1
|
Chand D, Srinivasan SM. Pattern architected soft magnetic actuation. SOFT MATTER 2025; 21:1072-1084. [PMID: 39808125 DOI: 10.1039/d4sm01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Bioinspired shape-morphing soft magnetic actuators have potential applications in medicine, robotics, and engineering due to their soft body, untethered control, and infinite degrees of freedom. The shape programming of the soft magnetic actuators (consisting of soft ferromagnetic CI particles in a soft matrix) is an involved task, as it requires a moulding process severely limiting the capability to program complex shapes. The current study explores a shape programming technique that architects the particle pattern configuration in the actuator, mimicking the pattern found in the mould-programmed actuator, thereby eliminating the need for a mould and providing a greater capability of programming complex shapes. At first, actuators with some basic shapes are prepared using the mould programming technique and examined under a microscope to understand the configuration of particle alignment patterns in different shapes. Then, the pattern is architected using magnetic units in the soft matrix to eliminate the need for mould for shape programming. In this study, the programmed soft actuators are characterized for shape morphing and locomotion capability under an external actuating magnetic field. The crawler was found to move at a velocity of 3 mm s-1 under a periodic magnetic field of 1 Hz. The designed actuators are found to quickly respond to the magnetic field thereby generating the desired shapes.
Collapse
Affiliation(s)
- Dharmi Chand
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| | - Sivakumar M Srinivasan
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
2
|
Rentsch JD, Blanco SR, Leebens-Mack JH. Comparative transcriptomics of Venus flytrap (Dionaea muscipula) across stages of prey capture and digestion. PLoS One 2024; 19:e0305117. [PMID: 39133722 PMCID: PMC11318880 DOI: 10.1371/journal.pone.0305117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/23/2024] [Indexed: 08/15/2024] Open
Abstract
The Venus flytrap, Dionaea muscipula, is perhaps the world's best-known botanical carnivore. The act of prey capture and digestion along with its rapidly closing, charismatic traps make this species a compelling model for studying the evolution and fundamental biology of carnivorous plants. There is a growing body of research on the genome, transcriptome, and digestome of Dionaea muscipula, but surprisingly limited information on changes in trap transcript abundance over time since feeding. Here we present the results of a comparative transcriptomics project exploring the transcriptomic changes across seven timepoints in a 72-hour time series of prey digestion and three timepoints directly comparing triggered traps with and without prey items. We document a dynamic response to prey capture including changes in abundance of transcripts with Gene Ontology (GO) annotations related to digestion and nutrient uptake. Comparisons of traps with and without prey documented 174 significantly differentially expressed genes at 1 hour after triggering and 151 genes with significantly different abundances at 24 hours. Approximately 50% of annotated protein-coding genes in Venus flytrap genome exhibit change (10041 of 21135) in transcript abundance following prey capture. Whereas peak abundance for most of these genes was observed within 3 hours, an expression cluster of 3009 genes exhibited continuously increasing abundance over the 72-hour sampling period, and transcript for these genes with GO annotation terms including both catabolism and nutrient transport may continue to accumulate beyond 72 hours.
Collapse
Affiliation(s)
- Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC, United States of America
| | - Summer Rose Blanco
- Department of Plant Biology, University of Georgia, Athens, GA, United States of America
| | - James H. Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
3
|
Midzi J, Jeffery DW, Baumann U, Rogiers S, Tyerman SD, Pagay V. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication. PLANTS (BASEL, SWITZERLAND) 2022; 11:2566. [PMID: 36235439 PMCID: PMC9573647 DOI: 10.3390/plants11192566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The sessile plant has developed mechanisms to survive the "rough and tumble" of its natural surroundings, aided by its evolved innate immune system. Precise perception and rapid response to stress stimuli confer a fitness edge to the plant against its competitors, guaranteeing greater chances of survival and productivity. Plants can "eavesdrop" on volatile chemical cues from their stressed neighbours and have adapted to use these airborne signals to prepare for impending danger without having to experience the actual stress themselves. The role of volatile organic compounds (VOCs) in plant-plant communication has gained significant attention over the past decade, particularly with regard to the potential of VOCs to prime non-stressed plants for more robust defence responses to future stress challenges. The ecological relevance of such interactions under various environmental stresses has been much debated, and there is a nascent understanding of the mechanisms involved. This review discusses the significance of VOC-mediated inter-plant interactions under both biotic and abiotic stresses and highlights the potential to manipulate outcomes in agricultural systems for sustainable crop protection via enhanced defence. The need to integrate physiological, biochemical, and molecular approaches in understanding the underlying mechanisms and signalling pathways involved in volatile signalling is emphasised.
Collapse
Affiliation(s)
- Joanah Midzi
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - David W. Jeffery
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Suzy Rogiers
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Vinay Pagay
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| |
Collapse
|
4
|
Durak GM, Speck T, Poppinga S. Shapeshifting in the Venus flytrap ( Dionaea muscipula): Morphological and biomechanical adaptations and the potential costs of a failed hunting cycle. FRONTIERS IN PLANT SCIENCE 2022; 13:970320. [PMID: 36119615 PMCID: PMC9478607 DOI: 10.3389/fpls.2022.970320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The evolutionary roots of carnivory in the Venus flytrap (Dionaea muscipula) stem from a defense response to plant injury caused by, e.g., herbivores. Dionaea muscipula aka. Darwin's most wonderful plant underwent extensive modification of leaves into snap-traps specialized for prey capture. Even the tiny seedlings of the Venus flytrap already produce fully functional, millimeter-sized traps. The trap size increases as the plant matures, enabling capture of larger prey. The movement of snap-traps is very fast (~100-300 ms) and is actuated by a combination of changes in the hydrostatic pressure of the leaf tissue with the release of prestress (embedded energy), triggering a snap-through of the trap lobes. This instability phenomenon is facilitated by the double curvature of the trap lobes. In contrast, trap reopening is a slower process dependent on trap size and morphology, heavily reliant on turgor and/or cell growth. Once a prey item is caught, the trap reconfigures its shape, seals itself off and forms a digestive cavity allowing the plant to release an enzymatic cocktail to draw nutrition from its captive. Interestingly, a failed attempt to capture prey can come at a heavy cost: the trap can break during reopening, thus losing its functionality. In this mini-review, we provide a detailed account of morphological adaptations and biomechanical processes involved in the trap movement during D. muscipula hunting cycle, and discuss possible reasons for and consequences of trap breakage. We also provide a brief introduction to the biological aspects underlying plant motion and their evolutionary background.
Collapse
Affiliation(s)
- Grażyna M. Durak
- Plant Biomechanics Group, Botanical Garden, Department of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanical Garden, Department of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Botanical Garden, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Armada-Moreira A, Diacci C, Dar AM, Berggren M, Simon DT, Stavrinidou E. Benchmarking organic electrochemical transistors for plant electrophysiology. FRONTIERS IN PLANT SCIENCE 2022; 13:916120. [PMID: 35937381 PMCID: PMC9355396 DOI: 10.3389/fpls.2022.916120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/30/2022] [Indexed: 05/21/2023]
Abstract
Plants are able to sense and respond to a myriad of external stimuli, using different signal transduction pathways, including electrical signaling. The ability to monitor plant responses is essential not only for fundamental plant science, but also to gain knowledge on how to interface plants with technology. Still, the field of plant electrophysiology remains rather unexplored when compared to its animal counterpart. Indeed, most studies continue to rely on invasive techniques or on bulky inorganic electrodes that oftentimes are not ideal for stable integration with plant tissues. On the other hand, few studies have proposed novel approaches to monitor plant signals, based on non-invasive conformable electrodes or even organic transistors. Organic electrochemical transistors (OECTs) are particularly promising for electrophysiology as they are inherently amplification devices, they operate at low voltages, can be miniaturized, and be fabricated in flexible and conformable substrates. Thus, in this study, we characterize OECTs as viable tools to measure plant electrical signals, comparing them to the performance of the current standard, Ag/AgCl electrodes. For that, we focused on two widely studied plant signals: the Venus flytrap (VFT) action potentials elicited by mechanical stimulation of its sensitive trigger hairs, and the wound response of Arabidopsis thaliana. We found that OECTs are able to record these signals without distortion and with the same resolution as Ag/AgCl electrodes and that they offer a major advantage in terms of signal noise, which allow them to be used in field conditions. This work establishes these organic bioelectronic devices as non-invasive tools to monitor plant signaling that can provide insight into plant processes in their natural environment.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Chiara Diacci
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Abdul Manan Dar
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Daniel T. Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
6
|
Dufil G, Bernacka-Wojcik I, Armada-Moreira A, Stavrinidou E. Plant Bioelectronics and Biohybrids: The Growing Contribution of Organic Electronic and Carbon-Based Materials. Chem Rev 2022; 122:4847-4883. [PMID: 34928592 PMCID: PMC8874897 DOI: 10.1021/acs.chemrev.1c00525] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Life in our planet is highly dependent on plants as they are the primary source of food, regulators of the atmosphere, and providers of a variety of materials. In this work, we review the progress on bioelectronic devices for plants and biohybrid systems based on plants, therefore discussing advancements that view plants either from a biological or a technological perspective, respectively. We give an overview on wearable and implantable bioelectronic devices for monitoring and modulating plant physiology that can be used as tools in basic plant science or find application in agriculture. Furthermore, we discuss plant-wearable devices for monitoring a plant's microenvironment that will enable optimization of growth conditions. The review then covers plant biohybrid systems where plants are an integral part of devices or are converted to devices upon functionalization with smart materials, including self-organized electronics, plant nanobionics, and energy applications. The review focuses on advancements based on organic electronic and carbon-based materials and discusses opportunities, challenges, as well as future steps.
Collapse
Affiliation(s)
- Gwennaël Dufil
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Iwona Bernacka-Wojcik
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Adam Armada-Moreira
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Campus Umeå, SE-901 83 Umeå, Sweden
| |
Collapse
|
7
|
Organic electrochemical neurons and synapses with ion mediated spiking. Nat Commun 2022; 13:901. [PMID: 35194026 PMCID: PMC8863887 DOI: 10.1038/s41467-022-28483-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/06/2022] [Indexed: 11/09/2022] Open
Abstract
Future brain-machine interfaces, prosthetics, and intelligent soft robotics will require integrating artificial neuromorphic devices with biological systems. Due to their poor biocompatibility, circuit complexity, low energy efficiency, and operating principles fundamentally different from the ion signal modulation of biology, traditional Silicon-based neuromorphic implementations have limited bio-integration potential. Here, we report the first organic electrochemical neurons (OECNs) with ion-modulated spiking, based on all-printed complementary organic electrochemical transistors. We demonstrate facile bio-integration of OECNs with Venus Flytrap (Dionaea muscipula) to induce lobe closure upon input stimuli. The OECNs can also be integrated with all-printed organic electrochemical synapses (OECSs), exhibiting short-term plasticity with paired-pulse facilitation and long-term plasticity with retention >1000 s, facilitating Hebbian learning. These soft and flexible OECNs operate below 0.6 V and respond to multiple stimuli, defining a new vista for localized artificial neuronal systems possible to integrate with bio-signaling systems of plants, invertebrates, and vertebrates.
Collapse
|
8
|
Saikia E, Läubli NF, Vogler H, Rüggeberg M, Herrmann HJ, Burgert I, Burri JT, Nelson BJ, Grossniklaus U, Wittel FK. Mechanical factors contributing to the Venus flytrap's rate-dependent response to stimuli. Biomech Model Mechanobiol 2021; 20:2287-2297. [PMID: 34431032 PMCID: PMC8595191 DOI: 10.1007/s10237-021-01507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
The sensory hairs of the Venus flytrap (Dionaea muscipula Ellis) detect mechanical stimuli imparted by their prey and fire bursts of electrical signals called action potentials (APs). APs are elicited when the hairs are sufficiently stimulated and two consecutive APs can trigger closure of the trap. Earlier experiments have identified thresholds for the relevant stimulus parameters, namely the angular displacement [Formula: see text] and angular velocity [Formula: see text]. However, these experiments could not trace the deformation of the trigger hair's sensory cells, which are known to transduce the mechanical stimulus. To understand the kinematics at the cellular level, we investigate the role of two relevant mechanical phenomena: viscoelasticity and intercellular fluid transport using a multi-scale numerical model of the sensory hair. We hypothesize that the combined influence of these two phenomena and [Formula: see text] contribute to the flytrap's rate-dependent response to stimuli. In this study, we firstly perform sustained deflection tests on the hair to estimate the viscoelastic material properties of the tissue. Thereafter, through simulations of hair deflection tests at different loading rates, we were able to establish a multi-scale kinematic link between [Formula: see text] and the cell wall stretch [Formula: see text]. Furthermore, we find that the rate at which [Formula: see text] evolves during a stimulus is also proportional to [Formula: see text]. This suggests that mechanosensitive ion channels, expected to be stretch-activated and localized in the plasma membrane of the sensory cells, could be additionally sensitive to the rate at which stretch is applied.
Collapse
Affiliation(s)
- Eashan Saikia
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, 8093 Switzerland
| | - Nino F. Läubli
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092 Switzerland
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS United Kingdom
| | - Hannes Vogler
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, 8008 Switzerland
| | | | - Hans J. Herrmann
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, École Supérieur de Physique et de Chimie Industrielles de la Ville de Paris, 75005 Paris, France
| | - Ingo Burgert
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, 8093 Switzerland
- Swiss Federal Laboratories for Material Science and Technology-EMPA, Cellulose and Wood Materials Laboratory, 8600 Dubendorf, Switzerland
| | - Jan T. Burri
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092 Switzerland
| | - Bradley J. Nelson
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092 Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, 8008 Switzerland
| | - Falk K. Wittel
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, 8093 Switzerland
| |
Collapse
|
9
|
Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application. MICROMACHINES 2021; 12:mi12060608. [PMID: 34074051 PMCID: PMC8225014 DOI: 10.3390/mi12060608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/22/2023]
Abstract
Millions of years’ evolution has imparted life on earth with excellent environment adaptability. Of particular interest to scientists are some plants capable of macroscopically and reversibly altering their morphological and mechanical properties in response to external stimuli from the surrounding environment. These intriguing natural phenomena and underlying actuation mechanisms have provided important design guidance and principles for man-made soft robotic systems. Constructing bio-inspired soft robotic systems with effective actuation requires the efficient supply of mechanical energy generated from external inputs, such as temperature, light, and electricity. By combining bio-inspired designs with stimuli-responsive materials, various intelligent soft robotic systems that demonstrate promising and exciting results have been developed. As one of the building materials for soft robotics, hydrogels are gaining increasing attention owing to their advantageous properties, such as ultra-tunable modulus, high compliance, varying stimuli-responsiveness, good biocompatibility, and high transparency. In this review article, we summarize the recent progress on plant-inspired soft robotics assembled by stimuli-responsive hydrogels with a particular focus on their actuation mechanisms, fabrication, and application. Meanwhile, some critical challenges and problems associated with current hydrogel-based soft robotics are briefly introduced, and possible solutions are proposed. We expect that this review would provide elementary tutorial guidelines to audiences who are interested in the study on nature-inspired soft robotics, especially hydrogel-based intelligent soft robotic systems.
Collapse
|
10
|
Chellattoan R, Yudhanto A, Lubineau G. Low-Voltage-Driven Large-Amplitude Soft Actuators Based on Phase Transition. Soft Robot 2020; 7:688-699. [DOI: 10.1089/soro.2019.0150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ragesh Chellattoan
- COHMAS Laboratory, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arief Yudhanto
- COHMAS Laboratory, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gilles Lubineau
- COHMAS Laboratory, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
11
|
Zapata R, Oliver-Villanueva JV, Lemus-Zúñiga LG, Luzuriaga JE, Mateo Pla MA, Urchueguía JF. Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem. PLANT SIGNALING & BEHAVIOR 2020; 15:1795580. [PMID: 32686612 PMCID: PMC8550538 DOI: 10.1080/15592324.2020.1795580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Electric potential differences in living plants are explained by theories based on sap flow. In order to acquire more advanced knowledge about the spatial distribution of these electric potential measures in trees, this research aims to analyze electrical signals in a population of Aleppo pines (Pinus halepensis Mill.) in a representative Mediterranean forest ecosystem. The specific research objective is to assess some of the most significant factors that influence the distribution pattern of those electric signals: tree age, measurement type and electrode placement. The research has been conducted in representative forest stands, obtaining measurements of different representative trees. After a statistical evaluation of the obtained results, the main conclusions of our research are: A.Tree maturity influences directly on electric potential. B.Maximum electrical signals can be measured in young pines showing values of 0.6 V and 0.6 µA for voltage and current, respectively. C.The distribution patterns of both voltage and short-circuit current depending on electrode placement are uniform.
Collapse
Affiliation(s)
- Rodolfo Zapata
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
- CONTACT Rodolfo Zapata ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València46022, Spain
| | - Jose-Vicente Oliver-Villanueva
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| | - Lenin-Guillermo Lemus-Zúñiga
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| | - Jorge E. Luzuriaga
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| | - Miguel A. Mateo Pla
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| | - Javier F. Urchueguía
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| |
Collapse
|
12
|
A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. PLoS Biol 2020; 18:e3000740. [PMID: 32649659 PMCID: PMC7351144 DOI: 10.1371/journal.pbio.3000740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The carnivorous Venus flytrap catches prey by an ingenious snapping mechanism. Based on work over nearly 200 years, it has become generally accepted that two touches of the trap’s sensory hairs within 30 s, each one generating an action potential, are required to trigger closure of the trap. We developed an electromechanical model, which, however, suggests that under certain circumstances one touch is sufficient to generate two action potentials. Using a force-sensing microrobotic system, we precisely quantified the sensory-hair deflection parameters necessary to trigger trap closure and correlated them with the elicited action potentials in vivo. Our results confirm the model’s predictions, suggesting that the Venus flytrap may be adapted to a wider range of prey movements than previously assumed. It is generally accepted that two touches of the Venus flytrap’s sensory hairs within 30 seconds are required to trigger closure of the trap. Here, however, quantification of the plant’s sensory hair deflection parameters reveals that one stimulus is sufficient.
Collapse
|
13
|
Zhang Q, Fu WL, Wang XF, Huang LJ. Ingenious floral structure drives explosive pollination in Hydrilla verticillata (Hydrocharitaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:480-486. [PMID: 31860937 DOI: 10.1111/plb.13085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
In explosive pollination, many structures and mechanisms have evolved to achieve high-speed stamen movement. The male flower of the submerged plant Hydrilla verticillata is reported to be able to release pollen explosively some time after leaving the mother plant time, but the mechanism of stamen movement and the related functional structure in this species are unclear. In this study, we observed the male flower structure and pollen dispersal process of H. verticillata. We analysed the stamen movements during the pollen dispersal process and conducted several controlled experiments to study the process of storage and release of elastic potential energy in explosive pollination. When the male flower of H. verticillata is bound to the united bracts, the sepals accumulate elastic potential energy through the expansion of basal extensor cells. After the male flower is liberated from the mother plant, the stamens unfold rapidly with the sepals under adhesion and transfer the elastic potential energy to the filament in seconds. Once stamens unfold to a critical angle, at which the elasticity of the filament just exceeds the adhesion between sepals and anthers, the stamens automatically rebound and release pollen in milliseconds. These results reveal that Catapult-like stamens, spoon-shaped sepals and enclosed united bracts in the spathe together constitute the functional structure in rapid stamen movement of H. verticillata. They ensure that the pollen can be released on the water surface, and thus adapt successfully to the pollen-epihydrophilous pollination.
Collapse
Affiliation(s)
- Q Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - W-L Fu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - X-F Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - L-J Huang
- College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
14
|
Volana Randriamandimbisoa M, Manitra Nany Razafindralambo NA, Fakra D, Lucia Ravoajanahary D, Claude Gatina J, Jaffrezic-Renault N. Electrical response of plants to environmental stimuli: A short review and perspectives for meteorological applications. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Lendlein A, Balk M, Tarazona NA, Gould OEC. Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials. Biomacromolecules 2019; 20:3627-3640. [PMID: 31529957 DOI: 10.1021/acs.biomac.9b01074] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape-memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape-memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials.
Collapse
Affiliation(s)
- Andreas Lendlein
- Institute of Biomaterial Science , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , Teltow , Germany.,Institute of Chemistry , University of Potsdam , Karl-Liebknecht-Straße 24-25 , Potsdam , Germany
| | - Maria Balk
- Institute of Biomaterial Science , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , Teltow , Germany
| | - Natalia A Tarazona
- Institute of Biomaterial Science , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , Teltow , Germany
| | - Oliver E C Gould
- Institute of Biomaterial Science , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , Teltow , Germany
| |
Collapse
|
16
|
Morris RJ, Blyth M. How water flow, geometry, and material properties drive plant movements. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3549-3560. [PMID: 31112593 DOI: 10.1093/jxb/erz167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Plants are dynamic. They adjust their shape for feeding, defence, and reproduction. Such plant movements are critical for their survival. We present selected examples covering a range of movements from single cell to tissue level and over a range of time scales. We focus on reversible turgor-driven shape changes. Recent insights into the mechanisms of stomata, bladderwort, the waterwheel, and the Venus flytrap are presented. The underlying physical principles (turgor, osmosis, membrane permeability, wall stress, snap buckling, and elastic instability) are highlighted, and advances in our understanding of these processes are summarized.
Collapse
Affiliation(s)
- Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | - Mark Blyth
- School of Mathematics, University of East Anglia, Norwich, UK
| |
Collapse
|
17
|
Pavlovič A, Mithöfer A. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3379-3389. [PMID: 31120525 DOI: 10.1093/jxb/erz188] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, CZ, Olomouc, Czech Republic
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße, Jena, Germany
| |
Collapse
|
18
|
Sickel W, Van de Weyer AL, Bemm F, Schultz J, Keller A. Venus flytrap microbiotas withstand harsh conditions during prey digestion. FEMS Microbiol Ecol 2019; 95:5289860. [PMID: 30649283 DOI: 10.1093/femsec/fiz010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
The carnivorous Venus flytrap (Dionaea muscipula) overcomes environmental nutrient limitation by capturing small animals. Such prey is digested with an acidic enzyme-containing mucilage that is secreted into the closed trap. However, surprisingly little is known about associations with microorganisms. Therefore, we assessed microbiotas of traps and petioles for the Venus flytrap by 16S amplicon meta-barcoding. We also performed time-series assessments of dynamics during digestion in traps and experimental acidification of petioles. We found that the traps hosted distinct microbiotas that differed from adjacent petioles. Further, they showed a significant taxonomic turnover during digestion. Following successful catches, prey-associated bacteria had strong effects on overall composition. With proceeding digestion, however, microbiotas were restored to compositions resembling pre-digestion stages. A comparable, yet less extensive shift was found when stimulating digestion with coronatine. Artificial acidification of petioles did not induce changes towards trap-like communities. Our results show that trap microbiota were maintained during digestion despite harsh conditions and recovered after short-term disturbances through prey microbiota. This indicates trap-specific and resilient associations. By mapping to known genomes, we predicted putative adaptations and functional implications for the system, yet direct mechanisms and quantification of host benefits, like the involvement in digestion, remain to be addressed.
Collapse
Affiliation(s)
- Wiebke Sickel
- Molecular Biodiversity Group, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Felix Bemm
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jörg Schultz
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Germany
| | - Alexander Keller
- Molecular Biodiversity Group, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Germany
| |
Collapse
|
19
|
Volkov AG. Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochemistry 2019; 125:25-32. [DOI: 10.1016/j.bioelechem.2018.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022]
|
20
|
Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2018; 27:R667-R679. [PMID: 28697370 DOI: 10.1016/j.cub.2017.05.020] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium-based intracellular signalling system is used ubiquitously to couple extracellular stimuli to their characteristic intracellular responses. It is becoming clear from genomic and physiological investigations that while the basic elements in the toolkit are common between plants and animals, evolution has acted in such a way that, in plants, some components have diversified with respect to their animal counterparts, while others have either been lost or have never evolved in the plant lineages. In comparison with animals, in plants there appears to have been a loss of diversity in calcium-influx mechanisms at the plasma membrane. However, the evolution of the calcium-storing vacuole may provide plants with additional possibilities for regulating calcium influx into the cytosol. Among the proteins that are involved in sensing and responding to increases in calcium, plants possess specific decoder proteins that are absent from the animal lineage. In seeking to understand the selection pressures that shaped the plant calcium-signalling toolkit, we consider the evolution of fast electrical signalling. We also note that, in contrast to animals, plants apparently do not make extensive use of cyclic-nucleotide-based signalling. It is possible that reliance on a single intracellular second-messenger-based system, coupled with the requirement to adapt to changing environmental conditions, has helped to define the diversity of components found in the extant plant calcium-signalling toolkit.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Elodie Marchadier
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Génétique Quantitative et Evolution - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
21
|
Phenomena of synchronized response in biosystems and the possible mechanism. Biochem Biophys Res Commun 2018; 496:661-666. [DOI: 10.1016/j.bbrc.2018.01.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 11/18/2022]
|
22
|
Volkov AG, Xu KG, Kolobov VI. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet. Bioelectrochemistry 2017; 118:100-105. [DOI: 10.1016/j.bioelechem.2017.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023]
|
23
|
Pavlovič A, Jakšová J, Novák O. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). THE NEW PHYTOLOGIST 2017; 216:927-938. [PMID: 28850713 DOI: 10.1111/nph.14747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
In the carnivorous plant Venus flytrap (Dionaea muscipula), the sequence of events after prey capture resembles the well-known plant defence signalling pathway in response to pathogen or herbivore attack. Here, we used wounding to mimic prey capture to show the similarities and differences between botanical carnivory and plant defence mechanisms. We monitored movement, electrical signalling, jasmonate accumulation and digestive enzyme secretion in local and distal (systemic) traps in response to prey capture, the mechanical stimulation of trigger hairs and wounding. The Venus flytrap cannot discriminate between wounding and mechanical trigger hair stimulation. Both induced the same action potentials, rapid trap closure, hermetic trap sealing, the accumulation of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile), and the secretion of proteases (aspartic and cysteine proteases), phosphatases and type I chitinase. The jasmonate accumulation and enzyme secretion were confined to the local traps, to which the stimulus was applied, which correlates with the propagation of electrical signals and the absence of a systemic response in the Venus flytrap. In contrast to plant defence mechanisms, the absence of a systemic response in carnivorous plant may represent a resource-saving strategy. During prey capture, it could be quite expensive to produce digestive enzymes in the traps on the plant without prey.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| |
Collapse
|
24
|
Schmied JU, Le Ferrand H, Ermanni P, Studart AR, Arrieta AF. Programmable snapping composites with bio-inspired architecture. BIOINSPIRATION & BIOMIMETICS 2017; 12:026012. [PMID: 28288001 DOI: 10.1088/1748-3190/aa5efd] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of programmable self-shaping materials enables the onset of new and innovative functionalities in many application fields. Commonly, shape adaptation is achieved by exploiting diffusion-driven swelling or nano-scale phase transition, limiting the change of shape to slow motion predominantly determined by the environmental conditions and/or the materials specificity. To address these shortcomings, we report shape adaptable programmable shells that undergo morphing via a snap-through mechanism inspired by the Dionaea muscipula leaf, known as the Venus fly trap. The presented shells are composite materials made of epoxy reinforced by stiff anisotropic alumina micro-platelets oriented in specific directions. By tailoring the microstructure via magnetically-driven alignment of the platelets, we locally tune the pre-strain and stiffness anisotropy of the composite. This novel approach enables the fabrication of complex shapes showing non-orthotropic curvatures and stiffness gradients, radically extending the design space when compared to conventional long-fibre reinforced multi-stable composites. The rare combination of large stresses, short actuation times and complex shapes, results in hinge-free artificial shape adaptable systems with large design freedom for a variety of morphing applications.
Collapse
Affiliation(s)
- Jascha U Schmied
- Laboratory of Composite Materials and Adaptive Structures, Department of Mechanical and Process Engineering ETH Zürich, Zürich 8092, Switzerland. Authors contributed equally
| | | | | | | | | |
Collapse
|
25
|
Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. THE NEW PHYTOLOGIST 2017; 213:1818-1835. [PMID: 27933609 DOI: 10.1111/nph.14352] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 05/28/2023]
Abstract
The carnivorous sundew plant (Drosera capensis) captures prey using sticky tentacles. We investigated the tentacle and trap reactions in response to the electrical and jasmonate signalling evoked by different stimuli to reveal how carnivorous sundews recognize digestible captured prey in their traps. We measured the electrical signals, phytohormone concentration, enzyme activities and Chla fluorescence in response to mechanical stimulation, wounding or insect feeding in local and systemic traps. Seven new proteins in the digestive fluid were identified using mass spectrometry. Mechanical stimuli and live prey induced a fast, localized tentacle-bending reaction and enzyme secretion at the place of application. By contrast, repeated wounding induced a nonlocalized convulsive tentacle movement and enzyme secretion in local but also in distant systemic traps. These differences can be explained in terms of the electrical signal propagation and jasmonate accumulation, which also had a significant impact on the photosynthesis in the traps. The electrical signals generated in response to wounding could partially mimic a mechanical stimulation of struggling prey and might trigger a false alarm, confirming that the botanical carnivory and plant defence mechanisms are related. To trigger the full enzyme activity, the traps must detect chemical stimuli from the captured prey.
Collapse
Affiliation(s)
- Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
| | - Zdeněk Perutka
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Andrej Pavlovič
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
26
|
|
27
|
Masi E, Ciszak M, Colzi I, Adamec L, Mancuso S. Resting electrical network activity in traps of the aquatic carnivorous plants of the genera Aldrovanda and Utricularia. Sci Rep 2016; 6:24989. [PMID: 27117956 PMCID: PMC4846995 DOI: 10.1038/srep24989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/04/2016] [Indexed: 11/17/2022] Open
Abstract
In this study the MEA (multielectrode array) system was used to record electrical responses of intact and halved traps, and other trap-free tissues of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia reflexa. They exhibit rapid trap movements and their traps contain numerous glands. Spontaneous generation of spikes with quite uniform shape, propagating across the recording area, has been observed for all types of sample. In the analysis of the electrical network, higher richer synchronous activity was observed relative to other plant species and organs previously described in the literature: indeed, the time intervals between the synchronized clusters (the inter-spike intervals) create organized patterns and the propagation times vary non-linearly with the distance due to this synchronization. Interestingly, more complex electrical activity was found in traps than in trap-free organs, supporting the hypothesis that the nature of the electrical activity may reflect the anatomical and functional complexity of different organs. Finally, the electrical activity of functionally different traps of Aldrovanda (snapping traps) and Utricularia (suction traps) was compared and some differences in the features of signal propagation were found. According to these results, a possible use of the MEA system for the study of different trap closure mechanisms is proposed.
Collapse
Affiliation(s)
- Elisa Masi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Marzena Ciszak
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
- CNR, National Institute of Optics (INO), L.go E. Fermi 6, 50125 Florence, Italy
| | - Ilaria Colzi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Lubomir Adamec
- Institute of Botany of the Czech Academy of Sciences, Section of Plant Ecology, Dukelská 135, CZ-379 82 Třeboň, Czech Republic
| | - Stefano Mancuso
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
28
|
Shabala S, White RG, Djordjevic MA, Ruan YL, Mathesius U. Root-to-shoot signalling: integration of diverse molecules, pathways and functions. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:87-104. [PMID: 32480444 DOI: 10.1071/fp15252] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/06/2015] [Indexed: 05/23/2023]
Abstract
Plant adaptive potential is critically dependent upon efficient communication and co-ordination of resource allocation and signalling between above- and below-ground plant parts. Plant roots act as gatekeepers that sense and encode information about soil physical, chemical and biological factors, converting them into a sophisticated network of signals propagated both within the root itself, and also between the root and shoot, to optimise plant performance for a specific set of conditions. In return, plant roots receive and decode reciprocal information coming from the shoot. The communication modes are highly diverse and include a broad range of physical (electric and hydraulic signals, propagating Ca2+ and ROS waves), chemical (assimilates, hormones, peptides and nutrients), and molecular (proteins and RNA) signals. Further, different signalling systems operate at very different timescales. It remains unclear whether some of these signalling systems operate in a priming mode(s), whereas others deliver more specific information about the nature of the signal, or whether they carry the same 'weight'. This review summarises the current knowledge of the above signalling mechanisms, and reveals their hierarchy, and highlights the importance of integration of these signalling components, to enable optimal plant functioning in a dynamic environment.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | | | - Michael A Djordjevic
- Plant Science Division, Research School of Biology, Building 134, Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ulrike Mathesius
- Plant Science Division, Research School of Biology, Building 134, Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
29
|
Poppinga S, Kampowski T, Metzger A, Speck O, Speck T. Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:664-74. [PMID: 27335756 PMCID: PMC4902084 DOI: 10.3762/bjnano.7.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/11/2016] [Indexed: 05/12/2023]
Abstract
Although the Venus flytrap (Dionaea muscipula) can be considered as one of the most extensively investigated carnivorous plants, knowledge is still scarce about diversity of the snap-trap motion, the functionality of snap traps under varying environmental conditions, and their opening motion. By conducting simple snap-trap closure experiments in air and under water, we present striking evidence that adult Dionaea snaps similarly fast in aerial and submersed states and, hence, is potentially able to gain nutrients from fast aquatic prey during seasonal inundation. We reveal three snapping modes of adult traps, all incorporating snap buckling, and show that millimeter-sized, much slower seedling traps do not yet incorporate such elastic instabilities. Moreover, opening kinematics of young and adult Dionaea snap traps reveal that reverse snap buckling is not performed, corroborating the assumption that growth takes place on certain trap lobe regions. Our findings are discussed in an evolutionary, biomechanical, functional-morphological and biomimetic context.
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| | - Tim Kampowski
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| | - Amélie Metzger
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Olga Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Centre for Interactive Materials and Bio-Inspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Centre for Interactive Materials and Bio-Inspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
30
|
Guo Q, Dai E, Han X, Xie S, Chao E, Chen Z. Fast nastic motion of plants and bioinspired structures. J R Soc Interface 2015; 12:0598. [PMID: 26354828 PMCID: PMC4614472 DOI: 10.1098/rsif.2015.0598] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022] Open
Abstract
The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots.
Collapse
Affiliation(s)
- Q Guo
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108, China Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350108, China
| | - E Dai
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - X Han
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - S Xie
- Department of Energy, Environmental, and Chemical Engineering, Washington University, St Louis, MO 63130, USA
| | - E Chao
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Z Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
31
|
Pavlovič A, Saganová M. A novel insight into the cost-benefit model for the evolution of botanical carnivory. ANNALS OF BOTANY 2015; 115:1075-92. [PMID: 25948113 PMCID: PMC4648460 DOI: 10.1093/aob/mcv050] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Michaela Saganová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| |
Collapse
|
32
|
Jerominek M, Claßen-Bockhoff R. Electrical signals in prayer plants (marantaceae)? Insights into the trigger mechanism of the explosive style movement. PLoS One 2015; 10:e0126411. [PMID: 25997015 PMCID: PMC4440630 DOI: 10.1371/journal.pone.0126411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/01/2015] [Indexed: 11/18/2022] Open
Abstract
The explosive pollination mechanism of the prayer plants (Marantaceae) is unique among plants. After a tactile stimulus by a pollinator, the style curls up rapidly and mediates pollen exchange. It is still under discussion whether this explosive movement is released electrophysiologically, i.e. by a change in the membrane potential (as in Venus flytrap), or purely mechanically. In the present study, electrophysiological experiments are conducted to clarify the mechanism. Artificial release experiments (chemical and electrical) and electrophysiological measurements were conducted with two phylogenetically distant species, Goeppertia bachemiana (E. Morren) Borchs. & S. Suárez and Donax canniformis (G. Forst.) K. Schum. Electric responses recorded after style release by extracellular measurements are characterised as variation potentials due to their long repolarization phase and lack of self-perpetuation. In both species, chemical and electric stimulations do not release the style movement. It is concluded that the style movement in Marantaceae is released mechanically by relieving the tissue pressure. Accordingly, the variation potential is an effect of the movement and not its cause. The study exemplarily shows that fast movements in plants are not necessarily initiated by electric changes of the membrane as known from the Venus flytrap.
Collapse
Affiliation(s)
- Markus Jerominek
- Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität, Mainz, Germany
| | - Regine Claßen-Bockhoff
- Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
33
|
DiLauro AM, Lewis GG, Phillips ST. Self-Immolative Poly(4,5-dichlorophthalaldehyde) and its Applications in Multi-Stimuli-Responsive Macroscopic Plastics. Angew Chem Int Ed Engl 2015; 54:6200-5. [DOI: 10.1002/anie.201501320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 11/11/2022]
|
34
|
DiLauro AM, Lewis GG, Phillips ST. Self-Immolative Poly(4,5-dichlorophthalaldehyde) and its Applications in Multi-Stimuli-Responsive Macroscopic Plastics. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Kurenda A, Stolarz M, Zdunek A. Electrical potential oscillations--movement relations in circumnutating sunflower stem and effect of ion channel and proton pump inhibitors on circumnutation. PHYSIOLOGIA PLANTARUM 2015; 153:307-17. [PMID: 25211351 DOI: 10.1111/ppl.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/09/2014] [Accepted: 07/30/2014] [Indexed: 05/21/2023]
Abstract
The physiological control and molecular mechanism of circumnutation (CN) has not yet been fully understood. To gain information on the CN mechanism, the relationship between the changes of electrical potential and movement in the circumnutating sunflower stem and effect of ion channels and proton pump inhibitors on CN parameters were evaluated. Long-term electrophysiological measurements and injection of solutions of ion channel inhibitors (ICI) into sunflower stem with the simultaneous time-lapse recording of the movement were made. The oscillations of electrical potential (OEP) - movement relations - consist of cells depolarization on the deflected side of the stem and, at this same time, cells hyperpolarization on the opposite side of the stem. The delay of organ movement in relation to electrical changes of approximately 28 min (22% of the period) may indicate that the ionic fluxes causing the OEP are the primary phenomenon. The biggest decrease of CN period was observed after injection of proton pump (approximately 26%) and cation channel (approximately 25%) inhibitors, while length and amplitude were reduced mainly by calcium channel inhibitors (approximately 67%). Existence of OEP only in circumnutating part of sunflower stem and reduction of CN parameters and OEP amplitude after application of ICI prove that the CN cellular mechanism is associated with transmembrane ion transport.
Collapse
Affiliation(s)
- Andrzej Kurenda
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, 20-033, Lublin, Poland; Institute of Agrophysics, Polish Academy of Sciences, 20-290, Lublin, Poland
| | | | | |
Collapse
|
36
|
Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates. PLoS One 2014; 9:e104424. [PMID: 25153528 PMCID: PMC4143254 DOI: 10.1371/journal.pone.0104424] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.
Collapse
|
37
|
Gravity affects the closure of the traps in Dionaea muscipula. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964203. [PMID: 25133188 PMCID: PMC4123562 DOI: 10.1155/2014/964203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022]
Abstract
Venus flytrap (Dionaea muscipula Ellis) is a carnivorous plant known for its ability to capture insects thanks to the fast snapping of its traps. This fast movement has been long studied and it is triggered by the mechanical stimulation of hairs, located in the middle of the leaves. Here we present detailed experiments on the effect of microgravity on trap closure recorded for the first time during a parabolic flight campaign. Our results suggest that gravity has an impact on trap responsiveness and on the kinetics of trap closure. The possible role of the alterations of membrane permeability induced by microgravity on trap movement is discussed. Finally we show how the Venus flytrap could be an easy and effective model plant to perform studies on ion channels and aquaporin activities, as well as on electrical activity in vivo on board of parabolic flights and large diameter centrifuges.
Collapse
|
38
|
Volkov AG, Forde-Tuckett V, Volkova MI, Markin VS. Morphing structures of the Dionaea muscipula Ellis during the trap opening and closing. PLANT SIGNALING & BEHAVIOR 2014; 9:e27793. [PMID: 24618927 PMCID: PMC4091236 DOI: 10.4161/psb.27793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 05/26/2023]
Abstract
The Venus flytrap is a marvelous plant that has intrigued scientists since the times of Charles Darwin. This carnivorous plant is capable of very fast movements to catch a prey. We found that the maximal speed of the trap closing in the Dionaea muscipula Ellis is about 130,000 times faster than the maximal speed of the trap opening. The mechanism and kinetics of this movement was debated for a long time. Here, the most recent Hydroelastic Curvature Model is applied to the analysis of this movement during closing and opening of the trap with or without a prey. Equations describing the trap movement were derived and verified with experimental data. Chloroform and ether, both anesthetic agents, induce action potentials and close the trap without the mechanical stimulation of trigger hairs. We tested this by dropping 10 μL of ether on the midrib inside the trap without touching any of the mechanosensitive trigger hairs. The trap closed slowly in 10 s. This is at least 20 times slower than the closing of the trap mechanically or electrically. The similar effect can be induced by placing 10 μL of chloroform on the midrib inside the trap, however, the lobes closing time in this case is as fast as closing after mechanical stimulation of the trigger hairs.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | | | - Maya I Volkova
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Vladislav S Markin
- Department of Neurology; University of Texas; Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
39
|
Kreuzwieser J, Scheerer U, Kruse J, Burzlaff T, Honsel A, Alfarraj S, Georgiev P, Schnitzler JP, Ghirardo A, Kreuzer I, Hedrich R, Rennenberg H. The Venus flytrap attracts insects by the release of volatile organic compounds. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:755-66. [PMID: 24420576 PMCID: PMC3904726 DOI: 10.1093/jxb/ert455] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.
Collapse
Affiliation(s)
- Jürgen Kreuzwieser
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| | - Ursel Scheerer
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| | - Jörg Kruse
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| | - Tim Burzlaff
- Professur für Forstzoologie und Entomologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Tennenbacher Strasse 4, 79085 Freiburg, Germany
| | - Anne Honsel
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Plamen Georgiev
- Fly Facility, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Ines Kreuzer
- Lehrstuhl für Botanik I, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Rainer Hedrich
- Lehrstuhl für Botanik I, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Heinz Rennenberg
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| |
Collapse
|
40
|
Volkov AG, Forde-Tuckett V, Reedus J, Mitchell CM, Volkova MI, Markin VS, Chua L. Memristors in the Venus flytrap. PLANT SIGNALING & BEHAVIOR 2014; 9:e29204. [PMID: 25763613 PMCID: PMC4203580 DOI: 10.4161/psb.29204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A memristor is a nonlinear element because its current-voltage characteristic is similar to that of a Lissajous pattern for nonlinear systems. We investigated the possible presence of memristors in the electrical circuitry of the Venus flytrap's upper and lower leaves. The electrostimulation of this plant by bipolar sinusoidal or triangle periodic waves induces electrical responses in the upper and lower leaves of the Venus flytrap with fingerprints of memristors. The analysis was based on cyclic voltammetric characteristics where the memristor, a resistor with memory, should manifest itself. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, or NPPB, a blocker of voltage gated Cl(-) and K(+) channels, transform a memristor to a resistor in plant tissue. Uncouplers carbonylcyanide-3-chlorophenylhydrazone (CCCP) and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone (FCCP) decrease the amplitude of electrical responses at low and high frequencies of bipolar periodic electrostimulating waves. Our results demonstrate that voltage gated K(+) channels in the Venus flytrap have properties of memristors of type 1 and type 2. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
- Correspondence to: Alexander G Volkov,
| | | | - Jada Reedus
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Colee M Mitchell
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Maya I Volkova
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Vladislav S. Markin
- Department of Neurology; University of Texas; Southwestern Medical Center; Dallas, TX USA
| | - Leon Chua
- Department of EECS; University of California, Berkeley; Berkeley, CA USA
| |
Collapse
|
41
|
Volkov AG, Tucket C, Reedus J, Volkova MI, Markin VS, Chua L. Memristors in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e28152. [PMID: 24556876 PMCID: PMC4091481 DOI: 10.4161/psb.28152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We investigated electrical circuitry of the Venus flytrap, Mimosa pudica and Aloe vera. The goal was to discover if these plants might have a new electrical component--a resistor with memory. This element was postulated recently and the researchers were looking for its presence in different systems. The analysis was based on cyclic current-voltage characteristic where the resistor with memory should manifest itself. We found that the electrostimulation of plants by bipolar sinusoidal or triangle periodic waves induces electrical responses in the Venus flytrap, Mimosa pudica and Aloe vera with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in plant tissue. Our results demonstrate that a voltage gated K(+) channel in the excitable tissue of plants has properties of a memristor. This study can be a starting point for understanding mechanisms of memory, learning, circadian rhythms, and biological clocks.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
- Correspondence to: Alexander G Volkov,
| | - Clayton Tucket
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Jada Reedus
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Maya I Volkova
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Vladislav S Markin
- Department of Neurology; University of Texas; Southwestern Medical Center; Dallas, TX USA
| | - Leon Chua
- Department of EECS; University of California, Berkeley; Berkeley, CA USA
| |
Collapse
|
42
|
Venus Flytrap Seedlings Show Growth-Related Prey Size Specificity. INTERNATIONAL JOURNAL OF ECOLOGY 2014. [DOI: 10.1155/2014/135207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Venus flytrap (Dionaea muscipula) has had a conservation status of vulnerable since the 1970s. Little research has focussed on the ecology and even less has examined its juvenile stages. For the first time, reliance on invertebrate prey for growth was assessed in seedling Venus flytrap by systematic elimination of invertebrates from the growing environment. Prey were experimentally removed from a subset of Venus flytrap seedlings within a laboratory environment. The amount of growth was measured by measuring trap midrib length as a function of overall growth as well as prey spectrum. There was significantly lower growth in prey-eliminated plants than those utilising prey. This finding, although initially unsurprising, is actually contrary to the consensus that seedlings (traps < 5 mm) do not catch prey. Furthermore, flytrap was shown to have prey specificity at its different growth stages; the dominant prey size for seedlings did not trigger mature traps. Seedlings are capturing and utilising prey for nutrients to increase their overall trap size. These novel findings show Venus flytrap to have a much more complex evolutionary ecology than previously thought.
Collapse
|
43
|
Forterre Y. Slow, fast and furious: understanding the physics of plant movements. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4745-60. [PMID: 23913956 DOI: 10.1093/jxb/ert230] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ability of plants to move is central to many physiological processes from development to tropisms, from nutrition to reproduction. The movement of plants or plant parts occurs over a wide range of sizes and time scales. This review summarizes the main physical mechanisms plants use to achieve motility, highlighting recent work at the frontier of biology and physics on rapid movements. Emphasis is given to presenting in a single framework pioneering biological studies of water transport and growth with more recent physics research on poroelasticity and mechanical instabilities. First, the basic osmotic and hydration/dehydration motors are described that contribute to movement by growth and reversible swelling/shrinking of cells and tissues. The speeds of these water-driven movements are shown to be ultimately limited by the transport of water through the plant body. Some plant structures overcome this hydraulic limit to achieve much faster movement by using a mechanical instability. The principle is to impose an 'energy barrier' to the system, which can originate from geometrical constraint or matter cohesion, allowing elastic potential energy to be stored until the barrier is overcome, then rapidly transformed into kinetic energy. Three of these rapid motion mechanisms have been elucidated recently and are described here: the snapping traps of two carnivorous plants, the Venus flytrap and Utricularia, and the catapult of fern sporangia. Finally, movement mechanisms are reconsidered in the context of the timescale of important physiological processes at the cellular and molecular level.
Collapse
Affiliation(s)
- Yoël Forterre
- IUSTI, CNRS UMR 7343, Université d'Aix-Marseille, 5 rue Enrico Fermi, 13453 Marseille cedex 13, France
| |
Collapse
|
44
|
Volkov AG, Vilfranc CL, Murphy VA, Mitchell CM, Volkova MI, O'Neal L, Markin VS. Electrotonic and action potentials in the Venus flytrap. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:838-46. [PMID: 23422156 DOI: 10.1016/j.jplph.2013.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 05/12/2023]
Abstract
The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry and Biochemistry, Oakwood University, Huntsville, AL 35896, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Baluška F, Mancuso S. Ion channels in plants: from bioelectricity, via signaling, to behavioral actions. PLANT SIGNALING & BEHAVIOR 2013; 8:e23009. [PMID: 23221742 PMCID: PMC3745586 DOI: 10.4161/psb.23009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 05/20/2023]
Abstract
In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels. (1) He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula, (1,2) known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC). (1.)
Collapse
Affiliation(s)
- František Baluška
- University of Bonn; IZMB; Bonn, Germany
- Correspondence to: František Baluška,
| | | |
Collapse
|
47
|
Volkov AG, Harris SL, Vilfranc CL, Murphy VA, Wooten JD, Paulicin H, Volkova MI, Markin VS. Venus flytrap biomechanics: forces in the Dionaea muscipula trap. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:25-32. [PMID: 22959673 DOI: 10.1016/j.jplph.2012.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 05/26/2023]
Abstract
Biomechanics of morphing structures in the Venus flytrap has attracted the attention of scientists during the last 140 years. The trap closes in a tenth of a second if a prey touches a trigger hair twice. The driving force of the closing process is most likely due to the elastic curvature energy stored and locked in the leaves, which is caused by a pressure differential between the upper and lower layers of the leaf. The trap strikes, holds and compresses the prey. We have developed new methods for measuring all these forces involved in the hunting cycle. We made precise calibration of the piezoelectric sensor and performed direct measurements of the average impact force of the trap closing using a high speed video camera for the determination of time constants. The new equation for the average impact force was derived. The impact average force between rims of two lobes in the Venus flytrap was found equal to 149 mN and the corresponding pressure between the rims was about 41 kPa. Direct measurements of the constriction force in the trap of Dionaea muscipula was performed during gelatin digestion. This force increases in the process of digestion from zero to 450 mN with maximal constriction pressure created by the lobes reaching to 9 kPa. The insects and different small prey have little chance to escape after the snap of the trap. The prey would need to overpower the "escaping" force which is very strong and can reach up to 4N.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry and Biochemistry, Oakwood University, Huntsville, AL 35896, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kawano T, Bouteau F, Mancuso S. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo. Commun Integr Biol 2012; 5:519-26. [PMID: 23336016 PMCID: PMC3541313 DOI: 10.4161/cib.21805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.
Collapse
Affiliation(s)
- Tomonori Kawano
- Faculty and Graduate School of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan ; LINV @ Kitakyushu Research Center; Kitakyushu, Japan ; LINV @ Firenze; Department of Plant Soil and Environmental Science; University of Florence; Sesto Fiorentino, Italy ; Paris Interdisciplinary Energy Research Institute (PIERI); Paris, France
| | | | | |
Collapse
|
49
|
Li Y, Lenaghan SC, Zhang M. Nonlinear dynamics of the movement of the venus flytrap. Bull Math Biol 2012; 74:2446-73. [PMID: 22843018 DOI: 10.1007/s11538-012-9760-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 07/17/2012] [Indexed: 12/01/2022]
Abstract
The Venus flytrap has long been regarded as one of the most amazing examples of movement in the plant kingdom. The trapping ability of the flytrap consists of three unique features. First, trap closure represents one of the fastest movements in the plant kingdom. Second, a decision-making stage allows the plant to "decide" whether to completely close or open the trap, based on stimuli provided from the trapped object. Finally, the Venus flytrap contains a "memory function" that requires two mechanical stimuli within about 30 seconds to initiate trap closure. The movement involved in trap closure consists of nonlinear dynamics that have not been well understood. By understanding the movement, through nonlinear dynamics analysis, it will be possible to better understand this biological process. A mathematical model describing the movement of the Venus flytrap was first proposed by the authors in Yang et al., Plant Signal. Behav. 5(8), 968-978 (2010). In the current work, the earlier research has been advanced and an in-depth nonlinear and control analysis of the dynamic process has been provided.
Collapse
Affiliation(s)
- Yongfeng Li
- USRA, Division of Space Life Sciences, Houston, TX 77058, USA
| | | | | |
Collapse
|
50
|
Volkov AG, Murphy VA, Clemmons JI, Curley MJ, Markin VS. Energetics and forces of the Dionaea muscipula trap closing. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:55-64. [PMID: 21908071 DOI: 10.1016/j.jplph.2011.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 05/12/2023]
Abstract
The Venus flytrap is the most famous carnivorous plant. The electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf in 0.3s without mechanical stimulation of trigger hairs. Here we present results for direct measurements of the closing force of the trap of Dionaea muscipula Ellis after mechanical or electrical stimulation of the trap using the piezoelectric thin film or Fuji Prescale indicating sensor film. The closing force was 0.14N and the corresponding pressure between rims of two lobes was 38 kPa. We evaluated theoretically using the Hydroelastic Curvature Model and compared with experimental data velocity, acceleration and kinetic energy from the time dependencies of distance between rims of lobes during the trap closing. The Charge Stimulation Method was used for trap electrostimulation between the midrib and lobes. From the dependence of voltage between two Ag/AgCl electrodes in the midrib and one of the lobes, we estimated electrical charge, current, resistance, electrical energy and electrical power dependencies on time during electrostimulation of the trap.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry and Biochemistry, Oakwood University, Huntsville, 7000 Adventist Blvd., AL 35896, USA.
| | | | | | | | | |
Collapse
|