1
|
Song W, Forderer A, Yu D, Chai J. Structural biology of plant defence. THE NEW PHYTOLOGIST 2021; 229:692-711. [PMID: 32880948 DOI: 10.1111/nph.16906] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plants employ the innate immune system to discriminate between self and invaders through two types of immune receptors, one on the plasma membrane and the other in the intracellular space. The immune receptors on the plasma membrane are pattern recognition receptors (PRRs) that can perceive pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) leading to pattern-triggered immunity (PTI). Particular pathogens are capable of overcoming PTI by secreting specific effectors into plant cells to perturb different components of PTI signalling through various mechanisms. Most of the immune receptors from the intracellular space are the nucleotide-binding leucine-rich repeat receptors (NLRs), which specifically recognize pathogen-secreted effectors to mediate effector-triggered immunity (ETI). In this review, we will summarize recent progress in structural studies of PRRs, NLRs, and effectors, and discuss how these studies shed light on ligand recognition and activation mechanisms of the two types of immune receptors and the diversified mechanisms used by effectors to manipulate plant immune signalling.
Collapse
Affiliation(s)
- Wen Song
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Alexander Forderer
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Dongli Yu
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Jijie Chai
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| |
Collapse
|
2
|
van der Burgh AM, Joosten MHAJ. Plant Immunity: Thinking Outside and Inside the Box. TRENDS IN PLANT SCIENCE 2019; 24:587-601. [PMID: 31171472 DOI: 10.1016/j.tplants.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 05/23/2023]
Abstract
Models are extensively used to describe the coevolution of plants and microbial attackers. Such models distinguish between different classes of plant immune responses, based on the type of danger signal that is recognized or on the strength of the defense response that the danger signal provokes. However, recent molecular and biochemical advances have shown that these dichotomies are blurred. With molecular proof in hand, we propose here to abandon the current classification of plant immune responses, and to define the different forms of plant immunity solely based on the site of microbe recognition - either extracellular or intracellular. Using this spatial partition, our 'spatial immunity model' facilitates a broadly inclusive, but clearly distinguishing nomenclature to describe immune signaling in plant-microbe interactions.
Collapse
Affiliation(s)
- Aranka M van der Burgh
- Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
3
|
van der Burgh AM, Postma J, Robatzek S, Joosten MHAJ. Kinase activity of SOBIR1 and BAK1 is required for immune signalling. MOLECULAR PLANT PATHOLOGY 2019; 20:410-422. [PMID: 30407725 PMCID: PMC6637861 DOI: 10.1111/mpp.12767] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Leucine-rich repeat-receptor-like proteins (LRR-RLPs) and LRR-receptor-like kinases (LRR-RLKs) trigger immune signalling to promote plant resistance against pathogens. LRR-RLPs lack an intracellular kinase domain, and several of these receptors have been shown to constitutively interact with the LRR-RLK Suppressor of BIR1-1/EVERSHED (SOBIR1/EVR) to form signalling-competent receptor complexes. Ligand perception by LRR-RLPs initiates recruitment of the co-receptor BRI1-Associated Kinase 1/Somatic Embryogenesis Receptor Kinase 3 (BAK1/SERK3) to the LRR-RLP/SOBIR1 complex, thereby activating LRR-RLP-mediated immunity. We employed phosphorylation analysis of in planta-produced proteins, live cell imaging, gene silencing and co-immunoprecipitation to investigate the roles of SOBIR1 and BAK1 in immune signalling. We show that Arabidopsis thaliana (At) SOBIR1, which constitutively activates immune responses when overexpressed in planta, is highly phosphorylated. Moreover, in addition to the kinase activity of SOBIR1 itself, kinase-active BAK1 is essential for AtSOBIR1-induced constitutive immunity and for the phosphorylation of AtSOBIR1. Furthermore, the defence response triggered by the tomato LRR-RLP Cf-4 on perception of Avr4 from the extracellular pathogenic fungus Cladosporium fulvum is dependent on kinase-active BAK1. We argue that, in addition to the trans-autophosphorylation of SOBIR1, it is likely that SOBIR1 and BAK1 transphosphorylate, and thereby activate the receptor complex. The signalling-competent cell surface receptor complex subsequently activates downstream cytoplasmic signalling partners to initiate RLP-mediated immunity.
Collapse
Affiliation(s)
- Aranka M. van der Burgh
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Jelle Postma
- The Sainsbury LaboratoryNorwich Research Park, NorwichNR4 7UHUK
| | - Silke Robatzek
- The Sainsbury LaboratoryNorwich Research Park, NorwichNR4 7UHUK
- Ludwig‐Maximilians‐Universität MünchenGeneticsGroßhaderner Str. 2–482152MartinsriedGermany
| | - Matthieu H. A. J. Joosten
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|
4
|
Sharma I, Kaur N, Pati PK. Brassinosteroids: A Promising Option in Deciphering Remedial Strategies for Abiotic Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2151. [PMID: 29326745 PMCID: PMC5742319 DOI: 10.3389/fpls.2017.02151] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/05/2017] [Indexed: 05/03/2023]
Abstract
Rice is an important staple crop as it feeds about a half of the earth's population. It is known to be sensitive to a range of abiotic stresses which result in significant decline in crop productivity. Recently, the use of phytohormones for abiotic stress amelioration has generated considerable interest. Plants adapt to various environmental stresses by undergoing series of changes at physiological and molecular levels which are cooperatively modulated by various phytohormones. Brassinosteroids (BRs) are a class of naturally occurring steroidal phytohormones, best known for their role in plant growth and development. For the past two decades, greater emphasis on studies related to BRs biosynthesis, distribution and signaling has resulted in better understanding of BRs function. Recent advances in the use of contemporary genetic, biochemical and proteomic tools, with a vast array of accessible biological resources has led to an extensive exploration of the key regulatory components in BR signaling networks, thus making it one of the most well-studied hormonal pathways in plants. The present review highlights the advancements of knowledge in BR research and links it with its growing potential in abiotic stress management for important crop like rice.
Collapse
|
5
|
Fan M, Wang M, Bai MY. Diverse roles of SERK family genes in plant growth, development and defense response. SCIENCE CHINA-LIFE SCIENCES 2016; 59:889-96. [PMID: 27525989 DOI: 10.1007/s11427-016-0048-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
Plant receptor-like protein kinases (RLKs) are transmembrane proteins with an extracellular domain and an intracellular kinase domain, which enable plant perceiving diverse extracellular stimuli to trigger the intracellular signal transduction. The somatic embryogenesis receptor kinases (SERKs) code the leucine-rich-repeat receptor-like kinase (LRR-RLK), and have been demonstrated to associate with multiple ligand-binding receptors to regulate plant growth, root development, male fertility, stomatal development and movement, and immune responses. Here, we focus on the progress made in recent years in understanding the versatile functions of Arabidopsis SERK proteins, and review SERK proteins as co-receptor to perceive different endogenous and environmental cues in different signaling pathway, and discuss how the kinase activity of SERKs is regulated by various modification.
Collapse
Affiliation(s)
- Min Fan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Minmin Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
6
|
Czyzewicz N, Nikonorova N, Meyer MR, Sandal P, Shah S, Vu LD, Gevaert K, Rao AG, De Smet I. The growing story of (ARABIDOPSIS) CRINKLY 4. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4835-4847. [PMID: 27208540 DOI: 10.1093/jxb/erw192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Receptor kinases play important roles in plant growth and development, but only few of them have been functionally characterized in depth. Over the past decade CRINKLY 4 (CR4)-related research has peaked as a result of a newly discovered role of ARABIDOPSIS CR4 (ACR4) in the root. Here, we comprehensively review the available (A)CR4 literature and describe its role in embryo, seed, shoot, and root development, but we also flag an unexpected role in plant defence. In addition, we discuss ACR4 domains and protein structure, describe known ACR4-interacting proteins and substrates, and elaborate on the transcriptional regulation of ACR4 Finally, we address the missing knowledge in our understanding of ACR4 signalling.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Natalia Nikonorova
- Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthew R Meyer
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Priyanka Sandal
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Shweta Shah
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Medical Biotechnology Center, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Medical Biotechnology Center, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - A Gururaj Rao
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
7
|
Genomic and Post-Translational Modification Analysis of Leucine-Rich-Repeat Receptor-Like Kinases in Brassica rapa. PLoS One 2015; 10:e0142255. [PMID: 26588465 PMCID: PMC4654520 DOI: 10.1371/journal.pone.0142255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022] Open
Abstract
Among several receptor-like kinases (RLKs), leucine-rich-repeat receptor-like kinases (LRR-RLKs) are a major group of genes that play crucial roles in growth, development and stress responses in plant systems. Given that they have several functional roles, it is important to investigate their roles in Brassica rapa. In the present study, 303 LRR-RLKs were identified in the genome of B. rapa and comparative phylogenetic analysis of 1213 combined LRR-RLKs of B. rapa, Arabidopsis thaliana, Oryza sativa and Populus trichocarpa helped us to categorize the gene family into 15 subfamilies based on their sequence and structural similarities. The chromosome localizations of 293 genes allowed the prediction of duplicates, and motif conservation and intron/exon patterns showed differences among the B. rapa LRR-RLK (BrLRR-RLK) genes. Additionally, computational function annotation and expression analysis was used to predict their possible functional roles in the plant system. Biochemical results for 11 selected genes showed variations in phosphorylation activity. Interestingly, BrBAK1 showed strong auto-phosphorylation and trans-phosphorylation on its tyrosine and threonine residues compared with AtBAK1 in previous studies. The AtBAK1 receptor kinase is involved in plant growth and development, plant innate immunity, and programmed cell death, and our results suggest that BrBAK1 might also be involved in the same functions. Another interesting result was that BrBAK1, BrBRI1, BrPEPR1 and BrPEPR2 showed activity with both anti-phosphotyrosine and anti-phosphothreonine antibodies, indicating that they might have dual-specificity kinase activity. This study provides comprehensive results for the BrLRR-RLKs, revealing expansion of the gene family through gene duplications, structural similarities and variations among the genes, and potential functional roles according to gene ontology, transcriptome profiling and biochemical analysis.
Collapse
|
8
|
Macho AP, Lozano-Durán R, Zipfel C. Importance of tyrosine phosphorylation in receptor kinase complexes. TRENDS IN PLANT SCIENCE 2015; 20:269-272. [PMID: 25795237 DOI: 10.1016/j.tplants.2015.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 05/09/2023]
Abstract
Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants.
Collapse
Affiliation(s)
- Alberto P Macho
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
9
|
Han Z, Sun Y, Chai J. Structural insight into the activation of plant receptor kinases. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:55-63. [PMID: 24840292 DOI: 10.1016/j.pbi.2014.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/19/2014] [Accepted: 04/24/2014] [Indexed: 05/08/2023]
Abstract
Plant genomes encode a large family of membrane-localized receptor kinases (RKs) that play important roles in diverse biological processes by responding to a wide spectrum of external signals. RK proteins have a conserved tripartite structural organization with a divergent ectodomain (ECD), a transmembrane segment and a conserved intracellular kinase domain. Signal perception by RK-ECDs induces activation of intracellular kinase domains and consequently initiates downstream signaling. An atomic understanding of the mechanisms underlying ligand recognition by RKs and their subsequent activation would aid in engineering crop plants for agricultural practice. Recent structural studies not only reveal the basis for ligand recognition of a few RKs, but also suggest dimerization as a common way of their activation. We propose that dimerization, giving rise to apposition of two intracellular kinase domains, is a general activation mechanism of RKs.
Collapse
Affiliation(s)
- Zhifu Han
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yadong Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jijie Chai
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
10
|
Oh MH, Wang X, Kim SY, Wu X, Clouse SD, Huber SC. The Carboxy-terminus of BAK1 regulates kinase activity and is required for normal growth of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:16. [PMID: 24550926 PMCID: PMC3912384 DOI: 10.3389/fpls.2014.00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/14/2014] [Indexed: 05/09/2023]
Abstract
Binding of brassinolide to the brassinosteroid-insenstive 1(BRI1) receptor kinase promotes interaction with its co-receptor, BRI1-associated receptor kinase 1 (BAK1). Juxtaposition of the kinase domains that occurs then allows reciprocal transphosphorylation and activation of both kinases, but details of that process are not entirely clear. In the present study we show that the carboxy (C)-terminal polypeptide of BAK1 may play a role. First, we demonstrate that the C-terminal domain is a strong inhibitor of the transphosphorylation activity of the recombinant BAK1 cytoplasmic domain protein. However, recombinant BAK1 lacking the C-terminal domain is unable to transactivate the peptide kinase activity of BRI1 in vitro. Thus, the C-terminal domain may play both a positive and negative role. Interestingly, a synthetic peptide corresponding to the full C-terminal domain (residues 576-615 of BAK1) interacted with recombinant BRI1 in vitro, and that interaction was enhanced by phosphorylation at the Tyr-610 site. Expression of a BAK1 C-terminal domain truncation (designated BAK1-ΔCT-Flag) in transgenic Arabidopsis plants lacking endogenous bak1 and its functional paralog, bkk1, produced plants that were wild type in appearance but much smaller than plants expressing full-length BAK1-Flag. The reduction in growth may be attributed to a partial inhibition of BR signaling in vivo as reflected in root growth assays but other factors are likely involved as well. Our working model is that in vivo, the inhibitory action of the C-terminal domain of BAK1 is relieved by binding to BRI1. However, that interaction is not essential for BR signaling, but other aspects of cellular signaling are impacted when the C-terminal domain is truncated and result in inhibition of growth. These results increase the molecular understanding of the C-terminal domain of BAK1 as a regulator of kinase activity that may serve as a model for other receptor kinases.
Collapse
Affiliation(s)
- Man-Ho Oh
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
- Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National UniversityDaejeon, South Korea
| | - Xuejun Wang
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
| | - Sang Yeol Kim
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
| | - Xia Wu
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
- Department of Genome Sciences, University of WashingtonSeattle, WA, USA
| | - Steven D. Clouse
- Department of Horticultural Science, NC State UniversityRaleigh, NC, USA
| | - Steven C. Huber
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
- United States Department of Agriculture, Agricultural Research ServiceUrbana, IL, USA
- *Correspondence: Steven C. Huber, Department of Plant Biology, University of Illinois, 1201 West Gregory Drive, 197 ERML, Urbana, IL 61801, USA e-mail:
| |
Collapse
|
11
|
Smith JM, Salamango DJ, Leslie ME, Collins CA, Heese A. Sensitivity to Flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2. PLANT PHYSIOLOGY 2014; 164:440-54. [PMID: 24220680 PMCID: PMC3875820 DOI: 10.1104/pp.113.229179] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/09/2013] [Indexed: 05/18/2023]
Abstract
FLAGELLIN-SENSING2 (FLS2) is the plant cell surface receptor that perceives bacterial flagellin or flg22 peptide, initiates flg22-signaling responses, and contributes to bacterial growth restriction. Flg22 elicitation also leads to ligand-induced endocytosis and degradation of FLS2 within 1 h. Why plant cells remove this receptor precisely at the time during which its function is required remains mainly unknown. Here, we assessed in planta flg22-signaling competency in the context of ligand-induced degradation of endogenous FLS2 and chemical interference known to impede flg22-dependent internalization of FLS2 into endocytic vesicles. Within 1 h after an initial flg22 treatment, Arabidopsis (Arabidopsis thaliana) leaf tissue was unable to reelicit flg22 signaling in a ligand-, time-, and dose-dependent manner. These results indicate that flg22-induced degradation of endogenous FLS2 may serve to desensitize cells to the same stimulus (homologous desensitization), likely to prevent continuous signal output upon repetitive flg22 stimulation. In addition to impeding ligand-induced FLS2 degradation, pretreatment with the vesicular trafficking inhibitors Wortmannin or Tyrphostin A23 impaired flg22-elicited reactive oxygen species production that was partially independent of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1. Interestingly, these inhibitors did not affect flg22-induced mitogen-activated protein kinase phosphorylation, indicating the ability to utilize vesicular trafficking inhibitors to target different flg22-signaling responses. For Tyrphostin A23, reduced flg22-induced reactive oxygen species could be separated from the defect in FLS2 degradation. At later times (>2 h) after the initial flg22 elicitation, recovery of FLS2 protein levels positively correlated with resensitization to flg22, indicating that flg22-induced new synthesis of FLS2 may prepare cells for a new round of monitoring the environment for flg22.
Collapse
|
12
|
Oh MH, Wu X, Huber SC. Impact of Ca(2+) on structure of soybean CDPKβ and accessibility of the Tyr-24 autophosphorylation site. PLANT SIGNALING & BEHAVIOR 2013; 8:e27671. [PMID: 24394563 PMCID: PMC4091344 DOI: 10.4161/psb.27671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 05/09/2023]
Abstract
Several plant CDPKs were recently shown to be dual specificity kinases rather than Ser/Thr kinases as traditionally classified by sequence analysis. In the present study we confirm the autophosphorylation of recombinant soybean His 6-GmCDPKβ at the Tyr-24 site using sequence- and modification- specific antibodies. Homology modeling of soybean CDPKβ based on recent structures determined for several apicomplexan CDPKs suggested that phosphotyrosine-24 may be inaccessible to phosphatases. However, we report that dephosphorylation of CDPKβ by the protein tyrosine phosphatase 1B, PTP1B, was not restricted in the presence of calcium. Thus, despite conformational changes likely associated with calcium binding to the CDPKs, phosphotyrosine sites remain fully accessible to dephosphorylation suggesting the possibility of conformational breathing and flexing.
Collapse
Affiliation(s)
- Man-Ho Oh
- Department of Plant Biology; University of Illinois; Urbana, IL USA
- Department of Biological Science; College of Biological Sciences and Biotechnology; Chungnam National University; Daejeon, South Korea
| | - Xia Wu
- Department of Genome Sciences; University of Washington; Seattle, WA USA
| | - Steven C Huber
- Department of Plant Biology; University of Illinois; Urbana, IL USA
- US Department of Agriculture; Agricultural Research Service; Urbana, IL USA
| |
Collapse
|
13
|
Germain H, Gray-Mitsumune M, Houde J, Benhamman R, Sawasaki T, Endo Y, Matton DP. The Solanum chacoense ovary receptor kinase 11 (ScORK11) undergoes tissue-dependent transcriptional, translational and post-translational regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:261-268. [PMID: 23800661 DOI: 10.1016/j.plaphy.2013.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
Using a subtraction screen to isolate weakly expressed transcripts from ovule and ovary libraries, we uncovered 30 receptor-like kinases that were predominantly expressed in ovary and fruit tissues following fertilization [1]. Here we describe the analysis of Solanum chacoense ovule receptor kinase 11 (ScORK11), a member of the large LRR III receptor kinase subfamily that localizes to the plasma membrane. In situ analyses demonstrated that ScORK11 gene expression was mainly restricted to the ovule integument, the embryo sac and the pericarp of the fruit. Tight regulation of ScORK11 expression at the mRNA level was also accompanied by both translational and post-translational regulation of protein levels.
Collapse
Affiliation(s)
- Hugo Germain
- Département de chimie et physique, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada.
| | | | | | | | | | | | | |
Collapse
|
14
|
Oh MH, Wu X, Kim HS, Harper JF, Zielinski RE, Clouse SD, Huber SC. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity. FEBS Lett 2012; 586:4070-5. [DOI: 10.1016/j.febslet.2012.09.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 11/30/2022]
|
15
|
Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. Proc Natl Acad Sci U S A 2011; 109:327-32. [PMID: 22184234 DOI: 10.1073/pnas.1108321109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The activity of the dual-specificity receptor kinase, brassinosteroid insensitive 1 (BRI1), reflects the balance between phosphorylation-dependent activation and several potential mechanisms for deactivation of the receptor. In the present report, we elucidate a unique mechanism for deactivation that involves autophosphorylation of serine-891 in the ATP-binding domain. Serine-891 was identified previously as a potential site of autophosphorylation by mass spectrometry, and sequence-specific antibodies and mutagenesis studies now unambiguously establish phosphorylation of this residue. In vivo, phosphorylation of serine-891 increased slowly with time following application of brassinolide (BL) to Arabidopsis seedlings, whereas phosphorylation of threonine residues increased rapidly and then remained constant. Transgenic plants expressing the BRI1(S891A)-Flag-directed mutant have increased hypocotyl and petiole lengths, relative to wild-type BRI1-Flag (both in the bri1-5 background), and accumulate higher levels of the unphosphorylated form of the BES1 transcription factor in response to exogenous BL. In contrast, plants expressing the phosphomimetic S891D-directed mutant are severely dwarfed and do not accumulate unphosphorylated BES1 in response to BL. Collectively, these results suggest that autophosphorylation of serine-891 is one of the deactivation mechanisms that inhibit BRI1 activity and BR signaling in vivo. Many arginine-aspartate (RD)-type leucine-rich repeat receptor-like kinases have a phosphorylatable residue within the ATP-binding domain, suggesting that this mechanism may play a broad role in receptor kinase deactivation.
Collapse
|
16
|
Ye H, Li L, Yin Y. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:455-68. [PMID: 21554539 DOI: 10.1111/j.1744-7909.2011.01046.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) play important roles in plant growth, development and responses to environmental cues. BRs signal through plasma membrane receptor BRI1 and co-receptor BAK1, and several positive (BSK1, BSU1, PP2A) and negative (BKI1, BIN2 and 14-3-3) regulators to control the activities of BES1 and BZR1 family transcription factors, which regulate the expression of hundreds to thousands of genes for various BR responses. Recent studies identified novel signaling components in the BR pathways and started to establish the detailed mechanisms on the regulation of BR signaling. In addition, the molecular mechanism and transcriptional network through which BES1 and BZR1 control gene expression and various BR responses are beginning to be revealed. BES1 recruits histone demethylases ELF6 and REF6 as well as a transcription elongation factor IWS1 to regulate target gene expression. Identification of BES1 and BZR1 target genes established a transcriptional network for BR response and crosstalk with other signaling pathways. Recent studies also revealed regulatory mechanisms of BRs in many developmental processes and regulation of BR biosynthesis. Here we provide an overview and discuss some of the most recent progress in the regulation of BR signaling and biosynthesis pathways.
Collapse
Affiliation(s)
- Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, USA
| | | | | |
Collapse
|