1
|
Liu S, He M, Lin X, Kong F. Epigenetic regulation of photoperiodic flowering in plants. THE PLANT GENOME 2023; 16:e20320. [PMID: 37013370 DOI: 10.1002/tpg2.20320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
In response to changeable season, plants precisely control the initiation of flowering in appropriate time of the year to ensure reproductive success. Day length (photoperiod) acts as the most important external cue to determine flowering time. Epigenetics regulates many major developmental stages in plant life, and emerging molecular genetics and genomics researches reveal their essential roles in floral transition. Here, we summarize the recent advances in epigenetic regulation of photoperiod-mediated flowering in Arabidopsis and rice, and discuss the potential of epigenetic regulation in crops improvement, and give the brief prospect for future study trends.
Collapse
Affiliation(s)
- Shuangrong Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Milan He
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
2
|
Cui X, Dard A, Reichheld JP, Zhou DX. Multifaceted functions of histone deacetylases in stress response. TRENDS IN PLANT SCIENCE 2023; 28:1245-1256. [PMID: 37394308 DOI: 10.1016/j.tplants.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Histone deacetylases (HDACs) are important chromatin regulators essential for plant tolerance to adverse environments. In addition to histone deacetylation and epigenetic regulation, HDACs deacetylate non-histone proteins and thereby regulate multiple pathways. Like other post-translational modifications (PTMs), acetylation/deacetylation is a reversible switch regulating different cellular processes in plants. Here, by focusing on results obtained in arabidopsis (Arabidopsis thaliana) and rice plants, we analyze the different aspects of HDAC functions and the underlying regulatory mechanisms in modulating plant responses to stress. We hypothesize that, in addition to epigenetic regulation of gene expression, HDACs can also control plant tolerance to stress by regulating transcription, translation, and metabolic activities and possibly assembly-disassembly of stress granules (SGs) through lysine deacetylation of non-histone proteins.
Collapse
Affiliation(s)
- Xiaoyun Cui
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France; VIB-UGent Center for Plant Systems Biology, Ghent University, Technologiepark-Zwijnaarde 71, - 9052 Ghent, Belgium
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France; National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
3
|
Han Y, Georgii E, Priego-Cubero S, Wurm CJ, Hüther P, Huber G, Koller R, Becker C, Durner J, Lindermayr C. Arabidopsis histone deacetylase HD2A and HD2B regulate seed dormancy by repressing DELAY OF GERMINATION 1. FRONTIERS IN PLANT SCIENCE 2023; 14:1124899. [PMID: 37313253 PMCID: PMC10258333 DOI: 10.3389/fpls.2023.1124899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 06/15/2023]
Abstract
Seed dormancy is a crucial developmental transition that affects the adaption and survival of plants. Arabidopsis DELAY OF GERMINATION 1 (DOG1) is known as a master regulator of seed dormancy. However, although several upstream factors of DOG1 have been reported, the exact regulation of DOG1 is not fully understood. Histone acetylation is an important regulatory layer, controlled by histone acetyltransferases and histone deacetylases. Histone acetylation strongly correlates with transcriptionally active chromatin, whereas heterochromatin is generally characterized by hypoacetylated histones. Here we describe that loss of function of two plant-specific histone deacetylases, HD2A and HD2B, resulted in enhanced seed dormancy in Arabidopsis. Interestingly, the silencing of HD2A and HD2B caused hyperacetylation of the DOG1 locus and promoted the expression of DOG1 during seed maturation and imbibition. Knockout of DOG1 could rescue the seed dormancy and partly rescue the disturbed development phenotype of hd2ahd2b. Transcriptomic analysis of the hd2ahd2b line shows that many genes involved in seed development were impaired. Moreover, we demonstrated that HSI2 and HSL1 interact with HD2A and HD2B. In sum, these results suggest that HSI2 and HSL1 might recruit HD2A and HD2B to DOG1 to negatively regulate DOG1 expression and to reduce seed dormancy, consequently, affecting seed development during seed maturation and promoting seed germination during imbibition.
Collapse
Affiliation(s)
- Yongtao Han
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | | | - Christoph J. Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Patrick Hüther
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, München, Germany
| | - Gregor Huber
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Claude Becker
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, München, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research, München, Germany
| |
Collapse
|
4
|
Zhang Z, Yang W, Chu Y, Yin X, Liang Y, Wang Q, Wang L, Han Z. AtHD2D, a plant-specific histone deacetylase involved in abscisic acid response and lateral root development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7380-7400. [PMID: 36125085 DOI: 10.1093/jxb/erac381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Abstract
In eukaryotes, histone acetylation levels directly regulate downstream gene expression. As a plant-specific histone deacetylase (HDAC), HD2D is involved in plant development and abiotic stress. However, the response of HD2D to drought stress and its interacting proteins, is still unclear. In this study, we analysed HD2D gene expression patterns in Arabidopsis, revealing that HD2D gene was highly expressed in roots and rosette leaves, but poorly expressed in other tissues such as stems, flowers, and young siliques. The HD2D gene expression was induced by d-mannitol. We investigated the responses to drought stress in the wild-type plant, HD2D overexpression lines, and hd2d mutants. HD2D-overexpressing lines showed abscisic acid (ABA) hypersensitivity and drought tolerance, and these phenotypes were not present in hd2d mutants. RNA-seq analysis revealed the transcriptome changes caused by HD2D under drought stress, and showed that HD2D responded to drought stress via the ABA signalling pathway. In addition, we demonstrated that CASEIN KINASE II (CKA4) directly interacted with HD2D. The phosphorylation of Ser residues on HD2D by CKA4 enhanced HD2D enzymatic activity. Furthermore, the phosphorylation of HD2D was shown to contribute to lateral root development and ABA sensing in Arabidopsis, but, these phenotypes could not be reproduced by the overexpression of Ser-phospho-null HD2D lines. Collectively, this study suggests that HD2D responded to drought stress by regulating the ABA signalling pathway, and the expression of drought stress-related genes. The regulatory mechanism of HD2D mediated by CKII phosphorylation provides new insights into the ABA response and lateral root development in Arabidopsis.
Collapse
Affiliation(s)
- Zhaochen Zhang
- College of Life Science, Northwest A & F University, Yangling, Shanxi 712100, China
| | - Weixia Yang
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling, Shanxi 712100, China
| | - Yueyang Chu
- College of Life Science, Northwest A & F University, Yangling, Shanxi 712100, China
| | - Xiaotong Yin
- College of Life Science, Northwest A & F University, Yangling, Shanxi 712100, China
| | - Yueqi Liang
- College of Innovation and Experiment, Northwest A & F University, Yangling, Shanxi 712100, China
| | - Qiuping Wang
- College of Life Science, Northwest A & F University, Yangling, Shanxi 712100, China
| | - Lei Wang
- College of Life Science, Northwest A & F University, Yangling, Shanxi 712100, China
| | - Zhaofen Han
- College of Life Science, Northwest A & F University, Yangling, Shanxi 712100, China
| |
Collapse
|
5
|
Bobde RC, Kumar A, Vasudevan D. Plant-specific HDT family histone deacetylases are nucleoplasmins. THE PLANT CELL 2022; 34:4760-4777. [PMID: 36069647 PMCID: PMC9709999 DOI: 10.1093/plcell/koac275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Histone acetyltransferase (HAT)- and histone deacetylase (HDAC)-mediated histone acetylation and deacetylation regulate nucleosome dynamics and gene expression. HDACs are classified into different families, with HD-tuins or HDTs being specific to plants. HDTs show some sequence similarity to nucleoplasmins, the histone chaperones that aid in binding, storing, and loading H2A/H2B dimers to assemble nucleosomes. Here, we solved the crystal structure of the N-terminal domain (NTD) of all four HDTs (HDT1, HDT2, HDT3, and HDT4) from Arabidopsis (Arabidopsis thaliana). The NTDs form a nucleoplasmin fold, exist as pentamers in solution, and are resistant to protease treatment, high temperature, salt, and urea conditions. Structurally, HDTs do not form a decamer, unlike certain classical nucleoplasmins. The HDT-NTD requires an additional A2 acidic tract C-terminal to the nucleoplasmin domain for interaction with histone H3/H4 and H2A/H2B oligomers. We also report the in-solution structures of HDT2 pentamers in complex with histone oligomers. Our study provides a detailed structural and in vitro functional characterization of HDTs, revealing them to be nucleoplasmin family histone chaperones. The experimental confirmation that HDTs are nucleoplasmins may spark new interest in this enigmatic family of proteins.
Collapse
Affiliation(s)
- Ruchir C Bobde
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Ashish Kumar
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | | |
Collapse
|
6
|
Meng J, Wen Z, Li M, Cheng T, Zhang Q, Sun L. HDACs Gene Family Analysis of Eight Rosaceae Genomes Reveals the Genomic Marker of Cold Stress in Prunus mume. Int J Mol Sci 2022; 23:5957. [PMID: 35682633 PMCID: PMC9180812 DOI: 10.3390/ijms23115957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in plant growth, development, and stress response. However, the pattern of how they are expressed in response to cold stress in the ornamental woody plant Prunus mume is poorly understood. Here, we identify 121 RoHDACs from eight Rosaceae plants of which 13 PmHDACs genes are from P. mume. A phylogenetic analysis suggests that the RoHDACs family is classified into three subfamilies, HDA1/RPD3, HD2, and SIR2. We identify 11 segmental duplication gene pairs of RoHDACs and find, via a sequence alignment, that the HDACs gene family, especially the plant-specific HD2 family, has experienced gene expansion and contraction at a recent genome evolution history. Each of the three HDACs subfamilies has its own conserved domains. The expression of PmHDACs in mei is found to be tissue-specific or tissue-wide. RNA-seq data and qRT-PCR experiments in cold treatments suggest that almost all PmHDACs genes-especially PmHDA1/6/14, PmHDT1, and PmSRT1/2-significantly respond to cold stress. Our analysis provides a fundamental insight into the phylogenetic relationship of the HDACs family in Rosaceae plants. Expression profiles of PmHDACs in response to cold stress could provide an important clue to improve the cold hardiness of mei.
Collapse
Affiliation(s)
| | | | | | | | | | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (J.M.); (Z.W.); (M.L.); (T.C.); (Q.Z.)
| |
Collapse
|
7
|
Li S, Lyu S, Liu Y, Luo M, Shi S, Deng S. Cauliflower mosaic virus P6 Dysfunctions Histone Deacetylase HD2C to Promote Virus Infection. Cells 2021; 10:2278. [PMID: 34571927 PMCID: PMC8464784 DOI: 10.3390/cells10092278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.
Collapse
Affiliation(s)
- Shun Li
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
| | - Yujuan Liu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- National Engineering Research Center of Navel Orange, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
8
|
Tahir MS, Tian L. HD2-type histone deacetylases: unique regulators of plant development and stress responses. PLANT CELL REPORTS 2021; 40:1603-1615. [PMID: 34041586 DOI: 10.1007/s00299-021-02688-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Plants have developed sophisticated and complex epigenetic regulation-based mechanisms to maintain stable growth and development under diverse environmental conditions. Histone deacetylases (HDACs) are important epigenetic regulators in eukaryotes that are involved in the deacetylation of lysine residues of histone H3 and H4 proteins. Plants have developed a unique HDAC family, HD2, in addition to the RPD3 and Sir2 families, which are also present in other eukaryotes. HD2s are well conserved plant-specific HDACs, which were first identified as nucleolar phosphoproteins in maize. The HD2 family plays important roles not only in fundamental developmental processes, including seed germination, root and leaf development, floral transition, and seed development but also in regulating plant responses to biotic and abiotic stresses. Some of the HD2 members coordinate with each other to function. The HD2 family proteins also show functional association with RPD3-type HDACs and other transcription factors as a part of repression complexes in gene regulatory networks involved in environmental stress responses. This review aims to analyse and summarise recent research progress in the HD2 family, and to describe their role in plant growth and development and in response to different environmental stresses.
Collapse
Affiliation(s)
- Muhammad Sufyan Tahir
- Department of Biology, University of Western Ontario, London, ON, Canada.
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
9
|
Wurm CJ, Lindermayr C. Nitric oxide signaling in the plant nucleus: the function of nitric oxide in chromatin modulation and transcription. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:808-818. [PMID: 33128375 DOI: 10.1093/jxb/eraa404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is involved in a vast number of physiologically important processes in plants, such as organ development, stress resistance, and immunity. Transduction of NO bioactivity is generally achieved by post-translational modification of proteins, with S-nitrosation of cysteine residues as the predominant form. While traditionally the subcellular location of the factors involved was of lesser importance, recent studies identified the connection between NO and transcriptional activity and thereby raised the question about the route of NO into the nuclear sphere. Identification of NO-affected transcription factors and chromatin-modifying histone deacetylases implicated the important role of NO signaling in the plant nucleus as a regulator of epigenetic mechanisms and gene transcription. Here, we discuss the relationship between NO and its directly regulated protein targets in the nuclear environment, focusing on S-nitrosated chromatin modulators and transcription factors.
Collapse
Affiliation(s)
- Christoph J Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
10
|
Zhou Y, Yang P, Zhang F, Luo X, Xie J. Histone deacetylase HDA19 interacts with histone methyltransferase SUVH5 to regulate seed dormancy in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1062-1071. [PMID: 32643178 DOI: 10.1111/plb.13158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/10/2020] [Accepted: 06/30/2020] [Indexed: 05/22/2023]
Abstract
Seed dormancy controls the timing of germination and plays a significant role in adaptation and evolution of seed plants. In this study, a yeast two-hybrid, pull-down assay and co-immunoprecipitation assay were used to ascertain the protein relationship of SUVH5 and HDA19. Both qRT-PCR and ChIP-qPCR were used to examine the molecular mechanism of how HDA19 and SUVH5 regulate seed dormancy. The results demonstrated that histone methyltransferase SUVH5 interacted with histone deacetylase HDA19 in vivo and in vitro. In addition, they showed that mutants of HDA19 could deepen seed dormancy, and that SUVH5 had the same effect. The hda19 suvh5 double mutant displayed a higher level of seed dormancy than the single mutants hda19 or suvh5. Moreover, the expression of seed dormancy-related genes increased in hda19, suvh5 and in hda19 suvh5 double mutant plants, which was associated with increased histone H3 acetylation (H3ac), but decreased histone H3 Lys 9 dimethylation (H3K9me2). ChIP assays proved that HDA19 could directly integrate into the chromatin of genes regulating seed dormancy. Taken together, our results show that HDA19 and SUVH5 work together and have a negative role in seed dormancy.
Collapse
Affiliation(s)
- Y Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - P Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - F Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - X Luo
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - J Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
11
|
Lim CJ, Park J, Shen M, Park HJ, Cheong MS, Park KS, Baek D, Bae MJ, Ali A, Jan M, Lee SY, Lee BH, Kim WY, Pardo JM, Yun DJ. The Histone-Modifying Complex PWR/HOS15/HD2C Epigenetically Regulates Cold Tolerance. PLANT PHYSIOLOGY 2020; 184:1097-1111. [PMID: 32732349 PMCID: PMC7536694 DOI: 10.1104/pp.20.00439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 05/04/2023]
Abstract
Cold stress is a major environmental stress that severely affects plant growth and crop productivity. Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15) is a substrate receptor of the CULLIN4-based CLR4 ubiquitin E3 ligase complex, which epigenetically regulates cold tolerance by degrading HISTONE DEACETYLASE2C (HD2C) to switch from repressive to permissive chromatin structure in response to cold stress. In this study, we characterized a HOS15-binding protein, POWERDRESS (PWR), and analyzed its function in the cold stress response. PWR loss-of-function plants (pwr) showed lower expression of cold-regulated (COR) genes and sensitivity to freezing. PWR interacts with HD2C through HOS15, and cold-induced HD2C degradation by HOS15 is diminished in the pwr mutant. The association of HOS15 and HD2C to promoters of cold-responsive COR genes was dependent on PWR. Consistent with these observations, the high acetylation levels of histone H3 by cold-induced and HOS15-mediated HD2C degradation were significantly reduced in pwr under cold stress. PWR also interacts with C-repeat element-binding factor transcription factors to modulate their cold-induced binding to the promoter of COR genes. Collectively, our data signify that the PWR-HOS15-HD2C histone-modifying complex regulates the expression of COR genes and the freezing tolerance of plants.
Collapse
Affiliation(s)
- Chae Jin Lim
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Junghoon Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Mingzhe Shen
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Jin Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Mi Sun Cheong
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ki Suk Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Dongwon Baek
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Jae Bae
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ahktar Ali
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Masood Jan
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jose M Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, 41092 Seville, Spain
| | - Dea-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Guo Z, Li Z, Liu Y, An Z, Peng M, Shen WH, Dong A, Yu Y. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene FT to set a proper flowering time in response to day-length changes. THE NEW PHYTOLOGIST 2020; 227:1453-1466. [PMID: 32315442 DOI: 10.1111/nph.16616] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 05/26/2023]
Abstract
Day-length changes represent an important cue for modulating flowering time. In Arabidopsis, the expression of the florigen gene FLOWERING LOCUS T (FT) exhibits a 24-h circadian rhythm under long-day (LD) conditions. Here we focus on the chromatin-based mechanism regarding the control of FT expression. We conducted co-immunoprecipitation assays along with LC-MS/MS analysis and identified HD2C histone deacetylase as the binding protein of the H3K4/H3K36 methylation reader MRG2. HD2C and MRG1/2 regulate flowering time under LD conditions, but not under short-day conditions. Moreover, HD2C functions as an effective deacetylase in planta, mainly targeting H3K9ac, H3K23ac and H3K27ac. At dusk, HD2C is recruited to FT to deacetylate histones and repress transcription in an MRG1/2-dependent manner. More importantly, HD2C competes with CO for the binding of MRG2, and the accumulation of HD2C at the FT locus occurs at the end of the day. Our findings not only reveal a histone deacetylation mechanism contributing to prevent FT overexpression and precocious flowering, but also support the model in which the histone methylation readers MRG1/2 provide a platform on chromatin for connecting regulatory factors involved in activating FT expression in response to daylight and decreasing FT expression around dusk under long days.
Collapse
Affiliation(s)
- Zhihao Guo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zepeng Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
13
|
Zhang JB, He SP, Luo JW, Wang XP, Li DD, Li XB. A histone deacetylase, GhHDT4D, is positively involved in cotton response to drought stress. PLANT MOLECULAR BIOLOGY 2020; 104:67-79. [PMID: 32621165 DOI: 10.1007/s11103-020-01024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Acetylation and deacetylation of histones are important for regulating a series of biological processes in plants. Histone deacetylases (HDACs) control the histone deacetylation that plays an important role in plant response to abiotic stress. In our study, we show the evidence that GhHDT4D (a member of the HD2 subfamily of HDACs) is involved in cotton (Gossypium hirsutum) response to drought stress. Overexpression of GhHDT4D in Arabidopsis increased plant tolerance to drought, whereas silencing GhHDT4D in cotton resulted in plant sensitivity to drought. Simultaneously, the H3K9 acetylation level was altered in the GhHDT4D silenced cotton, compared with the controls. Further study revealed that GhHDT4D suppressed the transcription of GhWRKY33, which plays a negative role in cotton defense to drought, by reducing its H3K9 acetylation level. The expressions of the stress-related genes, such as GhDREB2A, GhDREB2C, GhSOS2, GhRD20-1, GhRD20-2 and GhRD29A, were significantly decreased in the GhHDT4D silenced cotton, but increased in the GhWRKY33 silenced cotton. Given these data together, our findings suggested that GhHDT4D may enhance drought tolerance by suppressing the expression of GhWRKY33, thereby activating the downstream drought response genes in cotton.
Collapse
Affiliation(s)
- Jing-Bo Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Shao-Ping He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing-Wen Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xin-Peng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Deng-Di Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
14
|
Histone Deacetylase TaHDT701 Functions in TaHDA6-TaHOS15 Complex to Regulate Wheat Defense Responses to Blumeria graminis f.sp. tritici. Int J Mol Sci 2020; 21:ijms21072640. [PMID: 32290114 PMCID: PMC7178159 DOI: 10.3390/ijms21072640] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
Powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt) leads to severe economic losses in bread wheat (Triticum aestivum L.). To date, only a few epigenetic modulators have been revealed to regulate wheat powdery mildew resistance. In this study, the histone deacetylase 2 (HD2) type histone deacetylase TaHDT701 was identified as a negative regulator of wheat defense responses to Bgt. Using multiple approaches, we demonstrated that TaHDT701 associates with the RPD3 type histone deacetylase TaHDA6 and the WD40-repeat protein TaHOS15 to constitute a histone deacetylase complex, in which TaHDT701 could stabilize the TaHDA6-TaHOS15 association. Furthermore, knockdown of TaHDT701, TaHDA6, and TaHOS15 resulted in enhanced wheat powdery mildew resistance, suggesting that the TaHDT701-TaHDA6-TaHOS15 histone deacetylase complex negatively regulates wheat defense responses to Bgt. Moreover, chromatin immunoprecipitation assays revealed that TaHDT701 could function in concert with TaHOS15 to recruit TaHDA6 to the promoters of defense-related genes such as TaPR1, TaPR2, TaPR5, and TaWRKY45. In addition, silencing of TaHDT701, TaHDA6, and TaHOS15 resulted in the up-regulation of TaPR1, TaPR2, TaPR5, and TaWRKY45 accompanied with increased histone acetylation and methylation, as well as reduced nucleosome occupancy, at their promoters, suggesting that the TaHDT701-TaHDA6-TaHOS15 histone deacetylase complex suppresses wheat powdery mildew resistance by modulating chromatin state at defense-related genes.
Collapse
|
15
|
Histone Deacetylase (HDAC) Gene Family in Allotetraploid Cotton and Its Diploid Progenitors: In Silico Identification, Molecular Characterization, and Gene Expression Analysis under Multiple Abiotic Stresses, DNA Damage and Phytohormone Treatments. Int J Mol Sci 2020; 21:ijms21010321. [PMID: 31947720 PMCID: PMC6981504 DOI: 10.3390/ijms21010321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/11/2023] Open
Abstract
Histone deacetylases (HDACs) play a significant role in a plant’s development and response to various environmental stimuli by regulating the gene transcription. However, HDACs remain unidentified in cotton. In this study, a total of 29 HDACs were identified in allotetraploid Gossypium hirsutum, while 15 and 13 HDACs were identified in Gossypium arboretum and Gossypium raimondii, respectively. Gossypium HDACs were classified into three groups (reduced potassium dependency 3 (RPD3)/HDA1, HD2-like, and Sir2-like (SRT) based on their sequences, and Gossypium HDACs within each subgroup shared a similar gene structure, conserved catalytic domains and motifs. Further analysis revealed that Gossypium HDACs were under a strong purifying selection and were unevenly distributed on their chromosomes. Gene expression data revealed that G. hirsutumHDACs were differentially expressed in various vegetative and reproductive tissues, as well as at different developmental stages of cotton fiber. Furthermore, some G. hirsutum HDACs were co-localized with quantitative trait loci (QTLs) and single-nucleotide polymorphism (SNPs) of fiber-related traits, indicating their function in fiber-related traits. We also showed that G. hirsutum HDACs were differentially regulated in response to plant hormones (abscisic acid (ABA) and auxin), DNA damage agent (methyl methanesulfonate (MMS)), and abiotic stresses (cold, salt, heavy metals and drought), indicating the functional diversity and specification of HDACs in response to developmental and environmental cues. In brief, our results provide fundamental information regarding G.hirsutumHDACs and highlight their potential functions in cotton growth, fiber development and stress adaptations, which will be helpful for devising innovative strategies for the improvement of cotton fiber and stress tolerance.
Collapse
|
16
|
Liu J, Zhi P, Wang X, Fan Q, Chang C. Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to Blumeria graminis f.sp. tritici. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:255-268. [PMID: 30204899 DOI: 10.1093/jxb/ery330] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) seriously threatens the production of common wheat (Triticum aestivum). In eukaryotes, WD40-repeat (WDR) proteins usually participate in assembling protein complexes involved in a wide range of cellular processes, including defense responses. However, the potential function of WDR proteins in regulating crop resistance to biotrophic fungal pathogens, such as Bgt, remains unclear. In this study, we isolated TaHOS15, encoding a WDR protein, from the Bgt-susceptible wheat cultivar Jing411 and demonstrated that knockdown of TaHOS15 expression using virus- or transient-induced gene-silencing attenuated wheat susceptibility to Bgt. Biochemical and molecular-biological assays revealed that TaHOS15 interacts with TaHDA6, a wheat homolog of Arabidopsis histone deacetylase AtHDA6, to constitute a transcriptional repressor complex. We determined the role of TaHOS15, which might act as an adaptor protein recruiting TaHDA6 to the chromatin of wheat defense-related genes including TaPR1, TaPR2, TaPR5, and TaWRKY45, where they repress histone acetylation. Reduced TaHOS15 or TaHDA6 transcript levels led to decreased susceptibility to Bgt together with enhanced defense-related transcription under Bgt infection. Collectively, these results demonstrate that TaHOS15 functions in a histone deacetylase complex with TaHDA6 to fine-tune the defense response to Bgt in common wheat.
Collapse
Affiliation(s)
- Jiao Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Qingxin Fan
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Park J, Lim CJ, Shen M, Park HJ, Cha JY, Iniesto E, Rubio V, Mengiste T, Zhu JK, Bressan RA, Lee SY, Lee BH, Jin JB, Pardo JM, Kim WY, Yun DJ. Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc Natl Acad Sci U S A 2018; 115:E5400-E5409. [PMID: 29784800 PMCID: PMC6003311 DOI: 10.1073/pnas.1721241115] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47 Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance.
Collapse
Affiliation(s)
- Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, 05029 Seoul, South Korea
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, 05029 Seoul, South Korea
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Mingzhe Shen
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, 05029 Seoul, South Korea
- Institute of Glocal Disease Control, Konkuk University, 05029 Seoul, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Elisa Iniesto
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Vicente Rubio
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, 04107 Seoul, South Korea
| | - Jing Bo Jin
- Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Jose M Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, 05029 Seoul, South Korea;
| |
Collapse
|
18
|
Midhat U, Ting MKY, Teresinski HJ, Snedden WA. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2018; 96:375-392. [PMID: 29372457 DOI: 10.1007/s11103-018-0703-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/12/2018] [Indexed: 05/10/2023]
Abstract
We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca2+ sensor during ovule and seed development, as well as during germination and seedling establishment.
Collapse
Affiliation(s)
- Ubaid Midhat
- Department of Biology, Queen's University, Kingston, ON, K7L3N6, Canada
| | - Michael K Y Ting
- Department of Biology, Queen's University, Kingston, ON, K7L3N6, Canada
| | | | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON, K7L3N6, Canada.
| |
Collapse
|
19
|
Uhrig RG, Schläpfer P, Mehta D, Hirsch-Hoffmann M, Gruissem W. Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes. BMC Genomics 2017; 18:514. [PMID: 28679357 PMCID: PMC5499015 DOI: 10.1186/s12864-017-3894-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/21/2017] [Indexed: 12/30/2022] Open
Abstract
Background Reversible protein acetylation occurring on Lys-Ne has emerged as a key regulatory post-translational modification in eukaryotes. It is mediated by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) that catalyze the addition and removal of acetyl groups from target proteins. Estimates indicate that protein acetylation is second to protein phosphorylation in abundance, with thousands of acetylated sites now identified in different subcellular compartments. Considering the important regulatory role of protein phosphorylation, elucidating the diversity of KATs and KDACs across photosynthetic eukaryotes is essential in furthering our understanding of the impact of reversible protein acetylation on plant cell processes. Results We report a genome-scale analysis of lysine acetyltransferase (KAT)- and lysine deacetylase (KDAC)-families from 53 photosynthetic eukaryotes. KAT and KDAC orthologs were identified in sequenced genomes ranging from glaucophytes and algae to land plants and then analyzed for evolutionary relationships. Based on consensus molecular phylogenetic and subcellular localization data we found new sub-classes of enzymes in established KAT- and KDAC-families. Specifically, we identified a non-photosynthetic origin of the HD-tuin family KDACs, a new monocot-specific Class I HDA-family sub-class, and a phylogenetically distinct Class II algal/heterokont sub-class which maintains an ankyrin domain not conserved in land plant Class II KDACs. Protein structure analysis showed that HDA- and SRT-KDACs exist as bare catalytic subunits with highly conserved median protein length, while all KATs maintained auxiliary domains, with CBP- and TAFII250-KATs displaying protein domain gain and loss over the course of photosynthetic eukaryote evolution in addition to variable protein length. Lastly, promoter element enrichment analyses across species revealed conserved cis-regulatory sequences that support KAT and KDAC involvement in the regulation of plant development, cold/drought stress response, as well as cellular processes such as the circadian clock. Conclusions Our results reveal new evolutionary, structural, and biological insights into the KAT- and KDAC-families of photosynthetic eukaryotes, including evolutionary parallels to protein kinases and protein phosphatases. Further, we provide a comprehensive annotation framework through our extensive phylogenetic analysis, from which future research investigating aspects of protein acetylation in plants can use to position new findings in a broader context. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3894-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Glen Uhrig
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland.
| | - Pascal Schläpfer
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland.,Plant Biology Department, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Devang Mehta
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Matthias Hirsch-Hoffmann
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|
20
|
Luo M, Cheng K, Xu Y, Yang S, Wu K. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases. FRONTIERS IN PLANT SCIENCE 2017; 8:2147. [PMID: 29326743 PMCID: PMC5737090 DOI: 10.3389/fpls.2017.02147] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.
Collapse
Affiliation(s)
- Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Ming Luo, Keqiang Wu,
| | - Kai Cheng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Keqiang Wu
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming Luo, Keqiang Wu,
| |
Collapse
|
21
|
Buszewicz D, Archacki R, Palusiński A, Kotliński M, Fogtman A, Iwanicka-Nowicka R, Sosnowska K, Kuciński J, Pupel P, Olędzki J, Dadlez M, Misicka A, Jerzmanowski A, Koblowska MK. HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:2108-22. [PMID: 27083783 DOI: 10.1111/pce.12756] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 05/20/2023]
Abstract
Studies in yeast and animals have revealed that histone deacetylases (HDACs) often act as components of multiprotein complexes, including chromatin remodelling complexes (CRCs). However, interactions between HDACs and CRCs in plants have yet to be demonstrated. Here, we present evidence for the interaction between Arabidopsis HD2C deacetylase and a BRM-containing SWI/SNF CRC. Moreover, we reveal a novel function of HD2C as a regulator of the heat stress response. HD2C transcript levels were strongly induced in plants subjected to heat treatment, and the expression of selected heat-responsive genes was up-regulated in heat-stressed hd2c mutant, suggesting that HD2C acts to down-regulate heat-activated genes. In keeping with the HDAC activity of HD2C, the altered expression of HD2C-regulated genes coincided in most cases with increased histone acetylation at their loci. Microarray transcriptome analysis of hd2c and brm mutants identified a subset of commonly regulated heat-responsive genes, and the effect of the brm hd2c double mutation on the expression of these genes was non-additive. Moreover, heat-treated 3-week-old hd2c, brm and brm hd2c mutants displayed similar rates of growth retardation. Taken together, our findings suggest that HD2C and BRM act in a common genetic pathway to regulate the Arabidopsis heat stress response.
Collapse
Affiliation(s)
- Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Rafał Archacki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Antoni Palusiński
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Maciej Kotliński
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Katarzyna Sosnowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Jan Kuciński
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Jacek Olędzki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Institute of Genetics and Biotechnology, University of Warsaw, 02-106, Warsaw, Poland
| | - Aleksandra Misicka
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 00-927, Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Andrzej Jerzmanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Marta Kamila Koblowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland.
| |
Collapse
|
22
|
Lee WK, Cho MH. Telomere-binding protein regulates the chromosome ends through the interaction with histone deacetylases in Arabidopsis thaliana. Nucleic Acids Res 2016; 44:4610-24. [PMID: 26857545 PMCID: PMC4889915 DOI: 10.1093/nar/gkw067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 01/13/2023] Open
Abstract
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes. Many telomere-binding proteins bind to telomeric repeat sequences and further generate T-loops in animals. However, it is not clear if they regulate telomere organization using epigenetic mechanisms and how the epigenetic molecules are involved in regulating the telomeres. Here, we show direct interactions between the telomere-binding protein, AtTRB2 and histone deacetylases, HDT4 and HDA6, in vitro and in vivo AtTRB2 mediates the associations of HDT4 and HDA6 with telomeric repeats. Telomere elongation is found in AtTRB2, HDT4 and HDA6 mutants over generations, but also in met1 and cmt3 DNA methyltransferases mutants. We also characterized HDT4 as an Arabidopsis H3K27 histone deacetylase. HDT4 binds to acetylated peptides at residue K27 of histone H3 in vitro, and deacetylates this residue in vivo Our results suggest that AtTRB2 also has a role in the regulation of telomeric chromatin as a possible scaffold protein for recruiting the epigenetic regulators in Arabidopsis, in addition to its telomere binding and length regulation activity. Our data provide evidences that epigenetic molecules associate with telomeres by direct physical interaction with telomere-binding proteins and further regulate homeostasis of telomeres in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Won Kyung Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeon Haeng Cho
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Han Z, Yu H, Zhao Z, Hunter D, Luo X, Duan J, Tian L. AtHD2D Gene Plays a Role in Plant Growth, Development, and Response to Abiotic Stresses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:310. [PMID: 27066015 PMCID: PMC4815178 DOI: 10.3389/fpls.2016.00310] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/29/2016] [Indexed: 05/20/2023]
Abstract
The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.
Collapse
Affiliation(s)
- Zhaofen Han
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Huimin Yu
- Department of E-A Information Engineering, Liaoning Institute of Science and TechnologyBenxi, China
| | - Zhong Zhao
- College of Forestry, Northwest A & F UniversityYangling, China
- *Correspondence: Zhong Zhao
| | - David Hunter
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
| | - Xinjuan Luo
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Lining Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
- Lining Tian
| |
Collapse
|
24
|
Ay N, Janack B, Humbeck K. Epigenetic control of plant senescence and linked processes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3875-87. [PMID: 24683182 DOI: 10.1093/jxb/eru132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Senescence processes are part of the plant developmental programme. They involve reprogramming of gene expression and are under the control of a complex regulatory network closely linked to other developmental and stress-responsive pathways. Recent evidence indicates that leaf senescence is regulated via epigenetic mechanisms. In the present review, the epigenetic control of plant senescence is discussed in the broader context of environment-sensitive plant development. The review outlines the concept of epigenetic control of interconnected regulatory pathways steering stress responses and plant development. Besides giving an overview of techniques used in the field, it summarizes recent findings on global alterations in chromatin structure, histone and DNA modifications, and ATP-dependent chromatin remodelling during plant senescence and linked processes.
Collapse
Affiliation(s)
- Nicole Ay
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | - Bianka Janack
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| |
Collapse
|
25
|
Grandperret V, Nicolas-Francès V, Wendehenne D, Bourque S. Type-II histone deacetylases: elusive plant nuclear signal transducers. PLANT, CELL & ENVIRONMENT 2014; 37:1259-69. [PMID: 24236403 DOI: 10.1111/pce.12236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 05/20/2023]
Abstract
Since the beginning of the 21st century, numerous studies have concluded that the plant cell nucleus is one of the cellular compartments that define the specificity of the cellular response to an external stimulus or to a specific developmental stage. To that purpose, the nucleus contains all the enzymatic machinery required to carry out a wide variety of nuclear protein post-translational modifications (PTMs), which play an important role in signal transduction pathways leading to the modulation of specific sets of genes. PTMs include protein (de)acetylation which is controlled by the antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Regarding protein deacetylation, plants are of particular interest: in addition to the RPD3-HDA1 and Sir2 HDAC families that they share with other eukaryotic organisms, plants have developed a specific family called type-II HDACs (HD2s). Interestingly, these HD2s are well conserved in plants and control fundamental biological processes such as seed germination, flowering or the response to pathogens. The aim of this review was to summarize current knowledge regarding this fascinating, but still poorly understood nuclear protein family.
Collapse
Affiliation(s)
- Vincent Grandperret
- Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes - ERL CNRS 6300, Université de Bourgogne, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, Dijon cedex, 21065, France
| | | | | | | |
Collapse
|
26
|
Yano R, Takebayashi Y, Nambara E, Kamiya Y, Seo M. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:815-28. [PMID: 23464703 DOI: 10.1111/tpj.12167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 05/20/2023]
Abstract
Seed dormancy is an important adaptive trait that enables germination at the proper time, thereby ensuring plant survival after germination. In Arabidopsis, considerable variation exists in the degree of seed dormancy among wild-type accessions (ecotypes). In this paper, we identify a plant-specific HD2 histone deacetylase gene, HD2B (At5g22650), as a genetic factor associated with seed dormancy. First, genome-wide association mapping of 113 accessions was used to identify single nucleotide polymorphisms that possibly explain natural variation for seed dormancy. Integration of genome-wide association mapping and transcriptome analysis during cold-induced dormancy cycling identified HD2B as the most plausible candidate gene, and quantitative RT-PCR analysis demonstrated that HD2B expression was up-regulated by cold and after-ripening (dry storage of mature seed), treatments that are known to break seed dormancy. Interestingly, quantitative RT-PCR analysis in 106 accessions revealed that the expression of HD2B in imbibed seeds was significantly suppressed in most of the dormant accessions compared with less-dormant accessions, suggesting that suppression of HD2B expression may be important to maintain seed dormancy in dormant accessions. In addition, transgenic seeds of a dormant Cvi-0 accession that carried a 2.5 kb genomic DNA fragment of HD2B cloned from a less-dormant Col-0 accession ((Col)HD2B/Cvi-0) exhibited reduced seed dormancy accompanied by enhanced expression of HD2B when after-ripened or cold-imbibed. Endogenous levels of gibberellin were found to be increased in the imbibed seeds of after-ripened (Col)HD2B/Cvi-0 compared with wild-type Cvi-0. These results suggest that HD2B plays a role in seed dormancy and/or germinability in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ryoichi Yano
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | |
Collapse
|