1
|
Kumar H, Bajaj A, Kumar P, Aggarwal R, Chalia V, Pradhan RK, Yadav R, Sinha S, Agarwal V, Harries W, Dua M, Stroud RM, Johri AK. Biochemical characterization of a high affinity phosphate transporter (PiPT) from root endophyte fungus Piriformospora indica. Protein Expr Purif 2024; 223:106559. [PMID: 39089400 DOI: 10.1016/j.pep.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
We have functionally characterized the high-affinity phosphate transporter (PiPT) from the root endophyte fungus Piriformospora indica. PiPT belongs to the major facilitator superfamily (MFS). PiPT protein was purified by affinity chromatography (Ni-NTA) and Size Exclusion Chromatography (SEC). The functionality of solubilized PiPT was determined in detergent-solubilized state by fluorescence quenching and in proteoliposomes. In the fluorescence quenching assay, PiPT exhibited a saturation concentration of approximately 2 μM, at a pH of 4.5. Proteoliposomes of size 121.6 nm radius, showed transportation of radioactive phosphate. Vmax was measured to be 232.2 ± 11 pmol/min/mg protein. We have found Km to be 45.8 ± 6.2 μM suggesting high affinity towards phosphate.
Collapse
Affiliation(s)
- Hemant Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biochemistry and Biophysics, University of California San Francisco, Mission bay, San Francisco, CA, 94158-2517, USA; Bapubhai Desaibhai Patel Institute of Paramedical Science, Charotar University of Science and Technology, Anand, Gujarat, 388421, India
| | - Aayushi Bajaj
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paras Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vinayak Chalia
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Ritu Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shalini Sinha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vishad Agarwal
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - William Harries
- Department of Biochemistry and Biophysics, University of California San Francisco, Mission bay, San Francisco, CA, 94158-2517, USA
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, Mission bay, San Francisco, CA, 94158-2517, USA
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
Abudeshesh RM, Aboul-Nasr AM, Khairy HM, Atia MAM, Sabra MA. Differential impacts of interactions between Serendipita indica, Chlorella vulgaris, Ulva lactuca and Padina pavonica on Basil (Ocimum basilicumL.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108218. [PMID: 38029616 DOI: 10.1016/j.plaphy.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Plant biostimulants (PBs) are used globally to increase crop yield and productivity. PBs such as (Serendipita indica) or algal extracts stimulate and accelerate plant physiological processes. The physiological, ecological, and biochemical effects of (Serendipita indica) or algal extracts individually and in combination on basil plant (Ocimum basilicum L.) were investigated. Macroalgae samples were collected from Abu Qir, Alexandria, Egypt. The growth parameters, chlorophyll index, and biochemical composition of basil were analyzed at 90th day. The (Chlorella vulgaris) + (Serendipita indica) (MI + F) treatment increased chlorophyll index by 61.7% (SPAD) compared to control. (Chlorella vulgaris) had the highest growth hormones, including GA3 at 158.2 ppb, GA4 at 149.1 ppb, GA7 at 142.6 ppb, IAA at 136.6 ppb, and TC at 130.9 ppb, while (Ulva lactuca) had the lowest. The MI + F treatment yielded the highest essential oil and antioxidant values. Treatment with (Chlorella vulgaris) increased S. indica colonization by 66%. In contrast, Ulva lactuca and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. (Ulva lactuca) and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. Combined treatments had a greater influence on basil performance than the individual treatments. The evidence of synergistic/additive benefits to plants performance due to the interactive effects of (Chlorella vulgaris) and (Serendipita indica) had been studied. Complementary modes of action between (Chlorella vulgaris) and (Serendipita indica), through their components newly emerging properties on basil, may explain observed synergistic effects. This study explores the potential of microbial-algal interactions, particularly (Chlorella vulgaris) and (Serendipita indica), as innovative plant biostimulants. These interactions demonstrate positive effects on basil growth, offering promise for more effective microbial-based formulations to enhance crop productivity and sustainability in agriculture. These novelties will help create a second generation of PBs with integrated and complementary actions.
Collapse
Affiliation(s)
| | - Amal M Aboul-Nasr
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture Saba Basha, Alexandria University, Egypt
| | - Hanan M Khairy
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Mohamed A M Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Mayada A Sabra
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture Saba Basha, Alexandria University, Egypt
| |
Collapse
|
3
|
Kushwaha AS, Ahmad I, Lata S, Padalia K, Yadav AK, Kumar M. Mycorrhizal fungus Serendipita indica-associated acid phosphatase rescues the phosphate nutrition with reduced arsenic uptake in the host plant under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115783. [PMID: 38061081 DOI: 10.1016/j.ecoenv.2023.115783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Symbiotic interactions play a vital role in maintaining the phosphate (Pi) nutrient status of host plants and providing resilience during biotic and abiotic stresses. Serendipita indica, a mycorrhiza-like fungus, supports plant growth by transporting Pi to the plant. Despite the competitive behaviour of arsenate (AsV) with Pi, the association with S. indica promotes plant growth under arsenic (As) stress by reducing As bioavailability through adsorption, accumulation, and precipitation within the fungus. However, the capacity of S. indica to enhance Pi accumulation and utilization under As stress remains unexplored. Axenic studies revealed that As supply significantly reduces intracellular ACPase activity in S. indica, while extracellular ACPase remains unaffected. Further investigations using Native PAGE and gene expression studies confirmed that intracellular ACPase (isoform2) is sensitive to As, whereas extracellular ACPase (isoform1) is As-insensitive. Biochemical analysis showed that ACPase (isoform1) has a Km of 0.5977 µM and Vmax of 0.1945 Unit/min. In hydroponically cultured tomato seedlings, simultaneous inoculation of S. indica with As on the 14thday after seed germination led to hyper-colonization, increased root/shoot length, biomass, and induction of ACPase expression and secretion under As stress. Arsenic-treated S. indica colonized groups (13.33 µM As+Si and 26.67 µM As+Si) exhibited 8.28-19.14 and 1.71-3.45-fold activation of ACPase in both rhizospheric media and root samples, respectively, thereby enhancing Pi availability in the surrounding medium under As stress. Moreover, S. indica (13.33 µM As+Si and 26.67 µM As+Si) significantly improved Pi accumulation in roots by 7.26 and 9.46 times and in shoots by 4.36 and 8.85 times compared to the control. Additionally, S. indica induced the expression of SiPT under As stress, further improving Pi mobilization. Notably, fungal colonization also restricted As mobilization from the hydroponic medium to the shoot, with a higher amount of As (191.01 ppm As in the 26.67 µM As+Si group) accumulating in the plant's roots. The study demonstrates the performance of S. indica under As stress in enhancing Pi mobilization while limiting As uptake in the host plant. These findings provide the first evidence of the As-Pi interaction in the AM-like fungus S. indica, indicating reduced As uptake and regulation of PHO genes (ACPase and SiPT genes) to increase Pi acquisition. These data also lay the foundation for the rational use of S. indica in agricultural practices.
Collapse
Affiliation(s)
- Aparna Singh Kushwaha
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Imran Ahmad
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sneh Lata
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kalpana Padalia
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Akhilesh Kumar Yadav
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Manoj Kumar
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
4
|
Narayan OP, Kumar P, Yadav B, Dua M, Johri AK. Sulfur nutrition and its role in plant growth and development. PLANT SIGNALING & BEHAVIOR 2023; 18:2030082. [PMID: 35129079 PMCID: PMC10730164 DOI: 10.1080/15592324.2022.2030082] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Sulfur is one of the essential nutrients that is required for the adequate growth and development of plants. Sulfur is a structural component of protein disulfide bonds, amino acids, vitamins, and cofactors. Most of the sulfur in soil is present in organic matter and hence not accessible to the plants. Anionic form of sulfur (SO42-) is the primary source of sulfur for plants that are generally present in minimal amounts in the soil. It is water-soluble, so readily leaches out of the soil. Sulfur and sulfur-containing compounds act as signaling molecules in stress management as well as normal metabolic processes. They also take part in crosstalk of complex signaling network as a mediator molecule. Plants uptake sulfate directly from the soil by using their dedicated sulfate transporters. In addition, plants also use the sulfur transporter of a symbiotically associated organism like bacteria and fungi to uptake sulfur from the soil especially under sulfur depleted conditions. So, sulfur is a very important component of plant metabolism and its analysis with different dimensions is highly required to improve the overall well-being of plants, and dependent animals as well as human beings. The deficiency of sulfur leads to stunted growth of plants and ultimately loss of yield. In this review, we have focused on sulfur nutrition, uptake, transport, and inter-organismic transfer to host plants. Given the strong potential for agricultural use of sulfur sources and their applications, we cover what is known about sulfur impact on the plant health. We identify opportunities to expand our understanding of how the application of soil microbes like AMF or other root endophytic fungi affects plant sulfur uptake and in turn plant growth and development.
Collapse
Affiliation(s)
| | - Paras Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Li L, Feng Y, Qi F, Hao R. Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. J Fungi (Basel) 2023; 9:965. [PMID: 37888222 PMCID: PMC10607969 DOI: 10.3390/jof9100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Piriformospora indica (Serendipita indica), a mycorrhizal fungus, has garnered significant attention in recent decades owing to its distinctive capacity to stimulate plant growth and augment plant resilience against environmental stressors. As an axenically cultivable fungus, P. indica exhibits a remarkable ability to colonize varieties of plants and promote symbiotic processes by directly influencing nutrient acquisition and hormone metabolism. The interaction of plant and P. indica raises hormone production including ethylene (ET), jasmonic acid (JA), gibberellin (GA), salicylic acid (SA), and abscisic acid (ABA), which also promotes root proliferation, facilitating improved nutrient acquisition, and subsequently leading to enhanced plant growth and productivity. Additionally, the plant defense system was employed by P. indica colonization and the defense genes associated with oxidation resistance were activated subsequently. This fungus-mediated defense response elicits an elevation in the enzyme activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and, finally, bolsters plant tolerance. Furthermore, P. indica colonization can initiate local and systemic immune responses against fungal and viral plant diseases through signal transduction mechanisms and RNA interference by regulating defense gene expression and sRNA secretion. Consequently, P. indica can serve diverse roles such as plant promoter, biofertilizer, bioprotectant, bioregulator, and bioactivator. A comprehensive review of recent literature will facilitate the elucidation of the mechanistic foundations underlying P. indica-crop interactions. Such discussions will significantly contribute to an in-depth comprehension of the interaction mechanisms, potential applications, and the consequential effects of P. indica on crop protection, enhancement, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.F.); (F.Q.); (R.H.)
| | | | | | | |
Collapse
|
6
|
Osborne R, Rehneke L, Lehmann S, Roberts J, Altmann M, Altmann S, Zhang Y, Köpff E, Dominguez-Ferreras A, Okechukwu E, Sergaki C, Rich-Griffin C, Ntoukakis V, Eichmann R, Shan W, Falter-Braun P, Schäfer P. Symbiont-host interactome mapping reveals effector-targeted modulation of hormone networks and activation of growth promotion. Nat Commun 2023; 14:4065. [PMID: 37429856 DOI: 10.1038/s41467-023-39885-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Plants have benefited from interactions with symbionts for coping with challenging environments since the colonisation of land. The mechanisms of symbiont-mediated beneficial effects and similarities and differences to pathogen strategies are mostly unknown. Here, we use 106 (effector-) proteins, secreted by the symbiont Serendipita indica (Si) to modulate host physiology, to map interactions with Arabidopsis thaliana host proteins. Using integrative network analysis, we show significant convergence on target-proteins shared with pathogens and exclusive targeting of Arabidopsis proteins in the phytohormone signalling network. Functional in planta screening and phenotyping of Si effectors and interacting proteins reveals previously unknown hormone functions of Arabidopsis proteins and direct beneficial activities mediated by effectors in Arabidopsis. Thus, symbionts and pathogens target a shared molecular microbe-host interface. At the same time Si effectors specifically target the plant hormone network and constitute a powerful resource for elucidating the signalling network function and boosting plant productivity.
Collapse
Affiliation(s)
- Rory Osborne
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Silke Lehmann
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Laboratory of Biotechnology and Marine Chemistry LBCM, EA3884, IUEM, Southern Brittany University, 56000, Vannes, France
| | - Jemma Roberts
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Melina Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Stefan Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Eva Köpff
- Institute of Molecular Botany, Ulm University, 89069, Ulm, Germany
| | | | - Emeka Okechukwu
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Pascal Falter-Braun
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany.
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University München, 82152, Planegg-Martinsried, Germany.
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Watts D, Palombo EA, Jaimes Castillo A, Zaferanloo B. Endophytes in Agriculture: Potential to Improve Yields and Tolerances of Agricultural Crops. Microorganisms 2023; 11:1276. [PMID: 37317250 DOI: 10.3390/microorganisms11051276] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Endophytic fungi and bacteria live asymptomatically within plant tissues. In recent decades, research on endophytes has revealed that their significant role in promoting plants as endophytes has been shown to enhance nutrient uptake, stress tolerance, and disease resistance in the host plants, resulting in improved crop yields. Evidence shows that endophytes can provide improved tolerances to salinity, moisture, and drought conditions, highlighting the capacity to farm them in marginal land with the use of endophyte-based strategies. Furthermore, endophytes offer a sustainable alternative to traditional agricultural practices, reducing the need for synthetic fertilizers and pesticides, and in turn reducing the risks associated with chemical treatments. In this review, we summarise the current knowledge on endophytes in agriculture, highlighting their potential as a sustainable solution for improving crop productivity and general plant health. This review outlines key nutrient, environmental, and biotic stressors, providing examples of endophytes mitigating the effects of stress. We also discuss the challenges associated with the use of endophytes in agriculture and the need for further research to fully realise their potential.
Collapse
Affiliation(s)
- Declan Watts
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alex Jaimes Castillo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
8
|
Vera-Morales M, López Medina SE, Naranjo-Morán J, Quevedo A, Ratti MF. Nematophagous Fungi: A Review of Their Phosphorus Solubilization Potential. Microorganisms 2023; 11:137. [PMID: 36677427 PMCID: PMC9867276 DOI: 10.3390/microorganisms11010137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023] Open
Abstract
Nematophagous fungi (NF) are a group of diverse fungal genera that benefit plants. The aim of this review is to increase comprehension about the importance of nematophagous fungi and their role in phosphorus solubilization to favor its uptake in agricultural ecosystems. They use different mechanisms, such as acidification in the medium, organic acids production, and the secretion of enzymes and metabolites that promote the bioavailability of phosphorus for plants. This study summarizes the processes of solubilization, in addition to the mechanisms of action and use of NF on crops, evidencing the need to include innovative alternatives for the implementation of microbial resources in management plans. In addition, it provides information to help understand the effect of NF to make phosphorus available for plants, showing how these biological means promote phosphorus uptake, thus improving productivity and yield.
Collapse
Affiliation(s)
- Marcos Vera-Morales
- Escuela de Postgrado, Universidad Nacional de Trujillo, Jr. San Martin 392, Trujillo 13007, Perú
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090112, Ecuador
| | - Segundo E. López Medina
- Escuela de Postgrado, Universidad Nacional de Trujillo, Jr. San Martin 392, Trujillo 13007, Perú
| | - Jaime Naranjo-Morán
- Laboratorio de Biotecnología Vegetal, Ingeniería en Biotecnología, Facultad Ciencias de la Vida, Campus María Auxiliadora, Universidad Politécnica Salesiana (UPS), Km 19.5 Vía a la Costa, Guayaquil P.O. Box 09-01-2074, Ecuador
| | - Adela Quevedo
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090112, Ecuador
| | - María F. Ratti
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090112, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090608, Ecuador
| |
Collapse
|
9
|
Tiwari P, Kang S, Bae H. Plant-endophyte associations: Rich yet under-explored sources of novel bioactive molecules and applications. Microbiol Res 2023; 266:127241. [DOI: 10.1016/j.micres.2022.127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
10
|
Byregowda R, Prasad SR, Oelmüller R, Nataraja KN, Prasanna Kumar MK. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. Int J Mol Sci 2022; 23:ijms23169194. [PMID: 36012460 PMCID: PMC9408852 DOI: 10.3390/ijms23169194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the wake of changing climatic conditions, plants are frequently exposed to a wide range of biotic and abiotic stresses at various stages of their development, all of which negatively affect their growth, development, and productivity. Drought is one of the most devastating abiotic stresses for most cultivated crops, particularly in arid and semiarid environments. Conventional breeding and biotechnological approaches are used to generate drought-tolerant crop plants. However, these techniques are costly and time-consuming. Plant-colonizing microbes, notably, endophytic fungi, have received increasing attention in recent years since they can boost plant growth and yield and can strengthen plant responses to abiotic stress. In this review, we describe these microorganisms and their relationship with host plants, summarize the current knowledge on how they “reprogram” the plants to promote their growth, productivity, and drought tolerance, and explain why they are promising agents in modern agriculture.
Collapse
Affiliation(s)
- Roopashree Byregowda
- Department of Seed Science and Technology, University of Agricultural Sciences, Bangalore 560065, India
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| | | | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
- Correspondence:
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore 560065, India
| | - M. K. Prasanna Kumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore 560065, India
| |
Collapse
|
11
|
Endofungal Rhizobium species enhance arsenic tolerance in colonized host plant under arsenic stress. Arch Microbiol 2022; 204:375. [PMID: 35674927 DOI: 10.1007/s00203-022-02972-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Arsenic (As) is a toxic metalloid that is present in natural surroundings in many forms with severe consequences to sustainable agriculture and human health. Plant growth-promoting Rhizobia have been found involved in the induction of plant tolerance under various biotic and abiotic stresses. An endofungal Rhizobium species associated with arbuscular mycorrhizal fungi (AMF) Serendipita indica deploy beneficial role in the promotion of plant growth and tolerance against various biotic and abiotic stresses. In the current study, we have determined the role of endofungal Rhizobium species in protection of host plant growth under As stress. We observed that endofungal Rhizobium species strain Si001 tolerate AsV up to 25 mM and its inoculation enhances tomato seed germination and seedling growth. A hyper-colonization of Rhizobium species Si001 in tomato roots was observed under As stress and results in modulation of GSH and proline content with reduced ROS. Rhizobium species Si001 colonization in host plant recovered pigment contents (chlorophyll-a and chlorophyll-b up to 189.5% and 192%, respectively), photosynthesis (157%), and water use efficiency (166%) compared to As-treated plants. Interestingly, bacterial colonization results in 40% increased As accumulation in the root, while a reduction in As translocation from root to shoot up to 89% was observed as compared to As treated plants. In conclusion, endofungal Rhizobium species Si001 association with the host plant may improve plant health and tolerance against As stress with reduced As accumulation in the crop produce.
Collapse
|
12
|
Almario J, Fabiańska I, Saridis G, Bucher M. Unearthing the plant-microbe quid pro quo in root associations with beneficial fungi. THE NEW PHYTOLOGIST 2022; 234:1967-1976. [PMID: 35239199 DOI: 10.1111/nph.18061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Mutualistic symbiotic associations between multicellular eukaryotes and their microbiota are driven by the exchange of nutrients in a quid pro quo manner. In the widespread arbuscular mycorrhizal (AM) symbiosis involving plant roots and Glomeromycotina fungi, the mycobiont is supplied with carbon through photosynthesis, which in return supplies the host plant with essential minerals such as phosphorus (P). Most terrestrial plants are largely dependent on AM fungi for nutrients, which raises the question of how plants that are unable to form a functional AM sustain their P nutrition. AM nonhost plants can form alternative, evolutionarily younger, mycorrhizal associations such as the ectomycorrhiza, ericoid and orchid mycorrhiza. However, it is unclear how plants such as the Brassicaceae species Arabidopsis thaliana, which do not form known mycorrhizal symbioses, have adapted to the loss of these essential mycorrhizal traits. Isotope tracing experiments with root-colonizing fungi have revealed the existence of new 'mycorrhizal-like' fungi capable of transferring nutrients such as nitrogen (N) and P to plants, including Brassicaceae. Here, we provide an overview of the biology of trophic relationships between roots and fungi and how these associations might support plant adaptation to climate change.
Collapse
Affiliation(s)
- Juliana Almario
- Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Izabela Fabiańska
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Georgios Saridis
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Marcel Bucher
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50931, Germany
| |
Collapse
|
13
|
Kushwaha AS, Thakur RS, Patel DK, Kumar M. Impact of arsenic on phosphate solubilization, acquisition and poly-phosphate accumulation in endophytic fungus Serendipita indica. Microbiol Res 2022; 259:127014. [PMID: 35349854 DOI: 10.1016/j.micres.2022.127014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
Abstract
Symbiotic interactions play a crucial role in the phosphate (Pi) nutrient status of the host plant and offer resilience during biotic and abiotic stresses. Despite a competitive behavior of arsenic (AsV) with Pi, Serendipita indica association promotes plant growth by reducing arsenic bioavailability in the rhizosphere. Reduced arsenic availability is due to the adsorption, accumulation, and precipitation of arsenic in the fungus. The present investigation focused on the fitness and performance of Pi acquisition and utilization in S. indica for growth and metabolism under arsenic stress. The fungus accumulates a massive amount of arsenic up to 2459.3 ppm at a tolerable limit of arsenic supply (1 mM) with a bioaccumulation factor (BAF) 32. Arsenic induces Pi transporter expression to stimulate the arsenic acquisition in the fungus. At the same time, Pi accumulation was also enhanced by 112.2 times higher than the control with an increase in poly-P (polyphosphate) content (6.69 times) of the cell. This result suggests arsenic does not hamper poly-P storage in the cell but shows a marked delocalization of stored poly-P from the vacuoles. Furthermore, an enhanced exopolyphosphatase activity and poly-P storage during arsenic stress suggest induction of cellular machinery for the utilization of Pi is required to deal with arsenic toxicity and competition. However, at high arsenic supply (2.5 and 5 mM), 14.55 and 22.07 times reduced Pi utilization, respectively, was observed during the Pi uptake by the fungus. The reduction of Pi uptake reduces the cell growth and biomass due to competition between arsenic and phosphate. The study suggests no negative impact of arsenic on the Pi acquisition, storage, and metabolism in symbiotic fungus, S. indica, under environmental arsenic contamination.
Collapse
Affiliation(s)
- Aparna Singh Kushwaha
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ravindra Singh Thakur
- Analytical Chemistry Division and Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Devendra K Patel
- Analytical Chemistry Division and Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Manoj Kumar
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
14
|
Sehar S, Feng Q, Adil MF, Sahito FS, Ibrahim Z, Baloch DM, Ullah N, Ouyang Y, Guo Y, Shamsi IH. Tandem application of endophytic fungus Serendipita indica and phosphorus synergistically recuperate arsenic induced stress in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:982668. [PMID: 36147244 PMCID: PMC9486476 DOI: 10.3389/fpls.2022.982668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
In the context of eco-sustainable acquisition of food security, arsenic (As) acts as a deterring factor, which easily infiltrates our food chain via plant uptake. Therefore, devising climate-smart strategies becomes exigent for minimizing the imposed risks. Pertinently, Serendipita indica (S. indica) is well reputed for its post-symbiotic stress alleviatory and phyto-promotive potential. Management of phosphorus (P) is acclaimed for mitigating arsenic toxicity in plants by inhibiting the uptake of As molecules due to the competitive cationic exchange in the rhizosphere. The current study was designed to investigate the tandem effects of S. indica and P in combating As toxicity employing two rice genotypes, i.e., Guodao-6 (GD-6; As-sensitive genotype) and Zhongzhe You-1 (ZZY-1; As-tolerant genotype). After successful fungal colonization, alone and combined arsenic (10 μ M L-1) and phosphorus (50 μ M L-1) treatments were applied. Results displayed that the recuperating effects of combined S. indica and P treatment were indeed much profound than their alone treatments; however, most of the beneficial influences were harnessed by ZZY-1 in comparison with GD-6. Distinct genotypic differences were observed for antioxidant enzyme activities, which were induced slightly higher in S. indica-colonized ZZY-1 plants, with or without additional P, as compared to GD-6. Ultrastructure images of root and shoot exhibited ravages of As in the form of chloroplasts-, nuclei-and cell wall-damage with enlarged vacuole area, mellowed mostly by the combined treatment of S. indica and P in both genotypes. Gene expression of PHTs family transporters was regulated at different levels in almost all treatments across genotypes. Conclusively, the results of this study validated the promising role of S. indica and additional P in mitigating As stress, albeit corroborated that the extent of relevant benefit exploitation is highly genotype-dependent. Verily, unlocking the potential of nature-friendly solutions will mend the anthropogenic damage already been done to our environment.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qidong Feng
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Falak Sehar Sahito
- Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Zakir Ibrahim
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Dost Muhammad Baloch
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Najeeb Ullah
- Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Younan Ouyang
- China National Rice Research Institute (CNRRI), Fuyang, China
| | - Yushuang Guo
- Guizhou Academy of Tobacco Science, Guizhou, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Rahman SU, Khalid M, Kayani SI, Tang K. The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111202. [PMID: 32889311 PMCID: PMC7646201 DOI: 10.1016/j.ecoenv.2020.111202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 05/11/2023]
Abstract
Aim of the current study was to investigate the effect of exogenously inoculated root endophytic fungus, Piriformospora indica, on molecular, biochemical, morphological and physiological parameters of Artemisia annua L. treated with different concentrations (0, 50, 100 and 150 μmol/L) of arsenic (As) stress. As was significantly accumulated in the roots than shoots of P. indica-inoculated plants. As accumulation and immobilization in the roots is directly associated with the successful fungal colonization that restricts most of As as compared to the aerial parts. A total of 4.1, 11.2 and 25.6 mg/kg dry weight of As was accumulated in the roots of inoculated plants supplemented with 50, 100 and 150 μmol/L of As, respectively as shown by atomic absorption spectroscopy. P. indica showed significant tolerance in vitro to As toxicity even at high concentration. Furthermore, flavonoids, artemisinin and overall biomass were significantly increased in inoculated-stressed plants. Superoxide dismutase and peroxidase activities were increased 1.6 and 1.2 fold, respectively under 150 μmol/L stress in P. indica-colonized plants. Similar trend was followed by ascorbate peroxidase, catalase and glutathione reductase. Like that, phenolic acid and phenolic compounds showed a significant increase in colonized plants as compared to their respective control/un-colonize stressed plants. The real-time PCR revealed that transcriptional levels of artemisinin biosynthesis genes, isoprenoids, terpenes, flavonoids biosynthetic pathway genes and signal molecules were prominently enhanced in inoculated stressed plants than un-inoculated stressed plants.
Collapse
Affiliation(s)
- Saeed-Ur- Rahman
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sadaf-Ilyas Kayani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Pérez-Alonso MM, Guerrero-Galán C, Scholz SS, Kiba T, Sakakibara H, Ludwig-Müller J, Krapp A, Oelmüller R, Vicente-Carbajosa J, Pollmann S. Harnessing symbiotic plant-fungus interactions to unleash hidden forces from extreme plant ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3865-3877. [PMID: 31976537 PMCID: PMC7316966 DOI: 10.1093/jxb/eraa040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/21/2020] [Indexed: 05/15/2023]
Abstract
Global climate change is arguably one of the biggest threats of modern times and has already led to a wide range of impacts on the environment, economy, and society. Owing to past emissions and climate system inertia, global climate change is predicted to continue for decades even if anthropogenic greenhouse gas emissions were to stop immediately. In many regions, such as central Europe and the Mediterranean region, the temperature is likely to rise by 2-5 °C and annual precipitation is predicted to decrease. Expected heat and drought periods followed by floods, and unpredictable growing seasons, are predicted to have detrimental effects on agricultural production systems, causing immense economic losses and food supply problems. To mitigate the risks of climate change, agricultural innovations counteracting these effects need to be embraced and accelerated. To achieve maximum improvement, the required agricultural innovations should not focus only on crops but rather pursue a holistic approach including the entire ecosystem. Over millions of years, plants have evolved in close association with other organisms, particularly soil microbes that have shaped their evolution and contemporary ecology. Many studies have already highlighted beneficial interactions among plants and the communities of microorganisms with which they coexist. Questions arising from these discoveries are whether it will be possible to decipher a common molecular pattern and the underlying biochemical framework of interspecies communication, and whether such knowledge can be used to improve agricultural performance under environmental stress conditions. In this review, we summarize the current knowledge of plant interactions with fungal endosymbionts found in extreme ecosystems. Special attention will be paid to the interaction of plants with the symbiotic root-colonizing endophytic fungus Serendipita indica, which has been developed as a model system for beneficial plant-fungus interactions.
Collapse
Affiliation(s)
- Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Carmen Guerrero-Galán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Sandra S Scholz
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Anne Krapp
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
17
|
Khalid M, Hui N, Rahman SU, Hayat K, Huang D. Suppression of clubroot (Plasmodiophora brassicae) development in Brassica campestris sp. chinensis L. via exogenous inoculation of Piriformospora indica. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1719337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-ur- Rahman
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kashif Hayat
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
18
|
The protective role of Piriformospora indica colonization in Centella asiatica (L.) in vitro under phosphate stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Khalid M, Rahman SU, Huang D. Molecular mechanism underlying Piriformospora indica-mediated plant improvement/protection for sustainable agriculture. Acta Biochim Biophys Sin (Shanghai) 2019; 51:229-242. [PMID: 30883651 DOI: 10.1093/abbs/gmz004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
The beneficial endophytic microorganisms have received significant attention in agriculture because of their exceptional capabilities to facilitate functions like nutrient enrichment, water status, and stress tolerance (biotic and abiotic). This review signifies the molecular mechanisms to better understand the Piriformospora indica-mediated plants improvement or protection for sustainable agriculture. P. indica, an endophytic fungus, belonging to the order Sebacinales (Basidiomycota), is versatile in building mutualistic associations with a variety of plants including pteridophytes, bryophytes, gymnosperms, and angiosperms. P. indica has enormous potential to manipulate the hormonal pathway such as the production of indole-3-acetic acid which in turn increases root proliferation and subsequently improves plant nutrient acquisition. P. indica also enhances components of the antioxidant system and expression of stress-related genes which induce plant stress tolerance under adverse environmental conditions. P. indica has tremendous potential for crop improvement because of its multi-dimensional functions such as plant growth promotion, immunomodulatory effect, biofertilizer, obviates biotic (pathogens) and abiotic (metal toxicity, water stress, soil structure, salt, and pH) stresses, phytoremediator, and bio-herbicide. Considering the above points, herein, we reviewed the physiological and molecular mechanisms underlying P. indica-mediated plants improvement or protection under diverse agricultural environment. The first part of the review focuses on the symbiotic association of P. indica with special reference to biotic and abiotic stress tolerance and host plant root colonization mechanisms, respectively. Emphasis is given to the expression level of essential genes involved in the processes that induce changes at the cellular level. The last half emphasizes critical aspects related to the seed germination, plant yield, and nutrients acquisition.
Collapse
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-ur- Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Endophytic fungus Serendipita indica increased nutrition absorption and biomass accumulation in Cunninghamia lanceolata seedlings under low phosphate. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.chnaes.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Nizam S, Qiang X, Wawra S, Nostadt R, Getzke F, Schwanke F, Dreyer I, Langen G, Zuccaro A. Serendipita indica E5'NT modulates extracellular nucleotide levels in the plant apoplast and affects fungal colonization. EMBO Rep 2019; 20:embr.201847430. [PMID: 30642845 PMCID: PMC6362346 DOI: 10.15252/embr.201847430] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine 5′‐triphosphate (eATP) is an essential signaling molecule that mediates different cellular processes through its interaction with membrane‐associated receptor proteins in animals and plants. eATP regulates plant growth, development, and responses to biotic and abiotic stresses. Its accumulation in the apoplast induces ROS production and cytoplasmic calcium increase mediating a defense response to invading microbes. We show here that perception of extracellular nucleotides, such as eATP, is important in plant–fungus interactions and that during colonization by the beneficial root endophyte Serendipita indica eATP accumulates in the apoplast at early symbiotic stages. Using liquid chromatography–tandem mass spectrometry, and cytological and functional analysis, we show that S. indica secrets SiE5′NT, an enzymatically active ecto‐5′‐nucleotidase capable of hydrolyzing nucleotides in the apoplast. Arabidopsis thaliana lines producing extracellular SiE5′NT are significantly better colonized, have reduced eATP levels, and altered responses to biotic stresses, indicating that SiE5′NT functions as a compatibility factor. Our data suggest that extracellular bioactive nucleotides and their perception play an important role in fungus–root interactions and that fungal‐derived enzymes can modify apoplastic metabolites to promote fungal accommodation.
Collapse
Affiliation(s)
- Shadab Nizam
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Xiaoyu Qiang
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Stephan Wawra
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Robin Nostadt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Felix Getzke
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Florian Schwanke
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Gregor Langen
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany .,Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Root colonization by the endophytic fungus Piriformospora indica improves growth, yield and piperine content in black pepper ( Piper nigurm L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Pan R, Xu L, Wei Q, Wu C, Tang W, Oelmüller R, Zhang W. Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways. PLoS One 2017; 12:e0189791. [PMID: 29261746 PMCID: PMC5736186 DOI: 10.1371/journal.pone.0189791] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/03/2017] [Indexed: 11/19/2022] Open
Abstract
Flowering in plants is synchronized by both environmental cues and internal regulatory factors. Previous studies have shown that the endophytic fungus Piriformospora indica promotes the growth and early flowering in Coleus forskohlii (a medicinal plant) and Arabidopsis. To further dissect the impact of P. indica on pathways responsible for flowering time in Arabidopsis, we co-cultivated Arabidopsis with P. indica and used RT-qPCR to analyze the main gene regulation networks involved in flowering. Our results revealed that the symbiotic interaction of Arabidopsis with P. indica promotes early flower development and the number of siliques. In addition, expression of the core flowering regulatory gene FLOWERING LOCUS T (FT), of genes controlling the photoperiod [CRYPTOCHROMES (CRY1, CRY2) and PHYTOCHROME B (PHYB)] and those related to gibberellin (GA) functions (RGA1, AGL24, GA3, and MYB5) were induced by the fungus, while key genes controlling the age and autonomous pathways remained unchanged. Moreover, early flowering promotion conferred by P. indica was promoted by exogenous GA and inhabited by GA inhibitor, and this effect could be observed under long day and neutral day photoperiod. Therefore, our data suggested that P. indica promotes early flowering in Arabidopsis likely through photoperiod and GA rather than age or the autonomous pathway.
Collapse
Affiliation(s)
- Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Qiao Wei
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Wenlin Tang
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Friedrich-Schiller-University Jena, Institute of General Botany and Plant Physiology, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| |
Collapse
|
24
|
Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7040075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Chen L, Liao H. Engineering crop nutrient efficiency for sustainable agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:710-735. [PMID: 28600834 DOI: 10.1111/jipb.12559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency.
Collapse
Affiliation(s)
- Liyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Bakshi M, Sherameti I, Meichsner D, Thürich J, Varma A, Johri AK, Yeh KW, Oelmüller R. Piriformospora indica Reprograms Gene Expression in Arabidopsis Phosphate Metabolism Mutants But Does Not Compensate for Phosphate Limitation. Front Microbiol 2017; 8:1262. [PMID: 28747898 PMCID: PMC5506084 DOI: 10.3389/fmicb.2017.01262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/23/2017] [Indexed: 01/12/2023] Open
Abstract
Piriformospora indica is an endophytic fungus of Sebacinaceae which colonizes the roots of many plant species and confers benefits to the hosts. We demonstrate that approximately 75% of the genes, which respond to P. indica in Arabidopsis roots, differ among seedlings grown on normal phosphate (Pi) or Pi limitation conditions, and among wild-type and the wrky6 mutant impaired in the regulation of the Pi metabolism. Mapman analyses suggest that the fungus activates different signaling, transport, metabolic and developmental programs in the roots of wild-type and wrky6 seedlings under normal and low Pi conditions. Under low Pi, P. indica promotes growth and Pi uptake of wild-type seedlings, and the stimulatory effects are identical for mutants impaired in the PHOSPHATE TRANSPORTERS1;1, -1;2 and -1;4. The data suggest that the fungus does not stimulate Pi uptake, but adapts the expression profiles to Pi limitation in Pi metabolism mutants.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Irena Sherameti
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Doreen Meichsner
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Johannes Thürich
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Kai-Wun Yeh
- Institute of Plant Biology, Taiwan National UniversityTaipei, Taiwan
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| |
Collapse
|
27
|
Khalid M, Hassani D, Bilal M, Liao J, Huang D. Elevation of secondary metabolites synthesis in Brassica campestris ssp. chinensis L. via exogenous inoculation of Piriformospora indica with appropriate fertilizer. PLoS One 2017; 12:e0177185. [PMID: 28493970 PMCID: PMC5426706 DOI: 10.1371/journal.pone.0177185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
This work evaluated the impact of exogenous soil inoculation of beneficial fungal strain Piriformospora indica on phytochemical changes and the related genes expression of Chinese cabbage (Brassica campestris ssp. chinensis L.) by greenhouse pot experiments. High performance liquid chromatography (HPLC) affirmed that among the different combinations of fungal and organic fertilizer treatments, the phenolic acids and flavonoids were considerably enriched in organic fertilizer and fungi (OP) followed by organic fertilizer, biochar, fungi (OBP) treated plants. The antiradical activity was higher in OP (61.29%) followed by P (60%) and organic fertilizer (OF) (53.84%) inoculated plants which positively correlated with chlorophyll, carotenoids and flavonoids level (P<0.05). Furthermore, results showed that the exogenous application of P. indica significantly (P<0.05) enhanced plant growth, as well as stimulating the activation of chlorophyll, carotenoids and other antioxidant related pathways. The RT-qPCR analysis indicated that key FLS gene triggering the synthesis of kaemferol was up-regulated by the inoculation of P. indica. In conclusion, the results revealed that organic fertilizer and P. indica (OP) is the most appropriate combination for improving phytochemical and antiradical properties in Pakchoi.
Collapse
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Danial Hassani
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianli Liao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- * E-mail:
| |
Collapse
|
28
|
Mohd S, Shukla J, Kushwaha AS, Mandrah K, Shankar J, Arjaria N, Saxena PN, Narayan R, Roy SK, Kumar M. Endophytic Fungi Piriformospora indica Mediated Protection of Host from Arsenic Toxicity. Front Microbiol 2017; 8:754. [PMID: 28539916 PMCID: PMC5423915 DOI: 10.3389/fmicb.2017.00754] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/12/2017] [Indexed: 12/14/2022] Open
Abstract
Complex intercellular interaction is a common theme in plant-pathogen/symbiont relationship. Cellular physiology of both the partners is affected by abiotic stress. However, little is known about the degree of protection each offers to the other from different types of environmental stress. Our current study focused on the changes in response to toxic arsenic in the presence of an endophytic fungus Piriformospora indica that colonizes the paddy roots. The primary impact of arsenic was observed in the form of hyper-colonization of fungus in the host root and resulted in the recovery of its overall biomass, root damage, and chlorophyll due to arsenic toxicity. Further, fungal colonization leads to balance the redox status of the cell by adjusting the antioxidative enzyme system which in turn protects photosynthetic machinery of the plant from arsenic stress. We observed that fungus has ability to immobilize soluble arsenic and interestingly, it was also observed that fungal colonization restricts most of arsenic in the colonized root while a small fraction of it translocated to shoot of colonized plants. Our study suggests that P. indica protects the paddy (Oryza sativa) from arsenic toxicity by three different mechanisms viz. reducing the availability of free arsenic in the plant environment, bio-transformation of the toxic arsenic salts into insoluble particulate matter and modulating the antioxidative system of the host cell.
Collapse
Affiliation(s)
- Shayan Mohd
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology ResearchLucknow, India
| | - Jagriti Shukla
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR CampusLucknow, India
| | - Aparna S. Kushwaha
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR CampusLucknow, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR CampusLucknow, India
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology ResearchLucknow, India
| | - Jai Shankar
- Electron Microscope facility, CSIR-Indian Institute of Toxicology ResearchLucknow, India
| | - Nidhi Arjaria
- Electron Microscope facility, CSIR-Indian Institute of Toxicology ResearchLucknow, India
| | - Prem N. Saxena
- Electron Microscope facility, CSIR-Indian Institute of Toxicology ResearchLucknow, India
| | - Ram Narayan
- Central Confocal Facility, CSIR-Indian Institute of Toxicology ResearchLucknow, India
| | - Somendu K. Roy
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR CampusLucknow, India
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology ResearchLucknow, India
| | - Manoj Kumar
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR CampusLucknow, India
| |
Collapse
|
29
|
Strehmel N, Mönchgesang S, Herklotz S, Krüger S, Ziegler J, Scheel D. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana. Int J Mol Sci 2016; 17:ijms17071091. [PMID: 27399695 PMCID: PMC4964467 DOI: 10.3390/ijms17071091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/28/2016] [Indexed: 11/24/2022] Open
Abstract
Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes
Collapse
Affiliation(s)
- Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Siska Herklotz
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Sylvia Krüger
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
30
|
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N. Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front Microbiol 2016; 7:332. [PMID: 27047458 PMCID: PMC4801890 DOI: 10.3389/fmicb.2016.00332] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022] Open
Abstract
Owing to its exceptional ability to efficiently promote plant growth, protection and stress tolerance, a mycorrhiza like endophytic Agaricomycetes fungus Piriformospora indica has received a great attention over the last few decades. P. indica is an axenically cultiviable fungus which exhibits its versatility for colonizing/hosting a broad range of plant species through directly manipulating plant hormone-signaling pathway during the course of mutualism. P. indica-root colonization leads to a better plant performance in all respect, including enhanced root proliferation by indole-3-acetic acid production which in turn results into better nutrient-acquisition and subsequently to improved crop growth and productivity. Additionally, P. indica can induce both local and systemic resistance to fungal and viral plant diseases through signal transduction. P. indica-mediated stimulation in antioxidant defense system components and expressing stress-related genes can confer crop/plant stress tolerance. Therefore, P. indica can biotize micropropagated plantlets and also help these plants to overcome transplantation shock. Nevertheless, it can also be involved in a more complex symbiotic relationship, such as tripartite symbiosis and can enhance population dynamic of plant growth promoting rhizobacteria. In brief, P. indica can be utilized as a plant promoter, bio-fertilizer, bioprotector, bioregulator, and biotization agent. The outcome of the recent literature appraised herein will help us to understand the physiological and molecular bases of mechanisms underlying P. indica-crop plant mutual relationship. Together, the discussion will be functional to comprehend the usefulness of crop plant-P. indica association in both achieving new insights into crop protection/improvement as well as in sustainable agriculture production.
Collapse
Affiliation(s)
- Sarvajeet S Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Dipesh K Trivedi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Naser A Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Krishna K Sharma
- Department of Microbiology, Maharshi Dayanand University Rohtak, India
| | - Mohammed W Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Abid A Ansari
- Department of Biology, University of Tabuk Tabuk, Saudi Arabia
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University Noida, India
| |
Collapse
|
31
|
Arora M, Saxena P, Choudhary DK, Abdin MZ, Varma A. Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L. World J Microbiol Biotechnol 2016; 32:19. [PMID: 26745979 DOI: 10.1007/s11274-015-1972-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022]
Abstract
At present, Artemisia annua L. is the major source of artemisinin production. To control the outbreaks of malaria, artemisinin combination therapies (ACTs) are recommended, and hence an ample amount of artemisinin is required for ACTs manufacture to save millions of lives. The low yield of this antimalarial drug in A. annua L. plants (0.01-1.1%) ensues its short supply and high cost, thus making it a topic of scrutiny worldwide. In this study, the effects of root endophyte, Piriformospora indica strain DSM 11827 and nitrogen fixing bacterium, Azotobacter chroococcum strain W-5, either singly and/or in combination for artemisinin production in A. annua L. plants have been studied under poly house conditions. The plant growth was monitored by measuring parameters like height of plant, total dry weight and leaf yield with an increase of 63.51, 52.61 and 79.70% respectively, for treatment with dual biological consortium, as compared to that of control plants. This significant improvement in biomass was associated with higher total chlorophyll content (59.29%) and enhanced nutrition (especially nitrogen and phosphorus, 55.75 and 86.21% respectively). The concentration of artemisinin along with expression patterns of artemisinin biosynthesis genes were appreciably higher in dual treatment, which showed positive correlation. The study suggested the potential use of the consortium P. indica strain DSM 11827 and A. chroococcum strain W-5 in A. annua L. plants for increased overall productivity and sustainable agriculture.
Collapse
Affiliation(s)
- Monika Arora
- Amity Institute of Microbial Technology (AIMT), Block 'E-3', 4th Floor, Amity University Campus, Sector-125, Gautam Buddha Nagar, Noida, UP, 201313, India
| | - Parul Saxena
- Centre for Transgenic Plant Development, Faculty of Science, Hamdard University, New Delhi, India
| | - Devendra Kumar Choudhary
- Amity Institute of Microbial Technology (AIMT), Block 'E-3', 4th Floor, Amity University Campus, Sector-125, Gautam Buddha Nagar, Noida, UP, 201313, India
| | - Malik Zainul Abdin
- Centre for Transgenic Plant Development, Faculty of Science, Hamdard University, New Delhi, India
| | - Ajit Varma
- Amity Institute of Microbial Technology (AIMT), Block 'E-3', 4th Floor, Amity University Campus, Sector-125, Gautam Buddha Nagar, Noida, UP, 201313, India.
| |
Collapse
|
32
|
Bakshi M, Vahabi K, Bhattacharya S, Sherameti I, Varma A, Yeh KW, Baldwin I, Johri AK, Oelmüller R. WRKY6 restricts Piriformospora indica-stimulated and phosphate-induced root development in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:305. [PMID: 26718529 PMCID: PMC4697310 DOI: 10.1186/s12870-015-0673-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/03/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arabidopsis root growth is stimulated by Piriformospora indica, phosphate limitation and inactivation of the WRKY6 transcription factor. Combinations of these factors induce unexpected alterations in root and shoot growth, root architecture and root gene expression profiles. RESULTS The results demonstrate that P. indica promotes phosphate uptake and root development under Pi limitation in wrky6 mutant. This is associated with the stimulation of PHOSPHATE1 expression and ethylene production. Expression profiles from the roots of wrky6 seedlings identified genes involved in hormone metabolism, transport, meristem, cell and plastid proliferation, and growth regulation. 25 miRNAs were also up-regulated in these roots. We generated and discuss here a list of common genes which are regulated in growing roots and which are common to all three growth stimuli investigated in this study. CONCLUSION Since root development of wrky6 plants exposed to P. indica under phosphate limitation is strongly promoted, we propose that common genes which respond to all three growth stimuli are central for the control of root growth and architecture. They can be tested for optimizing root growth in model and agricultural plants.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| | - Khabat Vahabi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| | - Samik Bhattacharya
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Irena Sherameti
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| | - Ajit Varma
- Amity Institute of Microbial Technology, AUUP, Noida, India.
| | - Kai-Wun Yeh
- Institute of Plant Biology, Taiwan National University, Taipei, Taiwan.
| | - Ian Baldwin
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| |
Collapse
|
33
|
Johri AK, Oelmüller R, Dua M, Yadav V, Kumar M, Tuteja N, Varma A, Bonfante P, Persson BL, Stroud RM. Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Front Microbiol 2015; 6:984. [PMID: 26528243 PMCID: PMC4608361 DOI: 10.3389/fmicb.2015.00984] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022] Open
Abstract
Phosphorus (P) is a major macronutrient for plant health and development. The available form of P is generally low in the rhizosphere even in fertile soils. A major proportion of applied phosphate (Pi) fertilizers in the soil become fixed into insoluble, unavailable forms, which restricts crop production throughout the world. Roots possess two distinct modes of P uptake from the soil, direct and indirect uptake. The direct uptake of P is facilitated by the plant's own Pi transporters while indirect uptake occurs via mycorrhizal symbiosis, where the host plant obtains P primarily from the fungal partner, while the fungus benefits from plant-derived reduced carbon. So far, only one Pi transporter has been characterized from the mycorrhizal fungus Glomus versiforme. As arbuscular mycorrhizal fungi cannot be cultured axenically, their Pi transporter network is difficult to exploite for large scale sustainable agriculture. Alternatively, the root-colonizing endophytic fungus Piriformospora indica can grow axenically and provides strong growth-promoting activity during its symbiosis with a broad spectrum of plants. P. indica contains a high affinity Pi transporter (PiPT) involved in improving Pi nutrition levels in the host plant under P limiting conditions. As P. indica can be manipulated genetically, it opens new vistas to be used in P deficient fields.
Collapse
Affiliation(s)
- Atul K. Johri
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Center for Genetic Engineering and BiotechnologyNew Delhi, India
- Institute of Microbial Technology, Amity UniversityNoida, India
| | - Ajit Varma
- Institute of Microbial Technology, Amity UniversityNoida, India
| | - Paola Bonfante
- Department of Biology, University of TorinoTorino, Italy
| | - Bengt L. Persson
- Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus UniversityKalmar, Sweden
| | - Robert M. Stroud
- Department of Biophysics and Biochemistry, University of California at San Francisco, San FranciscoCA, USA
| |
Collapse
|
34
|
Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana. Symbiosis 2015. [DOI: 10.1007/s13199-015-0347-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Banhara A, Ding Y, Kühner R, Zuccaro A, Parniske M. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. FRONTIERS IN PLANT SCIENCE 2015; 6:667. [PMID: 26441999 PMCID: PMC4585188 DOI: 10.3389/fpls.2015.00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/13/2015] [Indexed: 05/05/2023]
Abstract
Arbuscular mycorrhiza (AM) fungi (Glomeromycota) form symbiosis with and deliver nutrients via the roots of most angiosperms. AM fungal hyphae are taken up by living root epidermal cells, a program which relies on a set of plant common symbiosis genes (CSGs). Plant root epidermal cells are also infected by the plant growth-promoting fungus Piriformospora indica (Basidiomycota), raising the question whether this interaction relies on the AM-related CSGs. Here we show that intracellular colonization of root cells and intracellular sporulation by P. indica occurred in CSG mutants of the legume Lotus japonicus and in Arabidopsis thaliana, which belongs to the Brassicaceae, a family that has lost the ability to form AM as well as a core set of CSGs. A. thaliana mutants of homologs of CSGs (HCSGs) interacted with P. indica similar to the wild-type. Moreover, increased biomass of A. thaliana evoked by P. indica was unaltered in HCSG mutants. We conclude that colonization and growth promotion by P. indica are independent of the CSGs and that AM fungi and P. indica exploit different host pathways for infection.
Collapse
Affiliation(s)
- Aline Banhara
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Yi Ding
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Regina Kühner
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- Cluster of Excellence on Plant Sciences, Botanical Institute, University of CologneCologne, Germany
| | - Martin Parniske
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
- *Correspondence: Martin Parniske, Genetics, Faculty of Biology, University of Munich (LMU), Großhaderner Strasse 4, 82152 Martinsried, Germany
| |
Collapse
|
36
|
Piriformospora indica improves micropropagation, growth and phytochemical content of Aloe vera L. plants. Symbiosis 2014. [DOI: 10.1007/s13199-014-0298-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Rai M, Agarkar G. Plant-fungal interactions: What triggers the fungi to switch among lifestyles? Crit Rev Microbiol 2014; 42:428-38. [PMID: 25383649 DOI: 10.3109/1040841x.2014.958052] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Up till now various plant-fungal interactions have been extensively studied in the form of mycorrhizal, parasitic or endophytic lifestyles. Many of those interactions are beneficial to the host plants and a few are detrimental. Several investigations have pointed towards the interconversion of one fungal lifestyle into another while interact the plant system meaning endophyte may become parasite or vice versa. In such case, it is necessary to realize whether these different lifestyles are interconnected at some points either by physiological, biochemical or molecular routes and to identify the factors that trigger the change in fungal lifestyle, which is entirely different than earlier one and affects the host plant significantly. This review highlights the possible mechanisms of switching among the lifestyles of fungi based on recent findings and discusses the factors affecting plant fungal interactions. It also underlines the need for studying this important facet of plant-fungal interactions in depth which may in future help to fetch more advantages and to avoid the severe consequences in agriculture and other related fields.
Collapse
Affiliation(s)
- Mahendra Rai
- a Department of Biotechnology , SGB Amravati University , Amravati , Maharashtra , India
| | - Gauravi Agarkar
- a Department of Biotechnology , SGB Amravati University , Amravati , Maharashtra , India
| |
Collapse
|
38
|
Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 2014. [DOI: 10.1007/s13199-014-0273-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.26891. [PMID: 24494239 PMCID: PMC4091109 DOI: 10.4161/psb.26891] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 05/18/2023]
Abstract
Piriformospora indica association has been reported to increase biotic as well as abiotic stress tolerance of its host plants. We analyzed the beneficial effect of P. indica association on rice seedlings during high salt stress conditions (200 and 300 mM NaCl). The growth parameters of rice seedlings such as root and shoot lengths or fresh and dry weights were found to be enhanced in P. indica-inoculated rice seedlings as compared with non-inoculated control seedlings, irrespective of whether they are exposed to salt stress or not. However, salt-stressed seedlings performed much better in the presence of the fungus compared with non-inoculated control seedlings. The photosynthetic pigment content [chlorophyll (Chl) a, Chl b, and carotenoids] was significantly higher in P. indica-inoculated rice seedlings under high salt stress conditions as compared with salt-treated non-inoculated rice seedlings, in which these pigments were found to be decreased. Proline accumulation was also observed during P. indica colonization, which may help the inoculated plants to become salt tolerant. Taken together, P. indica rescues growth diminution of rice seedlings under salt stress.
Collapse
Affiliation(s)
- Abhimanyu Jogawat
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Shreya Saha
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Madhunita Bakshi
- Amity Institute of Microbial Technology; Amity University; Noida, UP, India
| | - Vikram Dayaman
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Manoj Kumar
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Meenakshi Dua
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Ajit Varma
- Amity Institute of Microbial Technology; Amity University; Noida, UP, India
| | - Ralf Oelmüller
- Institute of Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Center for Biotechnology and Genetic Engineering; Aruna Asaf Ali Marg, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| |
Collapse
|
40
|
Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:403-410. [PMID: 23831950 DOI: 10.1016/j.plaphy.2013.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions.
Collapse
Affiliation(s)
- Mohammad Wahid Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | |
Collapse
|
41
|
Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 2013; 53:1016-24. [PMID: 23681554 DOI: 10.1002/jobm.201200367] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/03/2012] [Indexed: 11/08/2022]
Abstract
Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant.
Collapse
Affiliation(s)
- Ram Prasad
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, Tuteja N, Johri AK, Varma A. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. PLANT SIGNALING & BEHAVIOR 2012; 7:103-12. [PMID: 22301976 PMCID: PMC3357349 DOI: 10.4161/psb.7.1.18472] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study was undertaken to investigate the influence of plant probiotic fungus Piriformospora indica on the medicinal plant C. forskohlii. Interaction of the C. forskohlii with the root endophyte P. indica under field conditions, results in an overall increase in aerial biomass, chlorophyll contents and phosphorus acquisition. The fungus also promoted inflorescence development, consequently the amount of p-cymene in the inflorescence increased. Growth of the root thickness was reduced in P. indica treated plants as they became fibrous, but developed more lateral roots. Because of the smaller root biomass, the content of forskolin was decreased. The symbiotic interaction of C. forskohlii with P. indica under field conditions promoted biomass production of the aerial parts of the plant including flower development. The plant aerial parts are important source of metabolites for medicinal application. Therefore we suggest that the use of the root endophyte fungus P. indica in sustainable agriculture will enhance the medicinally important chemical production.
Collapse
Affiliation(s)
- Aparajita Das
- Amity Institute of Microbial Technology (AIMT); Amity University Uttar Pradesh (AUUP); Noida, India
| | - Shwet Kamal
- Directorate of Mushroom Research; Indian Council of Agriculture Research; Solan, Himachal Pradesh, India
| | - Najam Akhtar Shakil
- Division of Agricultural Chemicals; Indian Agricultural Research Institute; New Delhi, India
| | - Irena Sherameti
- Institute of General Botany and Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| | - Meenakshi Dua
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Ajit Varma
- Amity Institute of Microbial Technology (AIMT); Amity University Uttar Pradesh (AUUP); Noida, India
| |
Collapse
|