1
|
Satow R, Kashiwaba Y, Okao M, Takano S, Aiga Y, Yoneda A, Hosomichi K, Fukami K. Zic family member 5 promotes RIO kinase 3 expression to enhance pancreatic cancer survival. FEBS J 2025. [PMID: 40318167 DOI: 10.1111/febs.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/06/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with few effective therapies available. We previously determined the essential role of Zic family member 5 (ZIC5) in the survival of PDAC cells. In this study, we showed that targeting ZIC5 can effectively shrink PDAC tumors treated with gemcitabine in vivo and investigated the molecular mechanisms involved. When tumor-bearing mice were injected intravenously with ZIC5-targeting small interfering RNA, tumor volume was significantly reduced by gemcitabine treatment. RNA-sequencing analysis was used to identify the genes affected by ZIC5 knockdown. Among these, we selected the genes whose mRNA expression levels correlated with that of ZIC5 in pancreatic cancer and those associated with poor prognosis in patients with pancreatic cancer. Further analysis revealed that RIO kinase 3 (RIOK3) promotes PDAC cell survival, whereas ALDH3B1, PTGES, and TUFT1 contribute to gemcitabine resistance in MiaPaca-2 cells. We identified RIOK3 as a direct target gene of ZIC5 using ChIP and luciferase assays. Furthermore, stable expression of RIOK3 in PANC-1 cells reversed the reduction in cell number following ZIC5 knockdown. These findings highlight RIOK3 as a critical target of ZIC5, which is involved in survival signaling in PDAC cells.
Collapse
Affiliation(s)
- Reiko Satow
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Yuki Kashiwaba
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Misaki Okao
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Shin Takano
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Yuna Aiga
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Atsuko Yoneda
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| |
Collapse
|
2
|
Coria AR, Shah A, Shafieinouri M, Taylor SJ, Orgebin E, Guiblet W, Miller JT, Sharma IM, Wu CCC. The integrated stress response regulates 18S nonfunctional rRNA decay in mammals. Mol Cell 2025; 85:787-801.e8. [PMID: 39947182 PMCID: PMC11845294 DOI: 10.1016/j.molcel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/08/2024] [Accepted: 01/15/2025] [Indexed: 02/19/2025]
Abstract
18S nonfunctional rRNA decay (NRD) detects and eliminates translationally nonfunctional 18S rRNA. Although this process is critical for ribosome quality control, the mechanisms underlying nonfunctional 18S rRNA turnover remain elusive, particularly in mammals. Here, we show that mammalian 18S NRD initiates through the integrated stress response (ISR) via GCN2. Nonfunctional 18S rRNA induces translational arrest at start sites. Biochemical analyses demonstrate that ISR activation limits translation initiation and attenuates collisions between scanning 43S preinitiation complexes and stalled nonfunctional ribosomes. The ISR promotes 18S NRD and 40S ribosomal protein turnover by RNF10-mediated ubiquitination. Ultimately, RIOK3 binds the resulting ubiquitinated 40S subunits and facilitates 18S rRNA decay. Overall, mammalian 18S NRD acts through GCN2, followed by ubiquitin-dependent 18S rRNA degradation involving the ubiquitin E3 ligase RNF10 and the atypical protein kinase RIOK3. These findings establish a dynamic feedback mechanism by which the GCN2-RNF10-RIOK3 axis surveils ribosome functionality at the translation initiation step.
Collapse
MESH Headings
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Animals
- Humans
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- RNA Stability
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Stress, Physiological
- Ubiquitination
- HEK293 Cells
- Ribosomes/metabolism
- Ribosomes/genetics
- Mice
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Peptide Chain Initiation, Translational
Collapse
Affiliation(s)
- Aaztli R Coria
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Akruti Shah
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Mohammad Shafieinouri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sarah J Taylor
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Emilien Orgebin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Wilfried Guiblet
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer T Miller
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Indra Mani Sharma
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Colin Chih-Chien Wu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
3
|
Huang Z, Diehl FF, Wang M, Li Y, Song A, Chen FX, Rosa-Mercado NA, Beckmann R, Green R, Cheng J. RIOK3 mediates the degradation of 40S ribosomes. Mol Cell 2025; 85:802-814.e12. [PMID: 39947183 DOI: 10.1016/j.molcel.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
Cells tightly regulate ribosome homeostasis to adapt to changing environments. Ribosomes are degraded during stress, but the mechanisms responsible remain unclear. Here, we show that starvation induces the selective depletion of 40S ribosomes following their ubiquitylation by the E3 ligase RNF10. The atypical kinase RIOK3 specifically recognizes these ubiquitylated 40S ribosomes through a unique ubiquitin-interacting motif, visualized by cryoelectron microscopy (cryo-EM). RIOK3 binding and ubiquitin recognition are essential for 40S ribosome degradation during starvation. RIOK3 induces the degradation of ubiquitylated 40S ribosomes through progressive decay of their 18S rRNA beginning at the 3' end, as revealed by cryo-EM structures of degradation intermediates. Together, these data define a pathway and mechanism for stress-induced degradation of 40S ribosomes, directly connecting ubiquitylation to regulation of ribosome homeostasis.
Collapse
MESH Headings
- Ubiquitination
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cryoelectron Microscopy
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Proteolysis
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 18S/genetics
- Humans
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/ultrastructure
- Ubiquitin/metabolism
- Protein Binding
- RNA Stability
Collapse
Affiliation(s)
- Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Frances F Diehl
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mengjiao Wang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Aixia Song
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Fei Xavier Chen
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China.
| |
Collapse
|
4
|
Ghandadi M, Dobi A, Malhotra SV. A role for RIO kinases in the crosshair of cancer research and therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189100. [PMID: 38604268 DOI: 10.1016/j.bbcan.2024.189100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
RIO (right open reading frame) family of kinases including RIOK1, RIOK2 and RIOK3 are known for their role in the ribosomal biogenesis. Dysfunction of RIO kinases have been implicated in malignancies, including acute myeloid leukemia, glioma, breast, colorectal, lung and prostatic adenocarcinoma suggesting RIO kinases as potential targets in cancer. In vitro, in vivo and clinical studies have demonstrated that RIO kinases are overexpressed in various types of cancers suggesting important roles in tumorigenesis, especially in metastasis. In the context of malignancies, RIO kinases are involved in cancer-promoting pathways including AKT/mTOR, RAS, p53 and NF-κB and cell cycle regulation. Here we review the role of RIO kinases in cancer development emphasizing their potential as therapeutic target and encouraging further development and investigation of inhibitors in the context of cancer.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Medicinal Plants Research Center, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services, University of the Health Sciences, Bethesda, MD 20817, USA; Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Sanjay V Malhotra
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
5
|
Li Q, Xie L, Pan J, He Y, Wang E, Wu H, Xiao J, Feng H. Black carp RIOK3 suppresses MDA5-mediated IFN signaling in the antiviral innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105059. [PMID: 37722630 DOI: 10.1016/j.dci.2023.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
In mammals, right open reading frame kinase 3 (RIOK3) is related with cancer development and immune regulation. To explore the role of teleost RIOK3 in the antiviral innate immunity, the homolog of RIOK3 (bcRIOK3) from black carp (Mylopharyngodon piceus) has been cloned and characterized in this study. Sequence analysis revealed that bcRIOK3 is conserved in vertebrates. The transcription of bcRIOK3 varied in host cells in response to the stimulation of spring viremia of carp virus (SVCV), poly (I:C), and LPS. Immunoblotting (IB) and immunofluorescence (IF) assays identified bcRIOK3 as a cytoplasmic protein with a molecular weight of ∼60 kDa. It was interesting that bcRIOK3 knockdown led to the decreased basal mRNA levels of IFNa, IFNb and Viperin; however, triggered obviously higher mRNA levels of the above genes after viral infection and enhanced host resistance to SVCV. Like its mammalian counterpart, bcRIOK3 overexpression in EPC cells showed a significant inhibitory effect on black carp MDA5 (bcMDA5)-mediated transcription of interferon promoters and antiviral activity. Co-immunoprecipitation and immunofluorescent assays identified the association between bcRIOK3 and bcMDA5. Further analysis revealed that bcRIOK3 enhanced the K48-linked ubiquitination and proteasome-dependent degradation of bcMDA5, and it weakened the oligomerization of bcMDA5 under poly (I:C) stimulation. In summary, our data conclude that RIOK3 dampens MDA5-mediated IFN signaling by promoting its degradation in black carp, which provide new insights into the regulation of IFN signaling in teleost.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Lixia Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiaji Pan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yixuan He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Enhui Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
6
|
Zong HX, Liu YQ, Wang XL, Miao JY, Luo LP, Wang JX, Chu YR, Tong WQ, Zhao X, Xu SQ. RIOK3 potentially regulates osteogenesis-related pathways in ankylosing spondylitis and the differentiation of bone marrow mesenchymal stem cells. Genomics 2023; 115:110730. [PMID: 37866658 DOI: 10.1016/j.ygeno.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
RNA-binding proteins (RBPs), which are key effectors of gene expression, play critical roles in inflammation and immune regulation. However, the potential biological function of RBPs in ankylosing spondylitis (AS) remains unclear. We identified differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) of five patients with AS and three healthy persons by RNA-seq, obtained differentially expressed RBPs by overlapping DEGs and RBPs summary table. RIOK3 was selected as a target RBP and knocked down in mouse bone marrow mesenchymal stem cells (mBMSCs), and transcriptomic studies of siRIOK3 mBMSCs were performed again using RNA-seq. Results showed that RIOK3 knockdown inhibited the expression of genes related to osteogenic differentiation, ribosome function, and β-interferon pathways in mBMSCs. In vitro experiments have shown that RIOK3 knockdown reduced the osteogenic differentiation ability of mBMSCs. Collectively, RIOK3 may affect the differentiation of mBMSCs and participate in the pathogenesis of AS, especially pathological bone formation.
Collapse
Affiliation(s)
- He-Xiang Zong
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya-Qian Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi-le Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie-Yu Miao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Ping Luo
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian-Xiong Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi-Ran Chu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wan-Qiu Tong
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sheng-Qian Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Zhao X, Dan C, Gong XY, Li YL, Qu ZL, Sun HY, An LL, Guo WH, Mei J, Gui JF, Zhang YB. Yellow catfish RIO kinases (RIOKs) negatively regulate fish interferon-mediated antiviral response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104656. [PMID: 36746265 DOI: 10.1016/j.dci.2023.104656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In mammals, right open reading frame kinases (RIOKs) are initially reported to participate in cancer cell proliferation, apoptosis, migration and invasion, and recently they have been related to host immune response. Little is known about the homologs of RIOKs in fish. In the current study, we cloned three homologous genes of RIOK family in yellow catfish (Pelteobagrus fulvidraco), termed Pfriok1, Pfriok2 and Pfriok3. Pfriok1, Pfriok2 and Pfriok3 were constitutively expressed at relatively high levels in yellow catfish tissues, and their mRNA levels were not changed under viral infection. Individual overexpression of PfRIOK1, PfRIOK2 and PfRIOK3 attenuated fish interferon (IFN) response, thereby promoting viral replication in fish cells. Mechanistically, yellow catfish RIOK proteins downregulated fish IFN response through attenuating TBK1 protein levels in cytoplasm. Our findings suggest that yellow catfish RIOK1, RIOK2 and RIOK3 are involved in downregulating fish IFN antiviral response.
Collapse
Affiliation(s)
- Xiang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiu-Ying Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yi-Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Zi-Ling Qu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Hao-Yu Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Li-Li An
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Wen-Hao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Xu M, Fang L, Guo X, Qin H, Sun R, Ning Z, Wang A. RIOK3 promotes pancreatic ductal adenocarcinoma cell invasion and metastasis by stabilizing FAK. Heliyon 2022; 8:e10116. [PMID: 35982848 PMCID: PMC9379581 DOI: 10.1016/j.heliyon.2022.e10116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive cancer, characterized by a high metastatic burden. RIO Kinase 3 (RIOK3) has been shown to promote invasion and metastasis of PDAC by cytoskeleton remodeling, but the exact mechanism is still unknown. In this study, we analyzed transcriptome sequencing data from RIOK3 stable knockdown PANC-1 cells and TCGA-PDAC data and discovered that RIOK3 was substantially related to focal adhesion signaling in PDAC. Additionally, silencing RIOK3 dramatically decreased Focal Adhesion Kinase (FAK) protein expression and phosphorylation (Tyr397 and Tyr925 sites). Immunoprecipitation assay verified the interaction of RIOK3 and FAK. Furthermore, RIOK3 considerably increased the protein stability of FAK protein but not FAK-Y925F protein. The biological function of RIOK3 in increasing PDAC cell invasion and migration was shown to be dependent on FAK activation. Moreover, we discovered that RIOK3 mutations were mainly characterized by amplification. RIOK3 mRNA was found to be significantly elevated in PDAC tissues and was associated with a poor prognosis. Furthermore, RIOK3 mRNA was significantly upregulated in later T-stage, pre-existing lymph node metastases, and later pathological stage samples. Overall, our study found that RIOK3 promotes PDAC cell invasion and metastasis by stabilizing FAK protein expression and upregulating its phosphorylation. This also provides a new target for therapeutic modalities targeting FAK. FAK activation is required for RIOK3 to promote PDAC cell invasion and metastasis. RIOK3 binds to and stabilizes the FAK protein. RIOK3 is highly expressed in PDAC tissues and associated with poor prognosis.
Collapse
Affiliation(s)
- Mengyuan Xu
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
- Hangzhou Medical College Affiliated Lin’an People’s Hospital, Hangzhou 310000, China
| | - Lei Fang
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
| | - Xin Guo
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| | - Henan Qin
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
| | - Rui Sun
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
| | - Zhen Ning
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
- Corresponding author.
| | - Aman Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
- Corresponding author.
| |
Collapse
|
10
|
Du X, Zhou D, Zhou J, Xue J, Cheng Z. RIOK3-mediated Akt phosphorylation facilitates synergistic replication of Marek's disease and reticuloendotheliosis viruses. Virulence 2022; 13:1184-1198. [PMID: 35795905 PMCID: PMC9331201 DOI: 10.1080/21505594.2022.2096247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Co-infection of Marek’s disease virus (MDV) and reticuloendotheliosis virus (REV) synergistically drives disease progression, yet little is known about the mechanism of the synergism. Here, we found that co-infection of REV and MDV increased their replication via the RIOK3-Akt pathway. Initially, we noticed that the viral titres of MDV and REV significantly increased in REV and MDV co-infected cells compared with single-infected cells. Furthermore, tandem mass tag peptide labelling coupled with LC/MS analysis showed that Akt was upregulated in REV and MDV co-infected cells. Overexpression of Akt promoted synergistic replication of MDV and REV. Conversely, inhibition of Akt suppressed synergistic replication of MDV and REV. However, PI3K inhibition did not affect synergistic replication of MDV and REV, suggesting that the PI3K/Akt pathway is not involved in the synergism of MDV and REV. In addition, we revealed that RIOK3 was recruited to regulate Akt in REV and MDV co-infected cells. Moreover, wild-type RIOK3, but not kinase-dead RIOK3, mediated Akt phosphorylation and promoted synergistic replication of MDV and REV. Our results illustrate that MDV and REV activated a novel RIOK3-Akt signalling pathway to facilitate their synergistic replication.
Collapse
Affiliation(s)
- Xusheng Du
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Jingwen Xue
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, China
| |
Collapse
|
11
|
Li J, Sun R, He L, Sui G, Di W, Yu J, Su W, Pan Z, Zhang Y, Zhang J, Ren F. A systematic pan-cancer analysis identifies RIOK3 as an immunological and prognostic biomarker. Am J Transl Res 2022; 14:3750-3768. [PMID: 35836879 PMCID: PMC9274588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Despite recent research highlighting the critical function of RIO kinase 3 (RIOK3) in a variety of malignancies, a comprehensive evaluation of RIOK3 in human tumors is absent. Our study helps to clarify the molecular mechanism of RIOK3 in carcinogenesis from multiple perspectives. METHODS Our research looked into the potential oncogenic role of RIOK3 in 33 cancers using TCGA (The Cancer Genome Atlas), GTEx (Genotype-Tissue Expression Project), GEO (Gene Expression Omnibus) datasets, and several bioinformatics tools. RESULTS RIOK3 expression in tumors is disordered compared to normal tissue, and it is highly linked with the level of MMR (Mismatch repair) gene mutations and DNA methyltransferase expression. According to univariate survival analysis, it could be used as an independent prognostic factor. Further investigation demonstrated that RIOK3 expression was correlated with cancer-associated fibroblast, neutrophil, and endothelial infiltration levels in kidney cancer and was positively correlated with the expression of immune checkpoint markers in different cancers. The functional pathways of RIOK3 also included cell-cell adhesion, protein phosphorylation, and innate immune-related functions. CONCLUSIONS These findings suggest that RIOK3 could be used as an immunological and prognostic biomarker in various malignant tumors.
Collapse
Affiliation(s)
- Jian Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Lixiang He
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Guoyi Sui
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Wenyu Di
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Zenggang Pan
- Department of Pathology, Yale University School of MedicineNew Haven, CT 06520, US
| | - Yu Zhang
- School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Feng Ren
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for liver-Intestinal TumorsXinxiang 453003, Henan, China
| |
Collapse
|
12
|
White LA, Bisom TC, Grimes HL, Hayashi M, Lanchy JM, Lodmell JS. Tra2beta-Dependent Regulation of RIO Kinase 3 Splicing During Rift Valley Fever Virus Infection Underscores the Links Between Alternative Splicing and Innate Antiviral Immunity. Front Cell Infect Microbiol 2022; 11:799024. [PMID: 35127560 PMCID: PMC8807687 DOI: 10.3389/fcimb.2021.799024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging pathogen that has potential to cause severe disease in humans and domestic livestock. Propagation of RVFV strain MP-12 is negatively impacted by the actions of RIOK3, a protein involved in the cellular immune response to viral infection. During RVFV infection, RIOK3 mRNA is alternatively spliced to produce an isoform that correlates with the inhibition of interferon β signaling. Here, we identify splicing factor TRA2-β (also known as TRA2beta and hTRA2-β) as a key regulator governing the relative abundance of RIOK3 splicing isoforms. Using RT-PCR and minigenes, we determined that TRA2-β interaction with RIOK3 pre-mRNA was necessary for constitutive splicing of RIOK3 mRNA, and conversely, lack of TRA2-β engagement led to increased alternative splicing. Expression of TRA2-β was found to be necessary for RIOK3's antiviral effect against RVFV. Intriguingly, TRA2-β mRNA is also alternatively spliced during RVFV infection, leading to a decrease in cellular TRA2-β protein levels. These results suggest that splicing modulation serves as an immune evasion strategy by RVFV and/or is a cellular mechanism to prevent excessive immune response. Furthermore, the results suggest that TRA2-β can act as a key regulator of additional steps of the innate immune response to viral infection.
Collapse
Affiliation(s)
- Luke Adam White
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Hunter L. Grimes
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| |
Collapse
|
13
|
Zhang W, Zhang C, Huang R, Qiu M, Li FX. Induction of right open reading frame kinase 3 (RIOK3) during ovulation and luteinisation in rat ovary. Reprod Fertil Dev 2021; 33:810-816. [PMID: 34758896 DOI: 10.1071/rd21118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Atypical protein serine kinase RIOK3 is involved in cellular invasion and survival. The spatiotemporal expression pattern and regulatory mechanisms controlling expression of Riok3 were investigated in the rat ovary during the periovulatory period. Immature female rats (22-23 days old) were treated with pregnant mare's serum gonadotropin (PMSG) to stimulate follicular development, followed 48h later by injection with human chorionic gonadotrophin (hCG). Ovaries, granulosa cells, or theca-interstitial cells were collected at various times after hCG administration. Both real-time polymerase chain reaction (PCR) and in situ hybridisation analysis revealed that Riok3 was highly induced in both granulosa cells and theca-interstitial cells by hCG. Riok3 expression was induced in theca-interstitial cells at 4h after hCG. However, the expression of Riok3 mRNA was stimulated in granulosa cells at 8h. Both protein kinase C inhibitor (GF109203) and the protein kinase A inhibitor (H89) could block the stimulation of Riok3 mRNA by hCG. Furthermore, Riok3 induction is dependent on new protein synthesis. Inhibition of prostaglandin synthesis or progesterone action did not alter Riok3 mRNA expression, whereas inhibition of the epidermal growth factor (EGF) pathway downregulated Riok3 expression. In conclusion, our findings suggest that the induction of the RIOK3 may be important for ovulation and luteinisation.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chujing Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Fei-Xue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
14
|
Mughal MN, Ye Q, Zhao L, Grevelding CG, Li Y, Di W, He X, Li X, Gasser RB, Hu M. First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1. Pathogens 2021; 10:862. [PMID: 34358012 PMCID: PMC8308690 DOI: 10.3390/pathogens10070862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Protein kinases are known as key molecules that regulate many biological processes in animals. The right open reading frame protein kinase (riok) genes are known to be essential regulators in model organisms such as the free-living nematode Caenorhabditis elegans. However, very little is known about their function in parasitic trematodes (flukes). In the present study, we characterized the riok-1 gene (Sj-riok-1) and the inferred protein (Sj-RIOK-1) in the parasitic blood fluke, Schistosoma japonicum. We gained a first insight into function of this gene/protein through double-stranded RNA interference (RNAi) and chemical inhibition. RNAi significantly reduced Sj-riok-1 transcription in both female and male worms compared with untreated control worms, and subtle morphological alterations were detected in the ovaries of female worms. Chemical knockdown of Sj-RIOK-1 with toyocamycin (a specific RIOK-1 inhibitor/probe) caused a substantial reduction in worm viability and a major accumulation of mature oocytes in the seminal receptacle (female worms), and of spermatozoa in the sperm vesicle (male worms). These phenotypic alterations indicate that the function of Sj-riok-1 is linked to developmental and/or reproductive processes in S. japonicum.
Collapse
Affiliation(s)
- Mudassar N. Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Christoph G. Grevelding
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China;
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Xuesong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| |
Collapse
|
15
|
Shen Y, Tang K, Chen D, Hong M, Sun F, Wang S, Ke Y, Wu T, Sun R, Qian J, Du Y. Riok3 inhibits the antiviral immune response by facilitating TRIM40-mediated RIG-I and MDA5 degradation. Cell Rep 2021; 35:109272. [PMID: 34161773 PMCID: PMC8363743 DOI: 10.1016/j.celrep.2021.109272] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 01/07/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The type I interferon (IFN) pathway is a key component of innate immune response upon invasion of foreign pathogens. It is also under precise control to prevent excessive upregulation and undesired inflammation cascade. In the present study, we report that Riok3, an atypical kinase, negatively regulates retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) sensing-induced type I IFN signaling. Riok3 deficiency selectively inhibits RNA viral replication in vitro, resulting from an upregulated type I IFN pathway. Mice with myeloid-specific Riok3 knockout also show a more robust induction of type I IFN upon RNA virus infection and are more resistant to RNA virus-induced pathogenesis. Mechanistically, Riok3 recruits and interacts with the E3 ubiquitin ligase TRIM40, leading to the degradation of RIG-I and melanoma differentiation-associated gene-5 (MDA5) via K48- and K27-linked ubiquitination. Collectively, our data reveal the mechanism that Riok3 employs to be a negative regulator of antiviral innate immunity.
Collapse
Affiliation(s)
- Yong Shen
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Department of Breast Surgery, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Kejun Tang
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Department of Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Dongdong Chen
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Mengying Hong
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Fangfang Sun
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - SaiSai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ren Sun
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; School of Biomedical Sciences, LKS Faculty of Medicine, The Hongkong University, Hongkong, China.
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.
| | - Yushen Du
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
17
|
Cerezo EL, Houles T, Lié O, Sarthou MK, Audoynaud C, Lavoie G, Halladjian M, Cantaloube S, Froment C, Burlet-Schiltz O, Henry Y, Roux PP, Henras AK, Romeo Y. RIOK2 phosphorylation by RSK promotes synthesis of the human small ribosomal subunit. PLoS Genet 2021; 17:e1009583. [PMID: 34125833 PMCID: PMC8224940 DOI: 10.1371/journal.pgen.1009583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.
Collapse
Affiliation(s)
- Emilie L. Cerezo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thibault Houles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Oriane Lié
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Kerguelen Sarthou
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Audoynaud
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Maral Halladjian
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvain Cantaloube
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Yves Henry
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Anthony K. Henras
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
18
|
Havranek KE, White LA, Bisom TC, Lanchy JM, Lodmell JS. The Atypical Kinase RIOK3 Limits RVFV Propagation and Is Regulated by Alternative Splicing. Viruses 2021; 13:v13030367. [PMID: 33652597 PMCID: PMC7996929 DOI: 10.3390/v13030367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, transcriptome profiling studies have identified changes in host splicing patterns caused by viral invasion, yet the functional consequences of the vast majority of these splicing events remain uncharacterized. We recently showed that the host splicing landscape changes during Rift Valley fever virus MP-12 strain (RVFV MP-12) infection of mammalian cells. Of particular interest, we observed that the host mRNA for Rio Kinase 3 (RIOK3) was alternatively spliced during infection. This kinase has been shown to be involved in pattern recognition receptor (PRR) signaling mediated by RIG-I like receptors to produce type-I interferon. Here, we characterize RIOK3 as an important component of the interferon signaling pathway during RVFV infection and demonstrate that RIOK3 mRNA expression is skewed shortly after infection to produce alternatively spliced variants that encode premature termination codons. This splicing event plays a critical role in regulation of the antiviral response. Interestingly, infection with other RNA viruses and transfection with nucleic acid-based RIG-I agonists also stimulated RIOK3 alternative splicing. Finally, we show that specifically stimulating alternative splicing of the RIOK3 transcript using a morpholino oligonucleotide reduced interferon expression. Collectively, these results indicate that RIOK3 is an important component of the mammalian interferon signaling cascade and its splicing is a potent regulatory mechanism capable of fine-tuning the host interferon response.
Collapse
Affiliation(s)
- Katherine E. Havranek
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - Luke Adam White
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA;
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Correspondence:
| |
Collapse
|
19
|
Tani S, Nishio N, Kai K, Hagiwara D, Ogata Y, Tojo M, Sumitani JI, Judelson HS, Kawaguchi T. Chemical genetic approach using β-rubromycin reveals that a RIO kinase-like protein is involved in morphological development in Phytophthora infestans. Sci Rep 2020; 10:22326. [PMID: 33339950 PMCID: PMC7749174 DOI: 10.1038/s41598-020-79326-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/08/2020] [Indexed: 11/10/2022] Open
Abstract
To characterize the molecular mechanisms underlying life-stage transitions in Phytophthora infestans, we initiated a chemical genetics approach by screening for a stage-specific inhibitor of morphological development from microbial culture extracts prepared mostly from actinomycetes from soil in Japan. Of the more than 700 extracts, one consistently inhibited Ph. infestans cyst germination. Purification and identification of the active compound by ESI–MS, 1H-NMR, and 13C-NMR identified β-rubromycin as the inhibitor of cyst germination (IC50 = 19.8 μg/L); β-rubromycin did not inhibit growth on rye media, sporangium formation, zoospore release, cyst formation, or appressorium formation in Ph. infestans. Further analyses revealed that β-rubromycin inhibited the germination of cysts and oospores in Pythium aphanidermatum. A chemical genetic approach revealed that β-rubromycin stimulated the expression of RIO kinase-like gene (PITG_04584) by 60-fold in Ph. infestans. Genetic analyses revealed that PITG_04584, which lacks close non-oomycete relatives, was involved in zoosporogenesis, cyst germination, and appressorium formation in Ph. infestans. These data imply that further functional analyses of PITG_04584 may contribute to new methods to suppress diseases caused by oomycetes.
Collapse
Affiliation(s)
- Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan.
| | - Naotaka Nishio
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Motoaki Tojo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Jun-Ichi Sumitani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| |
Collapse
|
20
|
Huang Z, Li X, Xie T, Gu C, Ni K, Yin Q, Cao X, Zhang C. Elevated Expression of RIOK1 Is Correlated with Breast Cancer Hormone Receptor Status and Promotes Cancer Progression. Cancer Res Treat 2020; 52:1067-1083. [PMID: 32599985 PMCID: PMC7577803 DOI: 10.4143/crt.2020.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose RIOK1 has been proved to play an important role in cancer cell proliferation and migration in various types of cancers—such as colorectal and gastric cancers. However, the expression of RIOK1 in breast cancer (BC) and the relationship between RIOK1 expression and the development of BC are not well characterized. In this study, we assessed the expression of RIOK1 in BC and evaluated the mechanisms underlying its biological function in this disease context. Materials and Methods We used immunohistochemistry, western blot and quantitative real-time polymerase chain reaction to evaluate the expression of RIOK1 in BC patients. Then, knockdown or overexpression of RIOK1 were used to evaluate the effect on BC cells in vitro and in vivo. Finally, we predicted miR-204-5p could be a potential regulator of RIOK1. Results We found that the expression levels of RIOK1 were significantly higher in hormone receptor (HR)–negative BC patients and was associated with tumor grades (p=0.010) and p53 expression (p=0.008) and survival duration (p=0.011). Kaplan-Meier analysis suggested a tendency for the poor prognosis. In vitro, knockdown of RIOK1 could inhibit proliferation, invasion, and induced apoptosis in HR-negative BC cells and inhibited tumorigenesis in vivo, while overexpression of RIOK1 promoted HR-positive tumor progression. MiR-204-5p could regulate RIOK1 expression and be involved in BC progression. Conclusion These findings indicate that RIOK1 expression could be a biomarker of HR-negative BC, and it may serve as an effective prognostic indicator and promote BC progression.
Collapse
Affiliation(s)
- Zhiqi Huang
- Medical School of Nantong University, Nantong, China
| | - Xingyu Li
- Medical School of Nantong University, Nantong, China
| | - Tian Xie
- Department of Clinical Research Center, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Changjiang Gu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Kan Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingqing Yin
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaolei Cao
- Medical School of Nantong University, Nantong, China
| | - Chunhui Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
21
|
Maurice F, Pérébaskine N, Thore S, Fribourg S. In vitro dimerization of human RIO2 kinase. RNA Biol 2019; 16:1633-1642. [PMID: 31390939 DOI: 10.1080/15476286.2019.1653679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
RIO proteins form a conserved family of atypical protein kinases. RIO2 is a serine/threonine protein kinase/ATPase involved in pre-40S ribosomal maturation. Current crystal structures of archaeal and fungal Rio2 proteins report a monomeric form of the protein. Here, we describe three atomic structures of the human RIO2 kinase showing that it forms a homodimer in vitro. Upon self-association, each protomer ATP-binding pocket is partially remodelled and found in an apostate. The homodimerization is mediated by key residues previously shown to be responsible for ATP binding and catalysis. This unusual in vitro protein kinase dimer reveals an intricate mechanism where identical residues are involved in substrate binding and oligomeric state formation. We speculate that such an oligomeric state might be formed also in vivo and might function in maintaining the protein in an inactive state and could be employed during import.
Collapse
Affiliation(s)
| | | | - Stéphane Thore
- INSERM U1212, UMR CNRS 5320, Université de Bordeaux , Bordeaux , France
| | | |
Collapse
|
22
|
Knüppel R, Christensen RH, Gray FC, Esser D, Strauß D, Medenbach J, Siebers B, MacNeill SA, LaRonde N, Ferreira-Cerca S. Insights into the evolutionary conserved regulation of Rio ATPase activity. Nucleic Acids Res 2019; 46:1441-1456. [PMID: 29237037 PMCID: PMC5815136 DOI: 10.1093/nar/gkx1236] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic ribosome biogenesis is a complex dynamic process which requires the action of numerous ribosome assembly factors. Among them, the eukaryotic Rio protein family members (Rio1, Rio2 and Rio3) belong to an ancient conserved atypical protein kinase/ ATPase family required for the maturation of the small ribosomal subunit (SSU). Recent structure–function analyses suggested an ATPase-dependent role of the Rio proteins to regulate their dynamic association with the nascent pre-SSU. However, the evolutionary origin of this feature and the detailed molecular mechanism that allows controlled activation of the catalytic activity remained to be determined. In this work we provide functional evidence showing a conserved role of the archaeal Rio proteins for the synthesis of the SSU in archaea. Moreover, we unravel a conserved RNA-dependent regulation of the Rio ATPases, which in the case of Rio2 involves, at least, helix 30 of the SSU rRNA and the P-loop lysine within the shared RIO domain. Together, our study suggests a ribosomal RNA-mediated regulatory mechanism enabling the appropriate stimulation of Rio2 catalytic activity and subsequent release of Rio2 from the nascent pre-40S particle. Based on our findings we propose a unified release mechanism for the Rio proteins.
Collapse
Affiliation(s)
- Robert Knüppel
- Biochemistry III - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Regitse H Christensen
- Department of Biology, University of Copenhagen, Copenhagen Biocenter, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Fiona C Gray
- Department of Biology, University of Copenhagen, Copenhagen Biocenter, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Dominik Esser
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Daniela Strauß
- Biochemistry I - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Jan Medenbach
- Biochemistry I - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Stuart A MacNeill
- Department of Biology, University of Copenhagen, Copenhagen Biocenter, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.,School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Nicole LaRonde
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Sébastien Ferreira-Cerca
- Biochemistry III - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
23
|
Iacovella MG, Bremang M, Basha O, Giacò L, Carotenuto W, Golfieri C, Szakal B, Dal Maschio M, Infantino V, Beznoussenko GV, Joseph CR, Visintin C, Mironov AA, Visintin R, Branzei D, Ferreira-Cerca S, Yeger-Lotem E, De Wulf P. Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:7586-7611. [PMID: 30011030 PMCID: PMC6125641 DOI: 10.1093/nar/gky618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast’s protein–protein and protein–DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity.
Collapse
Affiliation(s)
- Maria G Iacovella
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Michael Bremang
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Current address: Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Luciano Giacò
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Walter Carotenuto
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Cristina Golfieri
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Barnabas Szakal
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Marianna Dal Maschio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Valentina Infantino
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Galina V Beznoussenko
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Chinnu R Joseph
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Clara Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alexander A Mironov
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Rosella Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Sébastien Ferreira-Cerca
- Lehrstuhl für Biochemie III, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Peter De Wulf
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
24
|
Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 2019; 38:e100278. [PMID: 31268599 PMCID: PMC6600647 DOI: 10.15252/embj.2018100278] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
The essential cellular process of ribosome biogenesis is at the nexus of various signalling pathways that coordinate protein synthesis with cellular growth and proliferation. The fact that numerous diseases are caused by defects in ribosome assembly underscores the importance of obtaining a detailed understanding of this pathway. Studies in yeast have provided a wealth of information about the fundamental principles of ribosome assembly, and although many features are conserved throughout eukaryotes, the larger size of human (pre-)ribosomes, as well as the evolution of additional regulatory networks that can modulate ribosome assembly and function, have resulted in a more complex assembly pathway in humans. Notably, many ribosome biogenesis factors conserved from yeast appear to have subtly different or additional functions in humans. In addition, recent genome-wide, RNAi-based screens have identified a plethora of novel factors required for human ribosome biogenesis. In this review, we discuss key aspects of human ribosome production, highlighting differences to yeast, links to disease, as well as emerging concepts such as extra-ribosomal functions of ribosomal proteins and ribosome heterogeneity.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Markus T Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Center for Molecular BiosciencesGeorg‐August UniversityGöttingenGermany
| |
Collapse
|
25
|
Lim H, He D, Qiu Y, Krawczuk P, Sun X, Xie L. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology. PLoS Comput Biol 2019; 15:e1006619. [PMID: 31206508 PMCID: PMC6576746 DOI: 10.1371/journal.pcbi.1006619] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/26/2019] [Indexed: 01/09/2023] Open
Abstract
Many complex diseases such as cancer are associated with multiple pathological manifestations. Moreover, the therapeutics for their treatments often lead to serious side effects. Thus, it is needed to develop multi-indication therapeutics that can simultaneously target multiple clinical indications of interest and mitigate the side effects. However, conventional one-drug-one-gene drug discovery paradigm and emerging polypharmacology approach rarely tackle the challenge of multi-indication drug design. For the first time, we propose a one-drug-multi-target-multi-indication strategy. We develop a novel structural systems pharmacology platform 3D-REMAP that uses ligand binding site comparison and protein-ligand docking to augment sparse chemical genomics data for the machine learning model of genome-scale chemical-protein interaction prediction. Experimentally validated predictions systematically show that 3D-REMAP outperforms state-of-the-art ligand-based, receptor-based, and machine learning methods alone. As a proof-of-concept, we utilize the concept of drug repurposing that is enabled by 3D-REMAP to design dual-indication anti-cancer therapy. The repurposed drug can demonstrate anti-cancer activity for cancers that do not have effective treatment as well as reduce the risk of heart failure that is associated with all types of existing anti-cancer therapies. We predict that levosimendan, a PDE inhibitor for heart failure, inhibits serine/threonine-protein kinase RIOK1 and other kinases. Subsequent experiments and systems biology analyses confirm this prediction, and suggest that levosimendan is active against multiple cancers, notably lymphoma, through the direct inhibition of RIOK1 and RNA processing pathway. We further develop machine learning models to predict cancer cell-line's and a patient's response to levosimendan. Our findings suggest that levosimendan can be a promising novel lead compound for the development of safe, effective, and precision multi-indication anti-cancer therapy. This study demonstrates the potential of structural systems pharmacology in designing polypharmacology for precision medicine. It may facilitate transforming the conventional one-drug-one-gene-one-disease drug discovery process and single-indication polypharmacology approach into a new one-drug-multi-target-multi-indication paradigm for complex diseases.
Collapse
Affiliation(s)
- Hansaim Lim
- Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, New York, United States of America
| | - Di He
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, New York, United States of America
| | - Yue Qiu
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, New York, United States of America
| | - Patrycja Krawczuk
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
| | - Xiaoru Sun
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
- Department of Biostatistics, School of Public Heath, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Lei Xie
- Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, New York, United States of America
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, New York, United States of America
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chen AS, Read RD. Drosophila melanogaster as a Model System for Human Glioblastomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:207-224. [PMID: 31520357 DOI: 10.1007/978-3-030-23629-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Genomic amplifications, activating mutations, and overexpression of receptor tyrosine kinases (RTKs) such as EGFR, and genes in core RTK signaling transduction pathways such as PI3K are common in GBM. However, efforts to target these pathways have been largely unsuccessful in the clinic, and the median survival of GBM patients remains poor at 14-15 months. Therefore, to improve patient outcomes, there must be a concerted effort to elucidate the underlying biology involved in GBM tumorigenesis. Drosophila melanogaster has been a highly effective model for furthering our understanding of GBM tumorigenesis due to a number of experimental advantages it has over traditional mouse models. For example, there exists extensive cellular and genetic homology between humans and Drosophila, and 75% of genes associated with human disease have functional fly orthologs. To take advantage of these traits, we developed a Drosophila GBM model with constitutively active variants of EGFR and PI3K that effectively recapitulated key aspects of GBM disease. Researchers have utilized this model in forward genetic screens and have expanded on its functionality to make a number of important discoveries regarding requirements for key components in GBM tumorigenesis, including genes and pathways involved in extracellular matrix signaling, glycolytic metabolism, invasion/migration, stem cell fate and differentiation, and asymmetric cell division. Drosophila will continue to reveal novel biological pathways and mechanisms involved in gliomagenesis, and this knowledge may contribute to the development of effective treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Alexander S Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA. .,Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
27
|
The Rio1 protein kinases/ATPases: conserved regulators of growth, division, and genomic stability. Curr Genet 2018; 65:457-466. [DOI: 10.1007/s00294-018-0912-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
|
28
|
Cerezo E, Plisson-Chastang C, Henras AK, Lebaron S, Gleizes PE, O'Donohue MF, Romeo Y, Henry Y. Maturation of pre-40S particles in yeast and humans. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1516. [PMID: 30406965 DOI: 10.1002/wrna.1516] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/02/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
Abstract
The synthesis of ribosomal subunits in eukaryotes requires the interplay of numerous maturation and assembly factors (AFs) that intervene in the insertion of ribosomal proteins within pre-ribosomal particles, the ribosomal subunit precursors, as well as in pre-ribosomal RNA (rRNA) processing and folding. Here, we review the intricate nuclear and cytoplasmic maturation steps of pre-40S particles, the precursors to the small ribosomal subunits, in both yeast and human cells, with particular emphasis on the timing and mechanisms of AF association with and dissociation from pre-40S particles and the roles of these AFs in the maturation process. We highlight the particularly complex pre-rRNA processing pathway in human cells, compared to yeast, to generate the mature 18S rRNA. We discuss the information gained from the recently published cryo-electron microscopy atomic models of yeast and human pre-40S particles, as well as the checkpoint/quality control systems that seem to operate to probe functional sites within yeast cytoplasmic pre-40S particles. This article is categorized under: RNA Processing > rRNA Processing Translation > Ribosome Biogenesis.
Collapse
Affiliation(s)
- Emilie Cerezo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
29
|
Genome-wide identification and characterization of the RIO atypical kinase family in plants. Genes Genomics 2018; 40:669-683. [PMID: 29892951 DOI: 10.1007/s13258-018-0658-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
Members of the right open reading frame (RIO) atypical kinase family are present in all three domains of life. In eukaryotes, three subfamilies have been identified: RIO1, RIO2, and RIO3. Studies have shown that the yeast and human RIO1 and RIO2 kinases are essential for the biogenesis of small ribosomal subunits. Thus far, RIO3 has been found only in multicellular eukaryotes. In this study, we systematically identified members of the RIO gene family in 37 species representing the major evolutionary lineages in Viridiplantae. A total of 84 RIO genes were identified; among them, 41 were classified as RIO1 and 43 as RIO2. However, no RIO3 gene was found in any of the species examined. Phylogenetic trees constructed for plant RIO1 and RIO2 proteins were generally congruent with the species phylogeny. Subcellular localization analyses showed that the plant RIO proteins were localized mainly in the nucleus and/or cytoplasm. Expression profile analysis of rice, maize, and Arabidopsis RIO genes in different tissues revealed similar expression patterns between RIO1 and RIO2 genes, and their expression levels were high in certain tissues. In addition, the expressions of plant RIO genes were regulated by two drugs: mycophenolic acid and actinomycin D. Function prediction using genome-wide coexpression analysis revealed that most plant RIO genes may be involved in ribosome biogenesis. Our results will be useful for the evolutionary analysis of the ancient RIO kinase family and provide a basis for further functional characterization of RIO genes in plants.
Collapse
|
30
|
Zhang T, Ji D, Wang P, Liang D, Jin L, Shi H, Liu X, Meng Q, Yu R, Gao S. The atypical protein kinase RIOK3 contributes to glioma cell proliferation/survival, migration/invasion and the AKT/mTOR signaling pathway. Cancer Lett 2017; 415:151-163. [PMID: 29233656 DOI: 10.1016/j.canlet.2017.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/31/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022]
Abstract
The RIO (right open reading frame) protein kinases include RIOK1, RIOK2 and RIOK3. Emerging evidence has suggested an important role of RIO kinases in cancer cell proliferation, apoptosis, migration and invasion. However, the expression profile and specific roles of RIOK3 are largely unknown during glioma progression. In the current study, quantitative real-time PCR, Western blot, and immunohistochemical analysis showed that RIOK3 was upregulated in glioma tissues. Available database analysis revealed that higher levels of RIOK3 were associated with poorer survival outcome in glioma patients. Flow cytometry, CCK8 and EdU assays showed that downregulation of RIOK3 arrested cell cycle progression and inhibited glioma cell proliferation. Wound healing, transwell and gelatin zymography assays revealed that silencing RIOK3 decreased glioma cell migration and invasion. Furthermore, the downregulation of RIOK3 significantly decreased the activity of AKT/mTOR signaling and induced apoptosis in glioma cells. Overexpression of RIOK3 showed the opposite effects on glioma cell proliferation, migration, invasion and the AKT/mTOR pathway. These results indicate that high RIOK3 levels in gliomas appear to contribute to the growth and expansion of this cancer, and may thus serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Tong Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China; Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China
| | - Daofei Ji
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China; Department of Neurosurgery, The Second Hospital of Xuzhou Medical University, 32 Mei-Jian Road, Xuzhou 221006, Jiangsu, China
| | - Peng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China; Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China
| | - Dong Liang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China; Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China
| | - Lei Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China; Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China
| | - Hengliang Shi
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China; Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China
| | - Xuejiao Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China; Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China
| | - Qingming Meng
- Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China; Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China.
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China; Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, China.
| |
Collapse
|
31
|
Weinberg F, Reischmann N, Fauth L, Taromi S, Mastroianni J, Köhler M, Halbach S, Becker AC, Deng N, Schmitz T, Uhl FM, Herbener N, Riedel B, Beier F, Swarbrick A, Lassmann S, Dengjel J, Zeiser R, Brummer T. The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior. EBioMedicine 2017; 20:79-97. [PMID: 28499923 PMCID: PMC5478185 DOI: 10.1016/j.ebiom.2017.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/27/2022] Open
Abstract
Despite being overexpressed in different tumor entities, RIO kinases are hardly characterized in mammalian cells. We investigated the role of these atypical kinases in different cancer cells. Using isogenic colon-, breast- and lung cancer cell lines, we demonstrate that knockdown of RIOK1, but not of RIOK2 or RIOK3, strongly impairs proliferation and invasiveness in conventional and 3D culture systems. Interestingly, these effects were mainly observed in RAS mutant cancer cells. In contrast, growth of RAS wildtype Caco-2 and Bcr-Abl-driven K562 cells is not affected by RIOK1 knockdown, suggesting a specific requirement for RIOK1 in the context of oncogenic RAS signaling. Furthermore, we show that RIOK1 activates NF-κB signaling and promotes cell cycle progression. Using proteomics, we identified the pro-invasive proteins Metadherin and Stathmin1 to be regulated by RIOK1. Additionally, we demonstrate that RIOK1 promotes lung colonization in vivo and that RIOK1 is overexpressed in different subtypes of human lung- and breast cancer. Altogether, our data suggest RIOK1 as a potential therapeutic target, especially in RAS-driven cancers.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany
| | - Nadine Reischmann
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Lisa Fauth
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Sanaz Taromi
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Justin Mastroianni
- Faculty of Biology, ALU, Freiburg, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Martin Köhler
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Andrea C Becker
- Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany; Department of Dermatology, University Medical Center - ALU, Freiburg, Germany
| | - Niantao Deng
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Tatjana Schmitz
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Franziska Maria Uhl
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Nicola Herbener
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Bianca Riedel
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Fabian Beier
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Alexander Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Silke Lassmann
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany; German Cancer Consortium (DKTK, Freiburg) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörn Dengjel
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany; Department of Dermatology, University Medical Center - ALU, Freiburg, Germany; Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Robert Zeiser
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; German Cancer Consortium (DKTK, Freiburg) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Liu K, Chen HL, Wang S, Gu MM, Chen XM, Zhang SL, Yu KJ, You QS. High Expression of RIOK2 and NOB1 Predict Human Non-small Cell Lung Cancer Outcomes. Sci Rep 2016; 6:28666. [PMID: 27346559 PMCID: PMC4921844 DOI: 10.1038/srep28666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/08/2016] [Indexed: 01/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. However, there is a shortage of suitable diagnostic markers for early stages of NSCLC, and therapeutic targets are limited. Right open reading frame (Rio) kinase 2 (RIOK2) and Nin one binding (NOB1) protein are important accessory factors in ribosome assembly and are highly expressed in malignant tumours; moreover, they interact with each other. However, the RIOK2 expression profile and its clinical significance as well as NOB1's mechanism in NSCLC remain unknown. In this study, NSCLC cell lines and 15 NSCLC tumour tissues (paired with adjacent normal lung tissues) were collected for a real-time quantitative PCR (RT-qPCR) analysis. In addition, 153 NSCLC cases and 27 normal lung tissues were used in an immunohistochemical analysis to evaluate the RIOK2 and NOB1 expression profiles, their clinicopathological factors in NSCLC and their correlations with prognoses. RIOK2 and NOB1 were highly expressed in NSCLC cells and tissues, and their expression profiles were significantly associated with the Tumour Node Metastasis (TNM) clinical stage, lymph node metastasis, and differentiation. RIOK2 expression was correlated with NOB1. The results suggested that simultaneously determining the expression of RIOK2 and NOB1 will improve the diagnostic rate in early stages of NSCLC. Moreover, RIOK2 and NOB1 might be potential targets for NSCLC therapy.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | | | - Shuo Wang
- Nantong University, Nantong, 226001, China
| | - Ming-Ming Gu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xin-Ming Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | | | | | - Qing-Sheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
33
|
Takashima K, Oshiumi H, Takaki H, Matsumoto M, Seya T. RIOK3-mediated phosphorylation of MDA5 interferes with its assembly and attenuates the innate immune response. Cell Rep 2016; 11:192-200. [PMID: 25865883 DOI: 10.1016/j.celrep.2015.03.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/23/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022] Open
Abstract
MDA5 is a cytoplasmic viral double-stranded RNA (dsRNA) sensor and triggers type I interferon (IFN) production. MDA5 assembles along viral dsRNA, leading to the formation of an MDA5 filament required for activating the MAVS adaptor. A recent study has revealed that PP1α and PP1γ phosphatases are responsible for dephosphorylating MDA5 and are essential for its activation. Here, we identified RIO kinase 3 (RIOK3) as a protein kinase that phosphorylates the MDA5 C-terminal region. RIOK3 knockout strongly enhanced type I IFN and IFN-inducible gene expression following measles virus infection. Conversely, the ectopic expression of RIOK3 or a phosphomimetic MDA5-S828D mutation attenuated MDA5-mediated signaling. Moreover, RIOK3-mediated MDA5 phosphorylation impaired MDA5 multimer formation, indicating that MDA5 C-terminal phosphorylation interferes with MDA5 filament formation and suppresses its signaling. Our data revealed a regulatory mechanism underlying the activation of the cytoplasmic viral RNA sensor MDA5 in both uninfected and virus-infected cells.
Collapse
|
34
|
Singleton DC, Rouhi P, Zois CE, Haider S, Li JL, Kessler BM, Cao Y, Harris AL. Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis. Oncogene 2015; 34:4713-22. [PMID: 25486436 PMCID: PMC4430306 DOI: 10.1038/onc.2014.396] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/23/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
Hypoxia is a common feature of locally advanced breast cancers that is associated with increased metastasis and poorer survival. Stabilisation of hypoxia-inducible factor-1α (HIF1α) in tumours causes transcriptional changes in numerous genes that function at distinct stages of the metastatic cascade. We demonstrate that expression of RIOK3 (RIght Open reading frame kinase 3) was increased during hypoxic exposure in an HIF1α-dependent manner. RIOK3 was localised to distinct cytoplasmic aggregates in normoxic cells and underwent redistribution to the leading edge of the cell in hypoxia with a corresponding change in the organisation of the actin cytoskeleton. Depletion of RIOK3 expression caused MDA-MB-231 to become elongated and this morphological change was due to a loss of protraction at the trailing edge of the cell. This phenotypic change resulted in reduced cell migration in two-dimensional cultures and inhibition of cell invasion through three-dimensional extracellular matrix. Proteomic analysis identified interactions of RIOK3 with actin and several actin-binding factors including tropomyosins (TPM3 and TPM4) and tropomodulin 3. Depletion of RIOK3 in cells resulted in fewer and less organised actin filaments. Analysis of these filaments showed reduced association of TPM3, particularly during hypoxia, suggesting that RIOK3 regulates actin filament specialisation. RIOK3 depletion reduced the dissemination of MDA-MB-231 cells in both a zebrafish model of systemic metastasis and a mouse model of pulmonary metastasis. These findings demonstrate that RIOK3 is necessary for maintaining actin cytoskeletal organisation required for migration and invasion, biological processes that are necessary for hypoxia-driven metastasis.
Collapse
Affiliation(s)
- Dean C. Singleton
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Pegah Rouhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Christos E. Zois
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Syed Haider
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Ji-Liang Li
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
- Department of Medicine and Health Sciences, Linköping University, 581 83. Linköping, Sweden
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Adrian L. Harris
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
35
|
Breugelmans B, Ansell BRE, Young ND, Amani P, Stroehlein AJ, Sternberg PW, Jex AR, Boag PR, Hofmann A, Gasser RB. Flatworms have lost the right open reading frame kinase 3 gene during evolution. Sci Rep 2015; 5:9417. [PMID: 25976756 PMCID: PMC4894443 DOI: 10.1038/srep09417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/26/2015] [Indexed: 01/08/2023] Open
Abstract
All multicellular organisms studied to date have three right open reading frame kinase genes (designated riok-1, riok-2 and riok-3). Current evidence indicates that riok-1 and riok-2 have essential roles in ribosome biosynthesis, and that the riok-3 gene assists this process. In the present study, we conducted a detailed bioinformatic analysis of the riok gene family in 25 parasitic flatworms (platyhelminths) for which extensive genomic and transcriptomic data sets are available. We found that none of the flatworms studied have a riok-3 gene, which is unprecedented for multicellular organisms. We propose that, unlike in other eukaryotes, the loss of RIOK-3 from flatworms does not result in an evolutionary disadvantage due to the unique biology and physiology of this phylum. We show that the loss of RIOK-3 coincides with a loss of particular proteins associated with essential cellular pathways linked to cell growth and apoptosis. These findings indicate multiple, key regulatory functions of RIOK-3 in other metazoan species. Taking advantage of a known partial crystal structure of human RIOK-1, molecular modelling revealed variability in nucleotide binding sites between flatworm and human RIOK proteins.
Collapse
Affiliation(s)
- Bert Breugelmans
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Parisa Amani
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | - Andreas J Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, California, USA
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter R Boag
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Andreas Hofmann
- 1] Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia [2] Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Rio1 promotes rDNA stability and downregulates RNA polymerase I to ensure rDNA segregation. Nat Commun 2015; 6:6643. [PMID: 25851096 DOI: 10.1038/ncomms7643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 02/13/2015] [Indexed: 01/30/2023] Open
Abstract
The conserved protein kinase Rio1 localizes to the cytoplasm and nucleus of eukaryotic cells. While the roles of Rio1 in the cytoplasm are well characterized, its nuclear function remains unknown. Here we show that nuclear Rio1 promotes rDNA array stability and segregation in Saccharomyces cerevisiae. During rDNA replication in S phase, Rio1 downregulates RNA polymerase I (PolI) and recruits the histone deacetylase Sir2. Both interventions ensure rDNA copy-number homeostasis and prevent the formation of extrachromosomal rDNA circles, which are linked to accelerated ageing in yeast. During anaphase, Rio1 downregulates PolI by targeting its subunit Rpa43, causing PolI to dissociate from the rDNA. By stimulating the processing of PolI-generated transcripts at the rDNA, Rio1 allows for rDNA condensation and segregation in late anaphase. These events finalize the genome transmission process. We identify Rio1 as an essential nucleolar housekeeper that integrates rDNA replication and segregation with ribosome biogenesis.
Collapse
|
37
|
Mendes TK, Novakovic S, Raymant G, Bertram SE, Esmaillie R, Nadarajan S, Breugelmans B, Hofmann A, Gasser RB, Colaiácovo MP, Boag PR. Investigating the role of RIO protein kinases in Caenorhabditis elegans. PLoS One 2015; 10:e0117444. [PMID: 25688864 PMCID: PMC4331490 DOI: 10.1371/journal.pone.0117444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/24/2014] [Indexed: 12/30/2022] Open
Abstract
RIO protein kinases (RIOKs) are a relatively conserved family of enzymes implicated in cell cycle control and ribosomal RNA processing. Despite their functional importance, they remain a poorly understood group of kinases in multicellular organisms. Here, we show that the C. elegans genome contains one member of each of the three RIOK sub-families and that each of the genes coding for them has a unique tissue expression pattern. Our analysis showed that the gene encoding RIOK-1 (riok-1) was broadly and strongly expressed. Interestingly, the intestinal expression of riok-1 was dependent upon two putative binding sites for the oxidative and xenobiotic stress response transcription factor SKN-1. RNA interference (RNAi)-mediated knock down of riok-1 resulted in germline defects, including defects in germ line stem cell proliferation, oocyte maturation and the production of endomitotic oocytes. Taken together, our findings indicate new functions for RIOK-1 in post mitotic tissues and in reproduction.
Collapse
Affiliation(s)
- Tasha K. Mendes
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Stevan Novakovic
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Greta Raymant
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | - Reza Esmaillie
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Saravanapriah Nadarajan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bert Breugelmans
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Eskitis Institute for Cell & Drug Discovery, Griffith University, Brisbane, Australia
| | - Robin B. Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
38
|
Yuan W, Liu Y, Lok JB, Stoltzfus JD, Gasser RB, Lei W, Fang R, Zhao J, Hu M. Exploring features and function of Ss-riok-3, an enigmatic kinase gene from Strongyloides stercoralis. Parasit Vectors 2014; 7:561. [PMID: 25477034 PMCID: PMC4265397 DOI: 10.1186/s13071-014-0561-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/23/2014] [Indexed: 02/01/2023] Open
Abstract
Background Right open reading frame protein kinase 3 (RIOK-3) belongs to the atypical kinase family. Unlike the other two members, RIOK-1 and RIOK-2, which are conserved from Archaea to humans, RIOK-3 occurs only in multicellular organisms. Studies on HeLa cells indicate that human RIOK-3 is a component of the 40S small ribosome subunit and supports cancer cell growth and survival. However, almost nothing is known about the function of RIOK-3. We explored the functional role of RIOK-3 encoding gene from Strongyloides stercoralis, a parasitic nematode of humans and dogs. Methods To analyze the gene and promoter structure of Ss-riok-3, RACE-PCR and Genome-walker PCR were performed to isolate the full length cDNA, gDNA and promoter region of Ss-riok-3. RNA-seq was conducted to assess the transcript abundance of Ss-riok-3 in different stages of S. stercoralis. Transgenesis was employed to determine the anatomic expression patterns of Ss-riok-3. Results The RIOK-3 protein-encoding gene (designated Ss-riok-3) of S. stercoralis was characterized. The full-length complementary and genomic DNAs of the RIOK-3 encoding gene (riok-3) were isolated from this nematode. The cDNA of Ss-riok-3 is 1,757 bp in length, including a 23 bp 5’-UTR, a 36 bp 3’-UTR and a 1,698 bp coding region encoding a protein of 565 amino acids (aa) containing a RIO kinase domain. RNA sequencing (RNA-seq) analysis revealed that Ss-riok-3 is transcribed in all developmental stages of S. stercoralis assessed, with transcripts being particularly abundant in parasitic females. Gene structure analysis revealed that Ss-riok-3 contains no intron. The putative promoter contains conserved promoter elements, including four TATA, two GATA, one inverse GATA and one inverse CAAT boxes. The promoter of Ss-riok-3 drives GFP expression in the head neuron, intestine and body wall muscle of transgenic S. stercoralis larvae, and the TATA boxes present in the 3’-UTR of the gene immediately upstream of Ss-riok-3 initiate transcription. Conclusions The characterization of the RIOK-3 encoding gene from S. stercoralis provides a sound foundation for investigating in detail its function in the development and reproduction of this important pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0561-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Yingying Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Jonathan D Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA. .,Department of Biology, Hollins University, Roanoke, VI, 24020, USA.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, VI, 3010, Australia.
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| |
Collapse
|
39
|
Ferreira-Cerca S, Kiburu I, Thomson E, LaRonde N, Hurt E. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res 2014; 42:8635-47. [PMID: 24948609 PMCID: PMC4117770 DOI: 10.1093/nar/gku542] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During eukaryotic ribosome biogenesis, members of the conserved atypical serine/threonine protein kinase family, the RIO kinases (Rio1, Rio2 and Rio3) function in small ribosomal subunit biogenesis. Structural analysis of Rio2 indicated a role as a conformation-sensing ATPase rather than a kinase to regulate its dynamic association with the pre-40S subunit. However, it remained elusive at which step and by which mechanism the other RIO kinase members act. Here, we have determined the crystal structure of the human Rio1-ATP-Mg(2+) complex carrying a phosphoaspartate in the active site indicative of ATPase activity. Structure-based mutations in yeast showed that Rio1's catalytic activity regulates its pre-40S association. Furthermore, we provide evidence that Rio1 associates with a very late pre-40S via its conserved C-terminal domain. Moreover, a rio1 dominant-negative mutant defective in ATP hydrolysis induced trapping of late biogenesis factors in pre-ribosomal particles, which turned out not to be pre-40S but 80S-like ribosomes. Thus, the RIO kinase fold generates a versatile ATPase enzyme, which in the case of Rio1 is activated following the Rio2 step to regulate one of the final 40S maturation events, at which time the 60S subunit is recruited for final quality control check.
Collapse
Affiliation(s)
- Sébastien Ferreira-Cerca
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Irene Kiburu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Emma Thomson
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Nicole LaRonde
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Burger K, Eick D. Functional ribosome biogenesis is a prerequisite for p53 destabilization: impact of chemotherapy on nucleolar functions and RNA metabolism. Biol Chem 2014; 394:1133-43. [PMID: 23640940 DOI: 10.1515/hsz-2013-0153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
The production and processing of ribosomal RNA is a complex and well-coordinated nucleolar process for ribosome biogenesis. Progress in understanding nucleolar structure and function has lead to the unexpected discovery of the nucleolus as a highly sensitive sensor of cellular stress and an important regulator of the tumor suppressor p53. Inhibition of ribosomal RNA metabolism has been shown to activate a signaling pathway for p53 induction. This review elucidates the potential of classical and recently developed chemotherapeutic drugs to stabilize p53 by inhibiting nucleolar functions.
Collapse
Affiliation(s)
- Kaspar Burger
- Department of Molecular Epigenetics, Helmholtz Zentrum München and Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | | |
Collapse
|
41
|
Zemp I, Wandrey F, Rao S, Ashiono C, Wyler E, Montellese C, Kutay U. CK1δ and CK1ε are components of human 40S subunit precursors required for cytoplasmic 40S maturation. J Cell Sci 2014; 127:1242-53. [PMID: 24424021 DOI: 10.1242/jcs.138719] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biogenesis of 40S pre-ribosomal subunits requires many trans-acting factors, among them several protein kinases. In this study, we show that the human casein kinase 1 (CK1) isoforms δ and ε are required for cytoplasmic maturation steps of 40S subunit precursors. We show that both CK1δ and CK1ε isoforms are components of pre-40S subunits, on which they phosphorylate the ribosome biogenesis factors ENP1/BYSL and LTV1. Inhibition or co-depletion of CK1δ and CK1ε results in failure to recycle a series of trans-acting factors including ENP1/BYSL, LTV1, RRP12, DIM2/PNO1, RIO2 and NOB1 from pre-40S particles after nuclear export. Furthermore, co-depletion of CK1δ and CK1ε leads to defects in 18S-E pre-rRNA processing. Together, these data demonstrate that CK1δ and CK1ε play a decisive role in triggering late steps of pre-40S maturation that are required for acquisition of functionality of 40S ribosomal subunits in protein translation.
Collapse
Affiliation(s)
- Ivo Zemp
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Tariki M, Wieczorek SA, Schneider P, Bänfer S, Veitinger S, Jacob R, Fendrich V, Lauth M. RIO kinase 3 acts as a SUFU-dependent positive regulator of Hedgehog signaling. Cell Signal 2013; 25:2668-75. [PMID: 24018050 DOI: 10.1016/j.cellsig.2013.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 08/30/2013] [Indexed: 11/17/2022]
Abstract
Suppressor of fused (SUFU) is an essential negative regulator of the mammalian Hedgehog (HH) signaling pathway and its loss is associated with cancer development. On a cellular level, endogenous SUFU can mainly be detected in the cytoplasm and the nucleus. However, immunostaining of pancreatic cancer specimen revealed the existence of cell types showing selective enrichment of endogenous SUFU in the nucleus. Following up on this observation, we found that a SUFU construct which was experimentally tethered exclusively to the nucleus was unable to antagonize endogenous HH signaling, in contrast to control SUFU. These data suggest that alterations in the normal subcellular distribution of SUFU might interfere with its established negative role on the HH pathway. Performing a multi-well kinase screen in human cells identified RIO kinase 3 (RIOK3) as a novel modulator of SUFU subcellular distribution. Functionally, RIOK3 acts as a SUFU-dependent positive regulator of HH signaling. Taken together, we propose that factors modulating the nucleo-cytoplasmic distribution of SUFU impact on the normal function of this tumor suppressing protein.
Collapse
Affiliation(s)
- Melanie Tariki
- Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Emil-Mannkopff-Str. 2, 35037 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Read RD, Fenton TR, Gomez GG, Wykosky J, Vandenberg SR, Babic I, Iwanami A, Yang H, Cavenee WK, Mischel PS, Furnari FB, Thomas JB. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma. PLoS Genet 2013; 9:e1003253. [PMID: 23459592 PMCID: PMC3573097 DOI: 10.1371/journal.pgen.1003253] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma, the most common primary malignant brain tumor, is incurable with current therapies. Genetic and molecular analyses demonstrate that glioblastomas frequently display mutations that activate receptor tyrosine kinase (RTK) and Pi-3 kinase (PI3K) signaling pathways. In Drosophila melanogaster, activation of RTK and PI3K pathways in glial progenitor cells creates malignant neoplastic glial tumors that display many features of human glioblastoma. In both human and Drosophila, activation of the RTK and PI3K pathways stimulates Akt signaling along with other as-yet-unknown changes that drive oncogenesis. We used this Drosophila glioblastoma model to perform a kinome-wide genetic screen for new genes required for RTK- and PI3K-dependent neoplastic transformation. Human orthologs of novel kinases uncovered by these screens were functionally assessed in mammalian glioblastoma models and human tumors. Our results revealed that the atypical kinases RIOK1 and RIOK2 are overexpressed in glioblastoma cells in an Akt-dependent manner. Moreover, we found that overexpressed RIOK2 formed a complex with RIOK1, mTor, and mTor-complex-2 components, and that overexpressed RIOK2 upregulated Akt signaling and promoted tumorigenesis in murine astrocytes. Conversely, reduced expression of RIOK1 or RIOK2 disrupted Akt signaling and caused cell cycle exit, apoptosis, and chemosensitivity in glioblastoma cells by inducing p53 activity through the RpL11-dependent ribosomal stress checkpoint. These results imply that, in glioblastoma cells, constitutive Akt signaling drives RIO kinase overexpression, which creates a feedforward loop that promotes and maintains oncogenic Akt activity through stimulation of mTor signaling. Further study of the RIO kinases as well as other kinases identified in our Drosophila screen may reveal new insights into defects underlying glioblastoma and related cancers and may reveal new therapeutic opportunities for these cancers. Glioblastomas, the most common primary brain tumor, harbor mutations in receptor tyrosine kinases (RTKs), such as EGFR, and components of the Pi-3 kinase (PI3K) signaling pathway. However, the genes that act downstream of RTK and PI3K signaling to drive glioblastoma remain unclear. To investigate the genetic and molecular basis of this disease, we created a glioblastoma model in the fruit fly Drosophila melanogaster. To identify new genes involved in glioblastoma development, we performed a screen for the genes required for tumor cell proliferation using our Drosophila glioblastoma model and then functionally assessed the activity of human versions of novel genes identified in this screen. Our results revealed that the RIO kinases become overexpressed in human glioblastomas but not in normal human glial or neuronal cells. We found that overexpression of the RIO kinases promotes and maintains signals that drive tumor cell proliferation and survival in RTK- and PI3K-dependent human glioblastoma, and reduction of RIO kinase expression decreased proliferation and prompted cell death and chemosensitivity in glioblastoma cells. Therefore, disruption of the RIO kinases may provide new therapeutic opportunities to target glioblastoma and other RTK- or PI3K-dependent cancers.
Collapse
Affiliation(s)
- Renee D Read
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Martin-Yken H, Ribaud V, Poli J, Hoareau-Aveilla C, Spichal M, Beaufort S, Tilloy V, Delerue T, Capp JP, Parrou JL. 10th Francophone Yeast Meeting 'Levures, Modèles & Outils'. Res Microbiol 2012; 163:309-15. [PMID: 22705268 DOI: 10.1016/j.resmic.2012.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hélène Martin-Yken
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, INSA, CNRS UMR5504, INRA UMR792, Université de Toulouse, INSA, UPS, INP, 135 avenue de Rangueil, 31077 Toulouse cedex 4, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|