticosteroids, has not changed in the last 40 years despite continued poor outcomes. Novel therapies are therefore urgently needed. The development of such therapies has been hindered by inadequate resources for research and unsuitable animal models. However, recent developments in translational research have allowed for identification of new potential targets for therapy. These targets include: (i) CXC chemokines, (ii) IL-22/STAT3, (iii) TNF receptor superfamily, (iv) osteopontin, (v) gut microbiota and lipopolysaccharide (LPS), (vi) endocannabinoids, and (vii) inflammasomes. We review the natural history, risk factors, pathogenesis, and current treatments for ALD. We further discuss the findings of recent translational studies and potential therapeutic targets.
Collapse
Affiliation(s)
- Eric S Orman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
24
|
Ramirez T, Tong M, Chen WC, Nguyen QG, Wands JR, de la Monte SM. Chronic alcohol-induced hepatic insulin resistance and endoplasmic reticulum stress ameliorated by peroxisome-proliferator activated receptor-δ agonist treatment. J Gastroenterol Hepatol 2013; 28:179-87. [PMID: 22988930 PMCID: PMC4406771 DOI: 10.1111/j.1440-1746.2012.07256.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Chronic alcoholic liver disease is associated with hepatic insulin resistance, dysregulated lipid metabolism with increased toxic lipid (ceramide) accumulation, lipid peroxidation, and oxidative and endoplasmic reticulum (ER) stress. Peroxisome-proliferator activated receptor (PPAR) agonists are insulin sensitizers that can restore hepatic insulin responsiveness in both alcohol and non-alcohol-related steatohepatitis. Herein, we demonstrate that treatment with a PPAR-δ agonist enhances insulin signaling and reduces the severities of ER stress and ceramide accumulation in an experimental model of ethanol-induced steatohepatitis. METHODS Adult male Long Evans rats were pair fed with isocaloric liquid diets containing 0% or 37% ethanol (caloric) for 8 weeks. After 3 weeks on the diets, rats were treated with vehicle or PPAR-δ agonist twice weekly by i.p. injection. RESULTS Ethanol-fed rats developed steatohepatitis with inhibition of signaling through the insulin and insulin-like growth factor-1 receptors, and Akt activated pathways. Despite continued ethanol exposure, PPAR-δ agonist co-treatments increased Akt activation, reduced multiple molecular indices of ER stress and steatohepatitis. CONCLUSIONS These results suggest that PPAR-δ agonist rescue of chronic alcoholic liver disease is mediated by enhancement of insulin signaling through Akt/metabolic pathways that reduce lipotoxicity and ER stress.
Collapse
Affiliation(s)
- Teresa Ramirez
- Liver Research Center and Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
25
|
GAO BIN, BATALLER RAMON. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141:1572-85. [PMID: 21920463 PMCID: PMC3214974 DOI: 10.1053/j.gastro.2011.09.002] [Citation(s) in RCA: 1471] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease worldwide and can lead to fibrosis and cirrhosis. The latest surveillance report published by the National Institute on Alcohol Abuse and Alcoholism showed that liver cirrhosis was the 12th leading cause of death in the United States, with a total of 29,925 deaths in 2007, 48% of which were alcohol related. The spectrum of ALD includes simple steatosis, alcoholic hepatitis, fibrosis, cirrhosis, and superimposed hepatocellular carcinoma. Early work on the pathogenesis of the disease focused on ethanol metabolism-associated oxidative stress and glutathione depletion, abnormal methionine metabolism, malnutrition, and production of endotoxins that activate Kupffer cells. We review findings from recent studies that have characterized specific intracellular signaling pathways, transcriptional factors, aspects of innate immunity, chemokines, epigenetic features, microRNAs, and stem cells that are associated with ALD, improving our understanding of its pathogenesis. Despite this progress, no targeted therapies are available. The cornerstone of treatment for alcoholic hepatitis remains as it was 40 years ago: abstinence, nutritional support, and corticosteroids. There is an urgent need to develop new pathophysiology-oriented therapies. Recent translational studies of human samples and animal models have identified promising therapeutic targets.
Collapse
Affiliation(s)
- BIN GAO
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - RAMON BATALLER
- Liver Unit, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Catalonia, Spain
| |
Collapse
|