1
|
Zhang Z, Li ZY, Zhang FJ, Zheng PF, Ma N, Li L, Li H, Sun P, Zhang S, Wang XF, Lu XY, You CX. A viroid-derived small interfering RNA targets bHLH transcription factor MdPIF1 to regulate anthocyanin biosynthesis in Malus domestica. PLANT, CELL & ENVIRONMENT 2024; 47:4664-4682. [PMID: 39049759 DOI: 10.1111/pce.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Fruit colour is a critical determinant for the appearance quality and commercial value of apple fruits. Viroid-induced dapple symptom severely affects the fruit coloration, however, the underlying mechanism remains unknown. In this study, we identified an apple dimple fruit viroid (ADFVd)-derived small interfering RNA, named vsiR693, which targeted the mRNA coding for a bHLH transcription factor MdPIF1 (PHYTOCHROME-INTERACTING FACTOR 1) to regulate anthocyanin biosynthesis in apple. 5' RLM-RACE and artificial microRNA transient expression system proved that vsiR693 directly targeted the mRNA of MdPIF1 for cleavage. MdPIF1 positively regulated anthocyanin biosynthesis in both apple calli and fruits, and it directly bound to G-box element in the promoter of MdPAL and MdF3H, two anthocyanin biosynthetic genes, to promote their transcription. Expression of vsiR693 negatively regulated anthocyanin biosynthesis in both apple calli and fruits. Furthermore, co-expression of vsiR693 and MdPIF1 suppressed MdPIF1-promoted anthocyanin biosynthesis in apple fruits. Infiltration of ADFVd infectious clone suppressed coloration surrounding the injection sites in apple fruits, while a mutated version of ADFVd, in which the vsiR693 producing region was mutated, failed to repress fruit coloration around the injection sites. These data provide evidence that a viroid-derived small interfering RNA targets host transcription factor to regulate anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Zhenlu Zhang
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhao-Yang Li
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Fu-Jun Zhang
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Peng-Fei Zheng
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ning Ma
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lianzhen Li
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Haojian Li
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ping Sun
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuai Zhang
- National Key Laboratory of Wheat Improvement, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Xiao-Fei Wang
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiao-Yan Lu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
2
|
Liu G, Jiang H, Chen D, Murchie AIH. Identification of Hammerhead-variant ribozyme sequences in SARS-CoV-2. Nucleic Acids Res 2024; 52:3262-3277. [PMID: 38296822 PMCID: PMC11014351 DOI: 10.1093/nar/gkae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
The SARS-CoV-2 RNA virus and variants, responsible for the COVID-19 pandemic has become endemic, raised a need for further understanding of the viral genome and biology. Despite vast research on SARS-CoV-2, no ribozymes have been found in the virus genome. Here we report the identification of 39 Hammerhead-variant ribozyme sequences (CoV-HHRz) in SARS-CoV-2. These sequences are highly conserved within SARS-CoV-2 variants but show large diversity among other coronaviruses. In vitro CoV-HHRz sequences possess the characteristics of typical ribozymes; cleavage is pH and ion dependent, although their activity is relatively low and Mn2+ is required for cleavage. The cleavage sites of four CoV-HHRz coincide with the breakpoint of expressed subgenomic RNA (sgRNAs) in SARS-CoV-2 transcriptome data suggesting in vivo activity. The CoV-HHRz are involved in processing sgRNAs for ORF7b, ORF 10 and ORF1ab nsp13 which are essential for viral packaging and life cycle.
Collapse
Affiliation(s)
- Getong Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hengyi Jiang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongrong Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Alastair I H Murchie
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Abstract
Viroids are small, single-stranded, circular RNAs infecting plants. Composed of only a few hundred nucleotides and being unable to code for proteins, viroids represent the lowest level of complexity for an infectious agent, even below that of the smallest known viruses. Despite the relatively small size, viroids contain RNA structural elements embracing all the information needed to interact with host factors involved in their infectious cycle, thus providing models for studying structure-function relationships of RNA. Viroids are specifically targeted to nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae), where replication based on rolling-circle mechanisms takes place. They move locally and systemically through plasmodesmata and phloem, respectively, and may elicit symptoms in the infected host, with pathogenic pathways linked to RNA silencing and other plant defense responses. In this review, recent advances in the dissection of the complex interplay between viroids and plants are presented, highlighting knowledge gaps and perspectives for future research. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| | - Ricardo Flores
- Institute of Molecular and Cellular Biology of Plants (UPV-CSIC), Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| |
Collapse
|
4
|
Flores R, Navarro B, Delgado S, Serra P, Di Serio F. Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiol Rev 2021; 44:386-398. [PMID: 32379313 DOI: 10.1093/femsre/fuaa011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
The initial molecular lesions through which viroids, satellite RNAs and viruses trigger signal cascades resulting in plant diseases are hotly debated. Since viroids are circular non-protein-coding RNAs of ∼250-430 nucleotides, they appear very convenient to address this issue. Viroids are targeted by their host RNA silencing defense, generating viroid-derived small RNAs (vd-sRNAs) that are presumed to direct Argonaute (AGO) proteins to inactivate messenger RNAs, thus initiating disease. Here, we review the existing evidence. Viroid-induced symptoms reveal a distinction. Those attributed to vd-sRNAs from potato spindle tuber viroid and members of the family Pospiviroidae (replicating in the nucleus) are late, non-specific and systemic. In contrast, those attributed to vd-sRNAs from peach latent mosaic viroid (PLMVd) and other members of the family Avsunviroidae (replicating in plastids) are early, specific and local. Remarkably, leaf sectors expressing different PLMVd-induced chloroses accumulate viroid variants with specific pathogenic determinants. Some vd-sRNAs containing such determinant guide AGO1-mediated cleavage of mRNAs that code for proteins regulating chloroplast biogenesis/development. Therefore, the initial lesions and the expected phenotypes are connected by short signal cascades, hence supporting a cause-effect relationship. Intriguingly, one virus satellite RNA initiates disease through a similar mechanism, whereas in the Pospiviroidae and in plant viruses the situation remains uncertain.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
5
|
Identification and Molecular Mechanisms of Key Nucleotides Causing Attenuation in Pathogenicity of Dahlia Isolate of Potato Spindle Tuber Viroid. Int J Mol Sci 2020; 21:ijms21197352. [PMID: 33027943 PMCID: PMC7583970 DOI: 10.3390/ijms21197352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
While the potato spindle tuber viroid (PSTVd) variant, PSTVd-Dahlia (PSTVd-D or PSTVd-Dwt) induces very mild symptoms in tomato cultivar 'Rutgers', PSTVd-Intermediate (PSTVd-I or PSTVd-Iwt) induces severe symptoms. These two variants differ by nine nucleotides, of which six mutations are located in the terminal left (TL) to the pathogenicity (P) domains. To evaluate the importance of mutations located in the TL to the P domains, ten types of point mutants were created by swapping the nucleotides between the two viroid variants. Bioassay in tomato plants demonstrated that two mutants created on PSTVd-Iwt at positions 42 and 64 resulted in symptom attenuation. Phenotypic and RT-qPCR analysis revealed that mutation at position 42 of PSTVd-Iwt significantly reduced disease severity and accumulation of the viroid, whereas mutation at position 64 showed a significant reduction in stunting when compared to the PSTVd-Iwt infected plant. RT-qPCR analysis on pathogenesis-related protein 1b1 and chalcone synthase genes showed a direct correlation with symptom severity whereas the expansin genes were down-regulated irrespective of the symptom severity. These results indicate that the nucleotides at positions 42 and 64 are in concert with the ones at positions 43, 310, and 311/312, which determines the slower and stable accumulation of PSTVd-D without eliciting excessive host defense responses thus contributing in the attenuation of disease symptom.
Collapse
|
6
|
Elucidating micro RNAs role in different plant-pathogen interactions. Mol Biol Rep 2020; 47:8219-8227. [PMID: 32909216 DOI: 10.1007/s11033-020-05810-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 01/23/2023]
Abstract
Bacteria, fungi, virus and nematode constitute the primary class of pathogens causing plant diseases. Plant-pathogen interactions are crucial for the identification of the host and pathogen and further establishments of a network of interaction that can cross regulate the gene expressions in both sides. After infection, the correct identification of pathogen through various molecular interactions elicit a defense response against the pathogen by alteration of gene expression by the host. Co-evolution of pathogen gives them the ability to counter the virulence response of the host and pathogen can also modulate the host gene expression pattern to make it more susceptible to the infection. Small non-coding RNA molecules (siRNAs and miRNAs) efficiently modulate gene expression at the transcriptional and post-transcriptional level and play a vital role in host defense. The pathogen can also use this double-sided sward in their defense by deregulating the plant immunity via transcriptional control of plant genes utilizing RNA interference or suppressing the host RNA interference response with the help of various RNA silencing suppressor proteins. This mini-review focused on the miRNAs involvement in host defense and how different families of these non-coding regulatory RNAs regulate the defense response against the pathogen.
Collapse
|
7
|
Bengone-Abogourin JG, Chelkha N, Verdin E, Colson P. Sequence Similarities between Viroids and Human MicroRNAs. Intervirology 2020; 62:227-234. [PMID: 32640450 DOI: 10.1159/000509212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/06/2020] [Indexed: 11/19/2022] Open
Abstract
Viroids are minute unencapsidated non-coding circular RNAs known to be present and to cause diseases only in plants. Infections were associated with the occurrence of specific single-stranded RNAs similar in size to miRNAs and endogenous small interfering RNAs, and viroid pathogenicity is suspected to occur through RNA interference. We looked for sequence similarities between viroids and the seed region of human microRNAs (hsa-miRNAs). Viroid genomes were retrieved from GenBank and mature hsa-mi-RNAs were retrieved from miRBase. Two hundred 300-nucleotide-long sequences were randomly generated as controls. BLAST searches were performed using viroids as queries and hsa-miRNAs as subjects with relaxed parameters, and matches involving hsa-miRNA seed regions were considered. A total of 81,021 matches were found, and 1,501 that showed 100% identity with whole hsa-miRNA seed regions were selected. The most frequent matches involved Chrysanthemum stunt viroid or Hop stunt viroidspecies with hsa-miR-4286, in 365 and 207 cases, respectively. Three hsa-mi-RNAs (miR-4286, miR-6808-5p, and miR-3622a-3p) were involved in 47% of all matches between viroids and hsa-mi-RNAs. Taken together, these findings warrant further investigation on the potential of viroids and their derived small RNAs to cross kingdoms and interact with nucleic acids in humans.
Collapse
Affiliation(s)
- Jessica Grace Bengone-Abogourin
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Nisrine Chelkha
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Eric Verdin
- INRA, UR407, Unité de Pathologie Végétale, Montfavet, France
| | - Philippe Colson
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France, .,IHU Méditerranée Infection, Marseille, France,
| |
Collapse
|
8
|
Weinberg CE, Weinberg Z, Hammann C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res 2019; 47:9480-9494. [PMID: 31504786 PMCID: PMC6765202 DOI: 10.1093/nar/gkz737] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Small endonucleolytic ribozymes promote the self-cleavage of their own phosphodiester backbone at a specific linkage. The structures of and the reactions catalysed by members of individual families have been studied in great detail in the past decades. In recent years, bioinformatics studies have uncovered a considerable number of new examples of known catalytic RNA motifs. Importantly, entirely novel ribozyme classes were also discovered, for most of which both structural and biochemical information became rapidly available. However, for the majority of the new ribozymes, which are found in the genomes of a variety of species, a biological function remains elusive. Here, we concentrate on the different approaches to find catalytic RNA motifs in sequence databases. We summarize the emerging principles of RNA catalysis as observed for small endonucleolytic ribozymes. Finally, we address the biological functions of those ribozymes, where relevant information is available and common themes on their cellular activities are emerging. We conclude by speculating on the possibility that the identification and characterization of proteins that we hypothesize to be endogenously associated with catalytic RNA might help in answering the ever-present question of the biological function of the growing number of genomically encoded, small endonucleolytic ribozymes.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Christian Hammann
- Ribogenetics & Biochemistry, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
9
|
Steger G, Riesner D. Viroid research and its significance for RNA technology and basic biochemistry. Nucleic Acids Res 2019; 46:10563-10576. [PMID: 30304486 PMCID: PMC6237808 DOI: 10.1093/nar/gky903] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Viroids were described 47 years ago as the smallest RNA molecules capable of infecting plants and autonomously self-replicating without an encoded protein. Work on viroids initiated the development of a number of innovative methods. Novel chromatographic and gelelectrophoretic methods were developed for the purification and characterization of viroids; these methods were later used in molecular biology, gene technology and in prion research. Theoretical and experimental studies of RNA folding demonstrated the general biological importance of metastable structures, and nuclear magnetic resonance spectroscopy of viroid RNA showed the partially covalent nature of hydrogen bonds in biological macromolecules. RNA biochemistry and molecular biology profited from viroid research, such as in the detection of RNA as template of DNA-dependent polymerases and in mechanisms of gene silencing. Viroids, the first circular RNA detected in nature, are important for studies on the much wider spectrum of circular RNAs and other non-coding RNAs.
Collapse
Affiliation(s)
- Gerhard Steger
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Moreno M, Vázquez L, López-Carrasco A, Martín-Gago J, Flores R, Briones C. Direct visualization of the native structure of viroid RNAs at single-molecule resolution by atomic force microscopy. RNA Biol 2019; 16:295-308. [PMID: 30734641 PMCID: PMC6380281 DOI: 10.1080/15476286.2019.1572436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 11/01/2022] Open
Abstract
Viroids are small infectious, non-protein-coding circular RNAs that replicate independently and, in some cases, incite diseases in plants. They are classified into two families: Pospiviroidae, composed of species that have a central conserved region (CCR) and replicate in the cell nucleus, and Avsunviroidae, containing species that lack a CCR and whose multimeric replicative intermediates of either polarity generated in plastids self-cleave through hammerhead ribozymes. The compact, rod-like or branched, secondary structures of viroid RNAs have been predicted by RNA folding algorithms and further examined using different in vitro and in vivo experimental techniques. However, direct data about their native tertiary structure remain scarce. Here we have applied atomic force microscopy (AFM) to image at single-molecule resolution different variant RNAs of three representative viroids: potato spindle tuber viroid (PSTVd, family Pospiviroidae), peach latent mosaic viroid and eggplant latent viroid (PLMVd and ELVd, family Avsunviroidae). Our results provide a direct visualization of their native, three-dimensional conformations at 0 and 4 mM Mg2+ and highlight the role that some elements of tertiary structure play in their stabilization. The AFM images show that addition of 4 mM Mg2+ to the folding buffer results in a size contraction in PSTVd and ELVd, as well as in PLMVd when the kissing-loop interaction that stabilizes its 3D structure is preserved.
Collapse
Affiliation(s)
- M. Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - L. Vázquez
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - A. López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - J.A. Martín-Gago
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - R. Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - C. Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| |
Collapse
|
11
|
Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and Viroids in Lethal Diseases of Plants and Animals. Potential Contribution to Human Neurodegenerative Disorders. BIOCHEMISTRY (MOSCOW) 2018; 83:1018-1029. [PMID: 30472940 DOI: 10.1134/s0006297918090031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Both plants and animals have adopted a common strategy of using ~18-25-nucleotide small non-coding RNAs (sncRNAs), known as microRNAs (miRNAs), to transmit DNA-based epigenetic information. miRNAs (i) shape the total transcriptional output of individual cells; (ii) regulate and fine-tune gene expression profiles of cell clusters, and (iii) modulate cell phenotype in response to environmental stimuli and stressors. These miRNAs, the smallest known carriers of gene-encoded post-transcriptional regulatory information, not only regulate cellular function in healthy cells but also act as important mediators in the development of plant and animal diseases. Plants possess their own specific miRNAs; at least 32 plant species have been found to carry infectious sncRNAs called viroids, whose mechanisms of generation and functions are strikingly similar to those of miRNAs. This review highlights recent remarkable and sometimes controversial findings in miRNA signaling in plants and animals. Special attention is given to the intriguing possibility that dietary miRNAs and/or sncRNAs can function as mobile epigenetic and/or evolutionary linkers between different species and contribute to both intra- and interkingdom signaling. Wherever possible, emphasis has been placed on the relevance of these miRNAs to the development of human neurodegenerative diseases, such as Alzheimer's disease. Based on the current available data, we suggest that such xeno-miRNAs may (i) contribute to the beneficial properties of medicinal plants, (ii) contribute to the negative properties of disease-causing or poisonous plants, and (iii) provide cross-species communication between kingdoms of living organisms involving multiple epigenetic and/or potentially pathogenic mechanisms associated with the onset and pathogenesis of various diseases.
Collapse
Affiliation(s)
- L Cong
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA.,Department of Neurology, Shengjing Hospital, China Medical University, Heping District, Shenyang, Liaoning Province, China
| | - Y Zhao
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA.,Department of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA
| | - A I Pogue
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
| | - W J Lukiw
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA. .,Department Neurology, Louisiana State University School of Medicine, New Orleans, LA 70112-2272, USA.,Department Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112-2272, USA
| |
Collapse
|
12
|
Yanagisawa H, Sano T, Hase S, Matsushita Y. Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology 2018; 526:22-31. [PMID: 30317103 DOI: 10.1016/j.virol.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022]
Abstract
Viroids can be transmitted vertically and/or horizontally by pollen. Tomato planta macho viroid (TPMVd) has a high rate of horizontal transmission by pollen, whereas potato spindle tuber viroid (PSTVd) does not. To specify the domain(s) involved in horizontal transmission, four viroid chimeras were created by exchanging the terminal left (TL) and/or pathogenicity (P) domains between PSTVd and TPMVd. PSTVd-based chimeras containing TPMVd-TL and P, or TPMVd-TL alone, displayed a high rate of horizontal transmission. TPMVd-based chimeras containing PSTVd-TL and P lost infectivity, and those containing PSTVd-TL alone displayed a low rate of horizontal transmission. In addition, the vertical transmission rate was also higher in the mutants containing TPMVd-TL than in the others. These findings indicate that the sequences or structures in the TL and P (although the role is limited) domains are important not only for horizontal but also for vertical transmission by pollen.
Collapse
Affiliation(s)
- Hironobu Yanagisawa
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8666, Japan; The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.
| | - Teruo Sano
- Plant Pathology Laboratory, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8560, Japan.
| | - Shu Hase
- Plant Pathology Laboratory, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-0037, Japan.
| | - Yosuke Matsushita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8519, Japan.
| |
Collapse
|
13
|
Yang J, Elbaz-Younes I, Primo C, Murungi D, Hirschi KD. Intestinal permeability, digestive stability and oral bioavailability of dietary small RNAs. Sci Rep 2018; 8:10253. [PMID: 29980707 PMCID: PMC6035168 DOI: 10.1038/s41598-018-28207-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Impactful dietary RNA delivery requires improving uptake and enhancing digestive stability. In mouse feeding regimes, we have demonstrated that a plant-based ribosomal RNA (rRNA), MIR2911, is more bioavailable than synthetic MIR2911 or canonical microRNAs (miRNAs). Here mutagenesis was used to discern if MIR2911 has a distinctive sequence that aids stability and uptake. Various mutations had modest impacts while one scrambled sequence displayed significantly enhanced digestive stability, serum stability, and bioavailability. To assess if small RNA (sRNA) bioavailability in mice could be improved by increasing gut permeability, various diets, genetic backgrounds and pharmacological methods were surveyed. An intraperitoneal injection of anti-CD3 antibody enhanced gut permeability which correlated with improved uptake of the digestively stable scrambled MIR2911 variant. However, the bioavailability of canonical miRNAs was not enhanced. Similarly, interleukin-10 (IL-10)-deficient mice and mice treated with aspirin displayed enhanced gut permeability that did not enhance uptake of most plant-based sRNAs. This work supports a model where dietary RNAs are vulnerable to digestion and altering gut permeability alone will not impact apparent bioavailability. We suggest that some dietary sRNA may be more digestively stable and methods to broadly increase sRNA uptake requires delivery vehicles to optimize gut and serum stability in the consumer.
Collapse
Affiliation(s)
- Jian Yang
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Avenue, Houston, TX, 77030, USA
| | - Ismail Elbaz-Younes
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Avenue, Houston, TX, 77030, USA
| | - Cecilia Primo
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Avenue, Houston, TX, 77030, USA
| | - Danna Murungi
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Avenue, Houston, TX, 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Avenue, Houston, TX, 77030, USA.
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX, 77845, USA.
| |
Collapse
|
14
|
Islam W, Qasim M, Noman A, Adnan M, Tayyab M, Farooq TH, Wei H, Wang L. Plant microRNAs: Front line players against invading pathogens. Microb Pathog 2018. [PMID: 29524548 DOI: 10.1016/j.micpath.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plants are attacked by a large number of pathogens. To defend against these pathogens, plants activate or repress a vast array of genes. For genetic expression and reprogramming, host endogenous small RNAs (sRNAs) are the key factors. Among these sRNAs, microRNAs (miRNAs) mediate gene regulation through RNA silencing at the post-transcriptional level and play an essential role in the defense responses to biotic and abiotic stress. In the recent years, high-throughput sequencing has enabled the researchers to uncover the role of plant miRNAs during pathogen invasion. So here we have reviewed the recent research findings illustrating the plant miRNAs active involvement in various defense processes during fungal, bacterial, viral and nematode infections. However, rapid validation of direct targets of miRNAs is the dire need of time, which can be very helpful in improving the plant resistance against various pathogenic diseases.
Collapse
Affiliation(s)
- Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan.
| | - Muhammad Qasim
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China
| | - Ali Noman
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Botany, Govt. College University, Faisalabad, Pakistan
| | - Muhammad Adnan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Tayyab
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Taimoor Hassan Farooq
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huang Wei
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liande Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Islam W, Noman A, Qasim M, Wang L. Plant Responses to Pathogen Attack: Small RNAs in Focus. Int J Mol Sci 2018; 19:E515. [PMID: 29419801 PMCID: PMC5855737 DOI: 10.3390/ijms19020515] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.
Collapse
Affiliation(s)
- Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan.
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Qasim
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liande Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Processing of Potato Spindle Tuber Viroid RNAs in Yeast, a Nonconventional Host. J Virol 2017; 91:JVI.01078-17. [PMID: 28978701 DOI: 10.1128/jvi.01078-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/23/2017] [Indexed: 11/20/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a circular, single-stranded, noncoding RNA plant pathogen that is a useful model for studying the processing of noncoding RNA in eukaryotes. Infective PSTVd circles are replicated via an asymmetric rolling circle mechanism to form linear multimeric RNAs. An endonuclease cleaves these into monomers, and a ligase seals these into mature circles. All eukaryotes may have such enzymes for processing noncoding RNA. As a test, we investigated the processing of three PSTVd RNA constructs in the yeast Saccharomyces cerevisiae Of these, only one form, a construct that adopts a previously described tetraloop-containing conformation (TL), produces circles. TL has 16 nucleotides of the 3' end duplicated at the 5' end and a 3' end produced by self-cleavage of a delta ribozyme. The other two constructs, an exact monomer flanked by ribozymes and a trihelix-forming RNA with requisite 5' and 3' duplications, do not produce circles. The TL circles contain nonnative nucleotides resulting from the 3' end created by the ribozyme and the 5' end created from an endolytic cleavage by yeast at a site distinct from where potato enzymes cut these RNAs. RNAs from all three transcripts are cleaved in places not on path for circle formation, likely representing RNA decay. We propose that these constructs fold into distinct RNA structures that interact differently with host cell RNA metabolism enzymes, resulting in various susceptibilities to degradation versus processing. We conclude that PSTVd RNA is opportunistic and may use different processing pathways in different hosts.IMPORTANCE In higher eukaryotes, the majority of transcribed RNAs do not encode proteins. These noncoding RNAs are responsible for mRNA regulation, control of the expression of regulatory microRNAs, sensing of changes in the environment by use of riboswitches (RNAs that change shape in response to environmental signals), catalysis, and more roles that are still being uncovered. Some of these functions may be remnants from the RNA world and, as such, would be part of the evolutionary past of all forms of modern life. Viroids are noncoding RNAs that can cause disease in plants. Since they encode no proteins, they depend on their own RNA and on host proteins for replication and pathogenicity. It is likely that viroids hijack critical host RNA pathways for processing the host's own noncoding RNA. These pathways are still unknown. Elucidating these pathways should reveal new biological functions of noncoding RNA.
Collapse
|
17
|
Distribution of Tomato planta macho viroid in germinating pollen and transmitting tract. Virus Genes 2017; 54:124-129. [DOI: 10.1007/s11262-017-1510-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
18
|
Brass JRJ, Owens RA, Matoušek J, Steger G. Viroid quasispecies revealed by deep sequencing. RNA Biol 2017; 14:317-325. [PMID: 28027000 PMCID: PMC5367258 DOI: 10.1080/15476286.2016.1272745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022] Open
Abstract
Viroids are non-coding single-stranded circular RNA molecules that replicate autonomously in infected host plants causing mild to lethal symptoms. Their genomes contain about 250-400 nucleotides, depending on viroid species. Members of the family Pospiviroidae, like the Potato spindle tuber viroid (PSTVd), replicate via an asymmetric rolling-circle mechanism using the host DNA-dependent RNA-Polymerase II in the nucleus, while members of Avsunviroidae are replicated in a symmetric rolling-circle mechanism probably by the nuclear-encoded polymerase in chloroplasts. Viroids induce the production of viroid-specific small RNAs (vsRNA) that can direct (post-)transcriptional gene silencing against host transcripts or genomic sequences. Here, we used deep-sequencing to analyze vsRNAs from plants infected with different PSTVd variants to elucidate the PSTVd quasipecies evolved during infection. We recovered several novel as well as previously known PSTVd variants that were obviously competent in replication and identified common strand-specific mutations. The calculated mean error rate per nucleotide position was less than [Formula: see text], quite comparable to the value of [Formula: see text] reported for a member of Avsunviroidae. The resulting error threshold allows the synthesis of longer-than-unit-length replication intermediates as required by the asymmetric rolling-circle mechanism of members of Pospiviroidae.
Collapse
Affiliation(s)
- Joseph R. J. Brass
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert A. Owens
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
| | - Jaroslav Matoušek
- Biology Centre, CAS, v. v. i., Institute of Plant Molecular Biology, Branišovská, České Budějovice, Czech Republic
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Mishra AK, Duraisamy GS, Matoušek J, Radisek S, Javornik B, Jakse J. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genomics 2016; 17:919. [PMID: 27846797 PMCID: PMC5109749 DOI: 10.1186/s12864-016-3271-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hop (Humulus lupulus L.) plants are grown primarily for the brewing industry and have been used as a traditional medicinal herb for a long time. Severe hop stunt disease caused by the recently discovered Citrus bark cracking viroid (CBCVd) is one of the most devastating diseases among other viroid infections in hop. MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in gene expression regulation. To identify miRNAs in hop and their response to CBCVd-infection, two small RNA (sRNA) libraries were prepared from healthy and CBCVd-infected hop plants and were investigated by high throughput sequencing. RESULTS A total of 67 conserved and 49 novel miRNAs were identified. Among them, 36 conserved and 37 novel miRNAs were found to be differentially recovered in response to CBCVd-infection. A total of 311 potential targets was predicted for conserved and novel miRNAs based on a sequence homology search using hop transcriptome data. The majority of predicted targets significantly belonged to transcriptional factors that may regulate hop leaf, root and cone growth and development. In addition, the identified miRNAs might also play an important roles in other cellular and metabolic processes, such as signal transduction, stress response and other physiological processes, including prenylflavonoid biosynthesis pathways. Quantitative real time PCR analysis of selected targets revealed their negative correlation with their corresponding CBCVd-responsive miRNAs. CONCLUSIONS Based on the results, we concluded that CBCVd-responsive miRNAs modulate several hormone pathways and transcriptional factors that play important roles in the regulation of metabolism, growth and development. These results provide a framework for further analysis of regulatory roles of sRNAs in plant defense mechanism including other hop infecting viroids in particular.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- Biology Centre ASCR v.v.i, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre ASCR v.v.i, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre ASCR v.v.i, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Sebastjan Radisek
- Slovenian Institute of Hop Research and Brewing, Plant Protection Department, Cesta Zalskega tabora 2, Žalec, SI-3310, Slovenia
| | - Branka Javornik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
20
|
Palma-Martínez I, Guerrero-Mandujano A, Ruiz-Ruiz MJ, Hernández-Cortez C, Molina-López J, Bocanegra-García V, Castro-Escarpulli G. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City. Front Microbiol 2016; 7:1552. [PMID: 27757103 PMCID: PMC5048074 DOI: 10.3389/fmicb.2016.01552] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
RNA silencing is a conserved mechanism that utilizes small RNAs (sRNAs) to direct the regulation of gene expression at the transcriptional or post-transcriptional level. Plants utilizing RNA silencing machinery to defend pathogen infection was first identified in plant–virus interaction and later was observed in distinct plant–pathogen interactions. RNA silencing is not only responsible for suppressing RNA accumulation and movement of virus and viroid, but also facilitates plant immune responses against bacterial, oomycete, and fungal infection. Interestingly, even the same plant sRNA can perform different roles when encounters with different pathogens. On the other side, pathogens counteract by generating sRNAs that directly regulate pathogen gene expression to increase virulence or target host genes to facilitate pathogen infection. Here, we summarize the current knowledge of the characterization and biogenesis of host- and pathogen-derived sRNAs, as well as the different RNA silencing machineries that plants utilize to defend against different pathogens. The functions of these sRNAs in defense and counter-defense and their mechanisms for regulation during different plant–pathogen interactions are also discussed.
Collapse
Affiliation(s)
- Ingrid Palma-Martínez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Andrea Guerrero-Mandujano
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Manuel J Ruiz-Ruiz
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio Central de Análisis Clínicos Unidad Médica de Alta Especialidad Hospital de Pediatría "Silvestre Frenk Freund," Centro Médico Nacional Siglo XXIMexico City, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José Molina-López
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Graciela Castro-Escarpulli
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
21
|
Hadidi A, Flores R, Candresse T, Barba M. Next-Generation Sequencing and Genome Editing in Plant Virology. Front Microbiol 2016; 7:1325. [PMID: 27617007 PMCID: PMC4999435 DOI: 10.3389/fmicb.2016.01325] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023] Open
Abstract
Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture – Agricultural Research ServiceBeltsville, MD, USA
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Marina Barba
- Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria, Centro di Ricerca per la Patologia VegetaleRome, Italy
| |
Collapse
|
22
|
Abstract
Mature viroids consist of a noncoding, covalently closed circular RNA that is able to autonomously infect respective host plants. Thus, they must utilize proteins of the host for most biological functions such as replication, processing, transport, and pathogenesis. Therefore, viroids can be regarded as minimal parasites of the host machinery. They have to present to the host machinery the appropriate signals based on either their sequence or their structure. Here, we summarize such sequence and structural features critical for the biological functions of viroids.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Jean-Pierre Perreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliqueé sur le cancer, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
23
|
Adkar-Purushothama CR, Perreault JP, Sano T. Analysis of small RNA production patterns among the two potato spindle tuber viroid variants in tomato plants. GENOMICS DATA 2015; 6:65-6. [PMID: 26697336 PMCID: PMC4664692 DOI: 10.1016/j.gdata.2015.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022]
Abstract
In order to analyze the production of small RNA (sRNA) by viroids upon infecting the plants, the tomato plants (Solanum lycopersicum cultivar Rutgers) were inoculated with the variants of Potato spindle tuber viroid (PSTVd). After 21-days of postinoculation, total RNA was extracted and subjected for deep-sequencing using Illumina HiSeq platform. The primers were trimmed and only 21- to 24-nt long sRNAs were filtered after quality check of the raw data. The filtered sRNA population was then mapped against both the genomic (+) and antigenomic (−) strands of the respective PSTVd variants using standard pattern-matching algorithm. The profiling of viroid derived sRNA (vd-sRNA) revealed that the viroids are susceptible to host RNA silencing mechanism. High-throughput sequence data linked to this project have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE69225.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec J1E 4K8, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec J1E 4K8, Canada
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan
| |
Collapse
|
24
|
Su X, Fu S, Qian Y, Xu Y, Zhou X. Identification of Hop stunt viroid infecting Citrus limon in China using small RNAs deep sequencing approach. Virol J 2015; 12:103. [PMID: 26148502 PMCID: PMC4492010 DOI: 10.1186/s12985-015-0332-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/26/2015] [Indexed: 01/13/2023] Open
Abstract
Background The advent of next generation sequencing technology has allowed for significant advances in plant virus discovery, particularly for identification of covert viruses and previously undescribed viruses. The Citrus limon Burm. f. (C. limon) is a small evergreen tree native to Asia, and . China is the world’s top lemon-producing nation. Findings In this work, lemon samples were collected from southwestern of China, where an unknown disease outbreak had caused huge losses in the lemon production industry. Using high-throughput pyrosequencing and the assembly of small RNAs, we showed that the Hop stunt viroid (HSVd) was present in C. limon leaf sample. The majority of it is a main lemon producing agricultural cultivarHop stunt viroid derived siRNAs (HSVd-siRNAs) in C. limon were 21 nucleotides in length, and nearly equal amount of HSVd-siRNAs originated from the plus-genomic RNA strand as from the complementary strand. A bias of HSVd-siRNAs toward sequences beginning with a 5′-Guanine was observed. Furthermore, hotspot analysis showed that a large amount of HSVd-siRNAs derived from the central and variant domains of the HSVd genome. Conclusions Our results suggest that C. limon could set up a small RNA-mediated gene silencing response to Hop stunt viroid, Interestingly, based on bioinformatics analysis, our results also suggest that the large amounts of HSVd-siRNAs from central and variant domains might be involved in interference with host gene expression and affect symptom development.
Collapse
Affiliation(s)
- Xiu Su
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, People's Republic of China.
| | - Shuai Fu
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, People's Republic of China.
| | - Yajuan Qian
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, People's Republic of China.
| | - Yi Xu
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, People's Republic of China.
| | - Xueping Zhou
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, People's Republic of China. .,Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
25
|
Matoušek J, Piernikarczyk RJJ, Týcová A, Duraisamy GS, Kocábek T, Steger G. Expression of SANT/HTH Myb mRNA, a plant morphogenesis-regulating transcription factor, changes due to viroid infection. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:85-94. [PMID: 26118459 DOI: 10.1016/j.jplph.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/12/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Potato spindle tuber viroid (PSTVd) belongs to plant-pathogenic, circular, non-coding RNAs. Its propagation is accompanied by (mis)regulation of host genes and induction of pathogenesis symptoms including changes of leaf morphogenesis depending on the strength of viroid variant. We found strong genotype-dependent suppression of tomato morphogenesis-regulating transcription factor SANT/HTH-Myb (SlMyb) due to viroid pathogenesis. Its relative mRNA level was found to be significantly decreased in PSTVd-sensitive tomato (cvs Rutgers and Heinz 1706) due to degradation processes, but increased in PSTVd-tolerant (cv. Harzfeuer). In heterologous system of Nicotiana benthamiana, we observed a SlMyb-associated necrotic effect in agroinfiltrated leaf sectors during ectopic overexpression. Leaf sector necroses were accompanied by activation of nucleolytic enzymes but were suppressed by a strongly pathogenic PSTVd variant. Contrary to that, PSTVd's effect was inhibited by the silencing suppressor p19. It was found that in both, Solanum lycopersicum leaves and N. benthamiana leaf sectors, SlMyb mRNA degradation was significantly stronger in viroid-infected tissues. Necroses induction as well as gene silencing experiments using the SANT/HTH-Myb homologues revealed involvement of this Myb in physiological changes like distortions in flower morphogenesis and growth suppression.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- BC ASCR v. v. i., Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Rajen J J Piernikarczyk
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany.
| | - Anna Týcová
- BC ASCR v. v. i., Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Ganesh S Duraisamy
- BC ASCR v. v. i., Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Tomáš Kocábek
- BC ASCR v. v. i., Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Gerhard Steger
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany.
| |
Collapse
|
26
|
Avina-Padilla K, Martinez de la Vega O, Rivera-Bustamante R, Martinez-Soriano JP, Owens RA, Hammond RW, Vielle-Calzada JP. In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene 2015; 564:197-205. [DOI: 10.1016/j.gene.2015.03.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/13/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
|
27
|
De novo genome assembly of grapevine yellow speckle viroid 1 from a grapevine transcriptome. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00496-15. [PMID: 25999581 PMCID: PMC4440961 DOI: 10.1128/genomea.00496-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Grapevine yellow speckle viroid 1 (GYSVd1), which is a member of the genus Apscaviroid, causes yellow speckle disease in grapevines. Here, we report the complete de novo genome assembly of GYSVd1 from the grapevine transcriptome and identified 10 single nucleotide polymorphisms of GYSVd1 across the grapevine populations.
Collapse
|
28
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
29
|
Dalakouras A, Dadami E, Wassenegger M. Engineering viroid resistance. Viruses 2015; 7:634-46. [PMID: 25674769 PMCID: PMC4353907 DOI: 10.3390/v7020634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/30/2015] [Indexed: 12/31/2022] Open
Abstract
Viroids are non-encapsidated, non-coding, circular, single-stranded RNAs (ssRNAs). They are classified into the families Pospiviroidae and Avsunviroidae, whose members replicate in the nucleus and chloroplast of plant cells, respectively. Viroids have a wide host range, including crop and ornamental plants, and can cause devastating diseases with significant economic losses. Thus, several viroids are world-wide, classified as quarantine pathogens and, hence, there is an urgent need for the development of robust antiviroid strategies. RNA silencing-based technologies seem to be a promising tool in this direction. Here, we review the recent advances concerning the complex interaction of viroids with the host's RNA silencing machinery, evaluate past and present antiviroid approaches, and finally suggest alternative strategies that could potentially be employed in the future in order to achieve transgenic and non-transgenic viroid-free plants.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AIPlanta-Institute for Plant Research, Neustadt, 67435, Germany.
| | - Elena Dadami
- RLP AgroScience GmbH, AIPlanta-Institute for Plant Research, Neustadt, 67435, Germany.
| | - Michael Wassenegger
- RLP AgroScience GmbH, AIPlanta-Institute for Plant Research, Neustadt, Germany and Centre for Organisational Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, 69120, Germany.
| |
Collapse
|
30
|
Minoia S, Navarro B, Delgado S, Di Serio F, Flores R. Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Res 2015; 43:2313-25. [PMID: 25662219 PMCID: PMC4344493 DOI: 10.1093/nar/gkv034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While biogenesis of viroid RNAs is well-known, how they decay is restricted to data involving host RNA silencing. Here we report an alternative degradation pathway operating on potato spindle tuber viroid (PSTVd), the type species of nuclear-replicating viroids (family Pospiviroidae). Northern-blot hybridizations with full- and partial-length probes revealed a set of PSTVd (+) subgenomic (sg)RNAs in early-infected eggplant, some partially overlapping and reaching levels comparable to those of the genomic circular and linear forms. Part of the PSTVd (+) sgRNAs were also observed in Nicotiana benthamiana (specifically in the nuclei) and tomato, wherein they have been overlooked due to their low accumulation. Primer extensions of representative (+) sgRNAs failed to detect a common 5′ terminus, excluding that they could result from aborted transcription initiated at one specific site. Supporting this view, 5′- and 3′-RACE indicated that the (+) sgRNAs have 5′-OH and 3′-P termini most likely generated by RNase-mediated endonucleolytic cleavage of longer precursors. These approaches also unveiled PSTVd (−) sgRNAs with features similar to their (+) counterparts. Our results provide a mechanistic insight on how viroid decay may proceed in vivo during replication, and suggest that synthesis and decay of PSTVd strands might be coupled as in mRNA.
Collapse
Affiliation(s)
- Sofia Minoia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
31
|
Dalakouras A, Dadami E, Bassler A, Zwiebel M, Krczal G, Wassenegger M. Replicating Potato spindle tuber viroid mediates de novo methylation of an intronic viroid sequence but no cleavage of the corresponding pre-mRNA. RNA Biol 2015; 12:268-75. [PMID: 25826660 PMCID: PMC4615544 DOI: 10.1080/15476286.2015.1017216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 10/23/2022] Open
Abstract
In plants, Potato spindle tuber viroid (PSTVd) replication triggers post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM) of homologous RNA and DNA sequences, respectively. PTGS predominantly occurs in the cytoplasm, but nuclear PTGS has been also reported. In this study, we investigated whether the nuclear replicating PSTVd is able to trigger nuclear PTGS. Transgenic tobacco plants carrying cytoplasmic and nuclear PTGS sensor constructs were PSTVd-infected resulting in the generation of abundant PSTVd-derived small interfering RNAs (vd-siRNAs). Northern blot analysis revealed that, in contrast to the cytoplasmic sensor, the nuclear sensor transcript was not targeted for RNA degradation. Bisulfite sequencing analysis showed that the nuclear PTGS sensor transgene was efficiently targeted for RdDM. Our data suggest that PSTVd fails to trigger nuclear PTGS, and that RdDM and nuclear PTGS are not necessarily coupled.
Collapse
Affiliation(s)
| | - Elena Dadami
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Alexandra Bassler
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michele Zwiebel
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
- Centre for Organismal Studies (COS) Heidelberg; University of Heidelberg; Heidelberg, Germany
| |
Collapse
|
32
|
Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLoS Pathog 2014; 10:e1004553. [PMID: 25503469 PMCID: PMC4263765 DOI: 10.1371/journal.ppat.1004553] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022] Open
Abstract
Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of replicating circular RNAs by analysing the total small RNA populations from samples of diseased tissues with a computational program known as progressive filtering of overlapping small RNAs (PFOR). However, PFOR written in PERL language is extremely slow and is unable to discover those subviral pathogens that do not trigger in vivo accumulation of extensively overlapping small RNAs. Moreover, PFOR is yet to identify a new viroid capable of initiating independent infection. Here we report the development of PFOR2 that adopted parallel programming in the C++ language and was 3 to 8 times faster than PFOR. A new computational program was further developed and incorporated into PFOR2 to allow the identification of circular RNAs by deep sequencing of long RNAs instead of small RNAs. PFOR2 analysis of the small RNA libraries from grapevine and apple plants led to the discovery of Grapevine latent viroid (GLVd) and Apple hammerhead viroid-like RNA (AHVd-like RNA), respectively. GLVd was proposed as a new species in the genus Apscaviroid, because it contained the typical structural elements found in this group of viroids and initiated independent infection in grapevine seedlings. AHVd-like RNA encoded a biologically active hammerhead ribozyme in both polarities, and was not specifically associated with any of the viruses found in apple plants. We propose that these computational algorithms have the potential to discover novel circular RNAs in plants, invertebrates and vertebrates regardless of whether they replicate and/or induce the in vivo accumulation of small RNAs.
Collapse
|
33
|
Minoia S, Carbonell A, Di Serio F, Gisel A, Carrington JC, Navarro B, Flores R. Specific argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo. J Virol 2014; 88:11933-45. [PMID: 25100851 PMCID: PMC4178711 DOI: 10.1128/jvi.01404-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022] Open
Abstract
The identification of viroid-derived small RNAs (vd-sRNAs) of 21 to 24 nucleotides (nt) in plants infected by viroids (infectious non-protein-coding RNAs of just 250 to 400 nt) supports their targeting by Dicer-like enzymes, the first host RNA-silencing barrier. However, whether viroids, like RNA viruses, are also targeted by the RNA-induced silencing complex (RISC) remains controversial. At the RISC core is one Argonaute (AGO) protein that, guided by endogenous or viral sRNAs, targets complementary RNAs. To examine whether AGO proteins also load vd-sRNAs, leaves of Nicotiana benthamiana infected by potato spindle tuber viroid (PSTVd) were agroinfiltrated with plasmids expressing epitope-tagged versions of AGO1, AGO2, AGO3, AGO4, AGO5, AGO6, AGO7, AGO9, and AGO10 from Arabidopsis thaliana. Immunoprecipitation analyses of the agroinfiltrated halos revealed that all AGOs except AGO6, AGO7, and AGO10 associated with vd-sRNAs: AGO1, AGO2, and AGO3 preferentially with those of 21 and 22 nt, while AGO4, AGO5, and AGO9 additionally bound those of 24 nt. Deep-sequencing analyses showed that sorting of vd-sRNAs into AGO1, AGO2, AGO4, and AGO5 depended essentially on their 5'-terminal nucleotides, with the profiles of the corresponding AGO-loaded vd-sRNAs adopting specific hot spot distributions along the viroid genome. Furthermore, agroexpression of AGO1, AGO2, AGO4, and AGO5 on PSTVd-infected tissue attenuated the level of the genomic RNAs, suggesting that they, or their precursors, are RISC targeted. In contrast to RNA viruses, PSTVd infection of N. benthamiana did not affect miR168-mediated regulation of the endogenous AGO1, which loaded vd-sRNAs with specificity similar to that of its A. thaliana counterpart. Importance: To contain invaders, particularly RNA viruses, plants have evolved an RNA-silencing mechanism relying on the generation by Dicer-like (DCL) enzymes of virus-derived small RNAs of 21 to 24 nucleotides (nt) that load and guide Argonaute (AGO) proteins to target and repress viral RNA. Viroids, despite their minimal genomes (non-protein-coding RNAs of only 250 to 400 nt), infect and incite disease in plants. The accumulation in these plants of 21- to 24-nt viroid-derived small RNAs (vd-sRNAs) supports the notion that DCLs also target viroids but does not clarify whether vd-sRNAs activate one or more AGOs. Here, we show that in leaves of Nicotiana benthamiana infected by potato spindle tuber viroid, the endogenous AGO1 and distinct AGOs from Arabidopsis thaliana that were overexpressed were associated with vd-sRNAs displaying the same properties (5'-terminal nucleotide and size) previously established for endogenous and viral small RNAs. Overexpression of AGO1, AGO2, AGO4, and AGO5 attenuated viroid accumulation, supporting their role in antiviroid defense.
Collapse
Affiliation(s)
- Sofia Minoia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Andreas Gisel
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari, Italy
| | | | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
34
|
Abstract
Viroids are the smallest autonomous infectious nucleic acids known so far. With a small circular RNA genome of about 250-400 nt, which apparently does not code for any protein, viroids replicate and move systemically in host plants. Since the discovery of the first viroid almost forty-five years ago, many different viroids have been isolated, characterized and, frequently, identified as the causal agents of plant diseases. The first viroid classification scheme was proposed in the early 1990s and adopted by the International Committee on Taxonomy of Viruses (ICTV) a few years later. Here, the current viroid taxonomy scheme and the criteria for viroid species demarcation are discussed, highlighting the main taxonomic questions currently under consideration by the ICTV Viroid Study Group. The impact of correct taxonomic annotation of viroid sequence variants is also addressed, taking into consideration the increasing application of next-generation sequencing and bioinformatics for known and previously unrecognized viroids.
Collapse
|
35
|
Abstract
Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario--the so-called RNA world--existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G + C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), 46022 València, Spain;
| | | | | | | | | |
Collapse
|
36
|
Pogue AI, Hill JM, Lukiw WJ. MicroRNA (miRNA): sequence and stability, viroid-like properties, and disease association in the CNS. Brain Res 2014; 1584:73-9. [PMID: 24709119 DOI: 10.1016/j.brainres.2014.03.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/06/2014] [Accepted: 03/28/2014] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) constitute a relatively recently-discovered class of small non-coding RNAs (sncRNAs) that are gaining considerable attention in the molecular-genetic regulatory mechanisms that contribute to human health and disease. As highly soluble and mobile entities, emerging evidence indicates that miRNAs posess a highly selected ribonucleotide sequence structure, are part of an evolutionary ancient genetic signaling system, resemble the plant pathogens known as viroids in their structure, mode of generation and function, and are very abundant in the physiological fluids that surround cells and tissues. Persistence and altered abundance of miRNAs in the extracellular fluid (ECF) or cerebrospinal fluid (CSF) may play a role in the intercellular spreading of disease systemically, and throughout functionally-linked cellular and tissue systems such as the central nervous system (CNS). This short communication will review some of the more fascinating features of these highly structured single stranded RNAs (ssRNAs) with emphasis on their presence and function in the human CNS, with particular reference to Alzheimer׳s disease (AD) wherever possible.
Collapse
Affiliation(s)
| | - James M Hill
- Departments of Neurology, Neuroscience and Ophthalmology, LSU Neuroscience Center, School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| | - Walter J Lukiw
- Alchem Biotek, Toronto, ON, Canada, M5S 1A8; Departments of Neurology, Neuroscience and Ophthalmology, LSU Neuroscience Center, School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA.
| |
Collapse
|
37
|
Hill JM, Lukiw WJ. Comparing miRNAs and viroids; highly conserved molecular mechanisms for the transmission of genetic information. Front Cell Neurosci 2014; 8:45. [PMID: 24600348 PMCID: PMC3929837 DOI: 10.3389/fncel.2014.00045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/01/2014] [Indexed: 12/29/2022] Open
Affiliation(s)
- James M Hill
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Microbiology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Pharmacology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Microbiology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
38
|
Hill JM, Zhao Y, Bhattacharjee S, Lukiw WJ. miRNAs and viroids utilize common strategies in genetic signal transfer. Front Mol Neurosci 2014; 7:10. [PMID: 24574963 PMCID: PMC3918644 DOI: 10.3389/fnmol.2014.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/22/2014] [Indexed: 12/29/2022] Open
Affiliation(s)
- James M Hill
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Microbiology, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA
| | - Surjyadipta Bhattacharjee
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Neurology, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA
| |
Collapse
|
39
|
Pogue AI, Clement C, Hill JM, Lukiw WJ. Evolution of microRNA (miRNA) Structure and Function in Plants and Animals: Relevance to Aging and Disease. ACTA ACUST UNITED AC 2014; 2. [PMID: 26146648 PMCID: PMC4489142 DOI: 10.4172/2329-8847.1000119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - James M Hill
- Departments of Ophthalmology, LSU Neuroscience Center, USA ; Departments of Microbiology, LSU Neuroscience Center, USA ; Departments of Pharmacology, LSU Neuroscience Center, USA ; Departments of Neurology, LSU Neuroscience Center, USA
| | - Walter J Lukiw
- Alchem Biotek, Toronto ON, M5S 1A8, Canada ; Departments of Ophthalmology, LSU Neuroscience Center, USA ; Departments of Neurology, LSU Neuroscience Center, USA
| |
Collapse
|
40
|
Kalweit A, Hammann C. G17-modified hammerhead ribozymes are active in vitro and in vivo. RNA (NEW YORK, N.Y.) 2013; 19:1595-1604. [PMID: 24145822 PMCID: PMC3884650 DOI: 10.1261/rna.040543.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
Natural hammerhead ribozymes (HHRz) feature tertiary interactions between hairpin loops or bulges in two of three helices that surround the catalytic core of conserved nucleotides. Their conservation was originally established on minimal versions lacking the tertiary interactions. While those sequence requirements in general also apply to natural versions, we show here differences for the HHRz cleavage site N17. A guanosine at this position strongly impairs cleavage activity in minimal versions, whereas we observe for the G17 variants of four tertiary stabilized HHRz significant cleavage and ligation activity in vitro. Kinetic analyses of these variants revealed a reduced rate and extent of cleavage, compared with wild-type sequences, while variants with distorted tertiary interactions cleaved at a reduced rate, but to the same extent. Contrary to this, G17 variants exhibit similar in vitro ligation activity as compared with the respective wild-type motif. To also address the catalytic performance of these motifs in vivo, we have inserted HHRz cassettes in the lacZ gene and tested this β-galactosidase reporter in Dictyostelium discoideum. In colorimetric assays, we observe differences in the enzymatic activity of β-galactosidase, which correlate well with the activity of the different HHRz variants in vitro and which can be unambiguously attributed to ribozyme cleavage by primer extension analysis.
Collapse
|
41
|
Moelling K. What contemporary viruses tell us about evolution: a personal view. Arch Virol 2013; 158:1833-48. [PMID: 23568292 PMCID: PMC3755228 DOI: 10.1007/s00705-013-1679-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Abstract
Recent advances in information about viruses have revealed novel and surprising properties such as viral sequences in the genomes of various organisms, unexpected amounts of viruses and phages in the biosphere, and the existence of giant viruses mimicking bacteria. Viruses helped in building genomes and are driving evolution. Viruses and bacteria belong to the human body and our environment as a well-balanced ecosystem. Only in unbalanced situations do viruses cause infectious diseases or cancer. In this article, I speculate about the role of viruses during evolution based on knowledge of contemporary viruses. Are viruses our oldest ancestors?
Collapse
Affiliation(s)
- Karin Moelling
- Max Planck Institute for Molecular Genetics, Ihnestr 63-73, 14195, Berlin, Germany.
| |
Collapse
|