1
|
Lin SL, Nie QC, Law COK, Pham HQ, Chau HF, Lau TCK. A novel plasmid-encoded transposon-derived small RNA reveals the mechanism of sRNA-regulated bacterial persistence. mBio 2025; 16:e0381424. [PMID: 39998215 PMCID: PMC11980398 DOI: 10.1128/mbio.03814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Small regulatory RNAs (sRNAs) in bacteria are crucial for controlling various cellular functions and provide immediate response to the environmental stresses. Antibiotic persistence is a phenomenon that a small subpopulation of bacteria survives under the exposure of a lethal concentration of antibiotics, potentially leading to the development of drug resistance in bacteria. Here, we reported a novel transposon-derived sRNA called stnpA, which can modulate fosfomycin persistence of the bacteria. The stnpA sRNA located in the transposon with its own promoter is highly conserved among the prevalent multidrug resistance (MDR) plasmids in various pathogenic bacteria and expressed in response to the fosfomycin stress. It can directly bind to the ABC transporter, YadG, whereas this protein-RNA interaction modulated the export of fosfomycin and led to the enhancement of bacterial persistence. According to our knowledge, stnpA is the first identified transposon-derived sRNA, which controlled antibiotic persistence of bacteria, and our work demonstrated that nonresistance genes on MDR plasmids such as plasmid-encoded sRNA can provide additional survival advantages to the bacterial host against the antibiotics. In addition, the stnpA sRNA can be potentially utilized as the druggable target for the development of novel therapeutic strategies to overcome bacterial persistence. IMPORTANCE This study unveils a groundbreaking discovery in the realm of bacterial antibiotic persistence, highlighting the pivotal role of a newly identified small RNA (sRNA) called stnpA, which is a multidrug resistance plasmid-encoded transposon-derived sRNA that interacts directly with ABC transporter YadG to modulate the efflux of fosfomycin. Our findings elucidate a novel mechanism of small RNA-regulated fosfomycin persistence in bacteria that provides the potential pathway for the emergence of drug resistance in bacteria upon antibiotic treatment. Importantly, this study provides the first example of linking sRNA regulation to antibiotic persistence, presenting stnpA sRNA as a potential therapeutic target. This study underscores the critical role of noncoding RNAs in bacterial adaptation and offers valuable insights for developing new strategies to combat antibiotic persistence.
Collapse
Affiliation(s)
- Shu-Ling Lin
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Qi-Chang Nie
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Carmen Oi-Kwan Law
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Hoa-Quynh Pham
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Ho-Fai Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Menendez-Gil P, Veleva D, Virgo M, Zhang J, Ramalhete R, Ho BT. Modulation of Vibrio cholerae gene expression through conjugative delivery of engineered regulatory small RNAs. J Bacteriol 2024; 206:e0014224. [PMID: 39292012 PMCID: PMC11500501 DOI: 10.1128/jb.00142-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The increase in antibiotic resistance in bacteria has prompted the efforts in developing new alternative strategies for pathogenic bacteria. We explored the feasibility of targeting Vibrio cholerae by neutralizing bacterial cellular processes rather than outright killing the pathogen. We investigated the efficacy of delivering engineered regulatory small RNAs (sRNAs) to modulate gene expression through DNA conjugation. As a proof of concept, we engineered several sRNAs targeting the type VI secretion system (T6SS), several of which were able to successfully knockdown the T6SS activity at different degrees. Using the same strategy, we modulated exopolysaccharide production and motility. Lastly, we delivered an sRNA targeting T6SS into V. cholerae via conjugation and observed a rapid knockdown of the T6SS activity. Coupling conjugation with engineered sRNAs represents a novel way of modulating gene expression in V. cholerae opening the door for the development of novel prophylactic and therapeutic applications. IMPORTANCE Given the prevalence of antibiotic resistance, there is an increasing need to develop alternative approaches to managing pathogenic bacteria. In this work, we explore the feasibility of modulating the expression of various cellular systems in Vibrio cholerae using engineered regulatory sRNAs delivered into cells via DNA conjugation. These sRNAs are based on regulatory sRNAs found in V. cholerae and exploit its native regulatory machinery. By delivering these sRNAs conjugatively along with a real-time marker for DNA transfer, we found that complete knockdown of a targeted cellular system could be achieved within one cell division cycle after sRNA gene delivery. These results indicate that conjugative delivery of engineered regulatory sRNAs is a rapid and robust way of precisely targeting V. cholerae.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Diana Veleva
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Mollie Virgo
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Jige Zhang
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Rita Ramalhete
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Brian T. Ho
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Ghandour R, Papenfort K. Small regulatory RNAs in Vibrio cholerae. MICROLIFE 2023; 4:uqad030. [PMID: 37441523 PMCID: PMC10335731 DOI: 10.1093/femsml/uqad030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Vibrio cholerae is a major human pathogen causing the diarrheal disease, cholera. Regulation of virulence in V. cholerae is a multifaceted process involving gene expression changes at the transcriptional and post-transcriptional level. Whereas various transcription factors have been reported to modulate virulence in V. cholerae, small regulatory RNAs (sRNAs) have now been established to also participate in virulence control and the regulation of virulence-associated processes, such as biofilm formation, quorum sensing, stress response, and metabolism. In most cases, these sRNAs act by base-pairing with multiple target transcripts and this process typically requires the aid of an RNA-binding protein, such as the widely conserved Hfq protein. This review article summarizes the functional roles of sRNAs in V. cholerae, their underlying mechanisms of gene expression control, and how sRNAs partner with transcription factors to modulate complex regulatory programs. In addition, we will discuss regulatory principles discovered in V. cholerae that not only apply to other Vibrio species, but further extend into the large field of RNA-mediated gene expression control in bacteria.
Collapse
Affiliation(s)
- Rabea Ghandour
- Friedrich Schiller University Jena, Institute of Microbiology, 07745 Jena, Germany
| | - Kai Papenfort
- Corresponding author. Institute of Microbiology, General Microbiology, Friedrich Schiller University Jena, Winzerlaer Straße 2, 07745 Jena, Germany. Tel: +49-3641-949-311; E-mail:
| |
Collapse
|
4
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
5
|
Henderson CA, Vincent HA, Callaghan AJ. Reprogramming Gene Expression by Targeting RNA-Based Interactions: A Novel Pipeline Utilizing RNA Array Technology. ACS Synth Biol 2021; 10:1847-1858. [PMID: 34283568 DOI: 10.1021/acssynbio.0c00603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulatory RNA-based interactions are critical for coordinating gene expression and are increasingly being targeted in synthetic biology, antimicrobial, and therapeutic fields. Bacterial trans-encoded small RNAs (sRNAs) regulate the translation and/or stability of mRNA targets through base-pairing interactions. These interactions are often integral to complex gene circuits which coordinate critical bacterial processes. The ability to predictably modulate these gene circuits has potential for reprogramming gene expression for synthetic biology and antibacterial purposes. Here, we present a novel pipeline for targeting such RNA-based interactions with antisense oligonucleotides (ASOs) in order to reprogram gene expression. As proof-of-concept, we selected sRNA-mRNA interactions that are central to the Vibrio cholerae quorum sensing pathway, required for V. cholerae pathogenesis, as a regulatory RNA-based interaction input. We rationally designed anti-sRNA ASOs to target the sRNAs and synthesized them as peptide nucleic acids (PNAs). Next, we devised an RNA array-based interaction assay to allow screening of the anti-sRNA ASOs in vitro. Finally, an Escherichia coli-based gene expression reporter assay was developed and used to validate anti-sRNA ASO regulatory activity in a cellular environment. The output from the pipeline was an anti-sRNA ASO that targets sRNAs to inhibit sRNA-mRNA interactions and modulate gene expression. This anti-sRNA ASO has potential for reprogramming gene expression for synthetic biology and/or antibacterial purposes. We anticipate that this pipeline will find widespread use in fields targeting RNA-based interactions as modulators of gene expression.
Collapse
Affiliation(s)
- Charlotte A. Henderson
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| |
Collapse
|
6
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Biswas R, Ghosh D, Dutta B, Halder U, Goswami P, Bandopadhyay R. Potential Non-coding RNAs from Microorganisms and their Therapeutic Use in the Treatment of Different Human Cancers. Curr Gene Ther 2021; 21:207-215. [PMID: 33390136 DOI: 10.2174/1566523220999201230204814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Cancer therapy describes the treatment of cancer, often with surgery, chemotherapy, and radiotherapy. Additionally, RNA interference (RNAi) is likely to be considered a new emerging, alternative therapeutic approach for silencing/targeting cancer-related genes. RNAi can exert antiproliferative and proapoptotic effects by targeting functional carcinogenic molecules or knocking down gene products of cancer-related genes. However, in contrast to conventional cancer therapies, RNAi based therapy seems to have fewer side effects. Transcription signal sequence and conserved sequence analysis-showed that microorganisms could be a potent source of non-coding RNAs. This review concluded that mapping of RNAi mechanism and RNAi based drug delivery approaches is expected to lead a better prospective of cancer therapy.
Collapse
Affiliation(s)
- Raju Biswas
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Dipanjana Ghosh
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Bhramar Dutta
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Urmi Halder
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Prittam Goswami
- Haldia Institute of Technology, HIT College Rd, Kshudiram Nagar, Haldia-721657, West Bengal, India
| | - Rajib Bandopadhyay
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
8
|
Choi O, Kang B, Lee Y, Lee Y, Kim J. Pantoea ananatis carotenoid production confers toxoflavin tolerance and is regulated by Hfq-controlled quorum sensing. Microbiologyopen 2020; 10:e1143. [PMID: 33269542 PMCID: PMC7883899 DOI: 10.1002/mbo3.1143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Carotenoids are widely used in functional foods, cosmetics, and health supplements, and their importance and scope of use are continuously expanding. Here, we characterized carotenoid biosynthetic genes of the plant‐pathogenic bacterium Pantoea ananatis, which carries a carotenoid biosynthetic gene cluster (including crtE, X, Y, I, B, and Z) on a plasmid. Reverse transcription–polymerase chain reaction (RT‐PCR) analysis revealed that the crtEXYIB gene cluster is transcribed as a single transcript and crtZ is independently transcribed in the opposite direction. Using splicing by overlap extension with polymerase chain reaction (SOE by PCR) based on asymmetric amplification, we reassembled crtE–B, crtE–B–I, and crtE–B–I–Y. High‐performance liquid chromatography confirmed that Escherichia coli expressing the reassembled crtE–B, crtE–B–I, and crtE–B–I–Y operons produced phytoene, lycopene, and β‐carotene, respectively. We found that the carotenoids conferred tolerance to UV radiation and toxoflavin. Pantoea ananatis shares rice environments with the toxoflavin producer Burkholderia glumae and is considered to be the first reported example of producing and using carotenoids to withstand toxoflavin. We confirmed that carotenoid production by P. ananatis depends on RpoS, which is positively regulated by Hfq/ArcZ and negatively regulated by ClpP, similar to an important regulatory network of E. coli (HfqArcZ →RpoS Ͱ ClpXP). We also demonstrated that Hfq‐controlled quorum signaling de‐represses EanR to activate RpoS, thereby initiating carotenoid production. Survival genes such as those responsible for the production of carotenoids of the plant‐pathogenic P. ananatis must be expressed promptly to overcome stressful environments and compete with other microorganisms. This mechanism is likely maintained by a brake with excellent performance, such as EanR.
Collapse
Affiliation(s)
- Okhee Choi
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Korea
| | - Byeongsam Kang
- Division of Applied Life Science, Gyeongsang National University, Jinju, Korea
| | - Yongsang Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju, Korea
| | - Yeyeong Lee
- Department of Plant Medicine, Gyeongsang National University, Jinju, Korea
| | - Jinwoo Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Korea.,Division of Applied Life Science, Gyeongsang National University, Jinju, Korea.,Department of Plant Medicine, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
9
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Chen L, Gu L, Geng X, Xu G, Huang X, Zhu X. A novel cis antisense RNA AsfD promotes Salmonella enterica serovar Typhi motility and biofilm formation. Microb Pathog 2020; 142:104044. [PMID: 32032766 DOI: 10.1016/j.micpath.2020.104044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Bacterial non-coding RNAs (ncRNAs) can participate in multiple biological processes, including motility, biofilm formation, and virulence. Using high-throughput sequencing and transcriptome analysis of Salmonella enterica serovar Typhi (S. Typhi), we identified a novel antisense RNA located at the opposite strand of the flhDC operon. In this study, a northern blot and qRT-PCR were used to confirm the expression of this newfound antisense RNA in S. Typhi. Moreover, 5' RACE and 3' RT-PCR were performed to reveal the molecular characteristics of the antisense RNA, which was 2079 nt - 2179 nt in length, covered the entire flhDC operon sequence, and termed AsfD. The level of AsfD expression was higher during the stationary phase of S. Typhi and activated by the regulators, OmpR and Fis. When AsfD was overexpressed, the level of flagellar gene flhDC transcription increased; moreover, the level of fliA and fljB expression, as well as the motility and biofilm formation of S. Typhi were also enhanced. The results of this study suggest that AsfD is likely to enhance the motility and biofilm formation of S. Typhi by up-regulating flhDC expression.
Collapse
Affiliation(s)
- Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Liping Gu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Xinfeng Geng
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaojue Zhu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China.
| |
Collapse
|
11
|
Zadeh Hosseingholi E, Zarrini G, Pashazadeh M, Gheibi Hayat SM, Molavi G. In Silico Identification of Probable Drug and Vaccine Candidates Against Antibiotic-Resistant Acinetobacter baumannii. Microb Drug Resist 2019; 26:456-467. [PMID: 31742478 DOI: 10.1089/mdr.2019.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is known as a Gram-negative bacterium that has become one of the most important health problems due to antibiotic resistance. Today, numerous efforts are being made to find new antibiotics against this nosocomial pathogen. As an alternative solution, finding bacterial target(s), necessary for survival and spread of most resistant strains, can be a benefit exploited in drug and vaccine design. In this study, a list of extensive drug-resistant and carbapenem-resistant (multidrug resistant) A. bumannii strains with complete sequencing of genome were prepared and common hypothetical proteins (HPs) composed of more than 200 amino acids were selected. Then, a number of bioinformatics tools were combined for functional assignments of HPs using their sequence. Overall, among 18 in silico investigated proteins, the results showed that 7 proteins implicated in transcriptional regulation, pilus assembly, protein catabolism, fatty acid biosynthesis, adhesion, urea catalysis, and hydrolysis of phosphate monoesters have theoretical potential of involvement in successful survival and pathogenesis of A. baumannii. In addition, immunological analyses with prediction softwares indicated 4 HPs to be probable vaccine candidates. The outcome of this work will be helpful to find novel vaccine design candidates and therapeutic targets for A. baumannii through experimental investigations.
Collapse
Affiliation(s)
| | - Gholamreza Zarrini
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Marayam Pashazadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Shin GY, Schachterle JK, Shyntum DY, Moleleki LN, Coutinho TA, Sundin GW. Functional Characterization of a Global Virulence Regulator Hfq and Identification of Hfq-Dependent sRNAs in the Plant Pathogen Pantoea ananatis. Front Microbiol 2019; 10:2075. [PMID: 31572315 PMCID: PMC6749038 DOI: 10.3389/fmicb.2019.02075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
To successfully infect plant hosts, the collective regulation of virulence factors in a bacterial pathogen is crucial. Hfq is an RNA chaperone protein that facilitates the small RNA (sRNA) regulation of global gene expression at the post-transcriptional level. In this study, the functional role of Hfq in a broad host range phytopathogen Pantoea ananatis was determined. Inactivation of the hfq gene in P. ananatis LMG 2665T resulted in the loss of pathogenicity and motility. In addition, there was a significant reduction of quorum sensing signal molecule acyl-homoserine lactone (AHL) production and biofilm formation. Differential sRNA expression analysis between the hfq mutant and wild-type strains of P. ananatis revealed 276 sRNAs affected in their abundance by the loss of hfq at low (OD600 = 0.2) and high cell (OD600 = 0.6) densities. Further analysis identified 25 Hfq-dependent sRNAs, all showing a predicted Rho-independent terminator of transcription and mapping within intergenic regions of the P. ananatis genome. These included known sRNAs such as ArcZ, FnrS, GlmZ, RprA, RyeB, RyhB, RyhB2, Spot42, and SsrA, and 16 novel P. ananatis sRNAs. The current study demonstrated that Hfq is an important component of the collective regulation of virulence factors and sets a foundation for understanding Hfq-sRNA mediated regulation in the phytopathogen P. ananatis.
Collapse
Affiliation(s)
- Gi Yoon Shin
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Divine Y Shyntum
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lucy N Moleleki
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Teresa A Coutinho
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Chuang SK, Vrla GD, Fröhlich KS, Gitai Z. Surface association sensitizes Pseudomonas aeruginosa to quorum sensing. Nat Commun 2019; 10:4118. [PMID: 31511506 PMCID: PMC6739362 DOI: 10.1038/s41467-019-12153-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/19/2019] [Indexed: 11/09/2022] Open
Abstract
In the pathogen Pseudomonas aeruginosa, LasR is a quorum sensing (QS) master regulator that senses the concentration of secreted autoinducers as a proxy for bacterial cell density. Counterintuitively, previous studies showed that saturating amounts of the LasR ligand, 3OC12-HSL, fail to induce the full LasR regulon in low-density liquid cultures. Here we demonstrate that surface association, which is necessary for many of the same group behaviors as QS, promotes stronger QS responses. We show that lasR is upregulated upon surface association, and that surface-associated bacteria induce LasR targets more strongly in response to autoinducer than planktonic cultures. This increased sensitivity may be due to surface-dependent lasR induction initiating a positive feedback loop through the small RNA, Lrs1. The increased sensitivity of surface-associated cells to QS is affected by the type IV pilus (TFP) retraction motors and the minor pilins. The coupling of physical surface responses and chemical QS responses could enable these bacteria to trigger community behaviors more robustly when they are more beneficial.
Collapse
Affiliation(s)
- Sara K Chuang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Geoffrey D Vrla
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Kathrin S Fröhlich
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152, Martinsried, Germany
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA.
| |
Collapse
|
14
|
Sass AM, De Waele S, Daled S, Devreese B, Deforce D, Van Nieuwerburgh F, Coenye T. Small RNA NcS27 co-regulates utilization of carbon sources in Burkholderia cenocepacia J2315. MICROBIOLOGY-SGM 2019; 165:1135-1150. [PMID: 31464662 DOI: 10.1099/mic.0.000848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small non-coding sRNAs have versatile roles in regulating bacterial metabolism. Four short homologous Burkholderia cenocepacia sRNAs strongly expressed under conditions of growth arrest were recently identified. Here we report the detailed investigation of one of these, NcS27. sRNA NcS27 contains a short putative target recognition sequence, which is conserved throughout the order Burkholderiales. This sequence is the reverse complement of the Shine-Dalgarno sequence of a large number of genes involved in transport and metabolism of amino acids and carbohydrates. Overexpression of NcS27 sRNA had a distinct impact on growth, attenuating growth on a variety of substrates such as phenylalanine, tyrosine, glycerol and galactose, while having no effect on growth on other substrates. Transcriptomics and proteomics of NcS27 overexpression and silencing mutants revealed numerous predicted targets changing expression, notably of genes involved in degradation of aromatic amino acids phenylalanine and tyrosine, and in transport of carbohydrates. The conserved target recognition sequence was essential for growth phenotypes and gene expression changes. Cumulatively, our data point to a role of NcS27 in regulating the shutdown of metabolism upon nutrient deprivation in B. cenocepacia. We propose Burkholderiadouble-hairpin sRNA regulator bdhR1 as designation for ncS27.
Collapse
Affiliation(s)
- Andrea M Sass
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Stijn De Waele
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Simon Daled
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Transcription of cis Antisense Small RNA MtlS in Vibrio cholerae Is Regulated by Transcription of Its Target Gene, mtlA. J Bacteriol 2019; 201:JB.00178-19. [PMID: 31036726 PMCID: PMC6597380 DOI: 10.1128/jb.00178-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/22/2019] [Indexed: 01/12/2023] Open
Abstract
Vibrio cholerae is a bacterial pathogen that relies on genetic tools, such as regulatory RNAs, to adapt to changing extracellular conditions. While many studies have focused on how these regulatory RNAs function, fewer have focused on how they are themselves modulated. V. cholerae expresses the noncoding RNA MtlS, which can regulate mannitol transport and use, and here we demonstrate that MtlS levels are controlled by the level of transcription occurring in the antisense direction. Our findings provide a model of regulation describing how bacteria like V. cholerae can modulate the levels of an important regulatory RNA. Our work contributes to knowledge of how bacteria deploy regulatory RNAs as an adaptive mechanism to buffer against environmental flux. Vibrio cholerae, the facultative pathogen responsible for cholera disease, continues to pose a global health burden. Its persistence can be attributed to a flexible genetic tool kit that allows for adaptation to different environments with distinct carbon sources, including the six-carbon sugar alcohol mannitol. V. cholerae takes up mannitol through the transporter protein MtlA, whose production is downregulated at the posttranscriptional level by MtlS, a cis antisense small RNA (sRNA) whose promoter lies within the mtlA open reading frame. Though it is known that mtlS expression is robust under growth conditions lacking mannitol, it has remained elusive as to what factors govern the steady-state levels of MtlS. Here, we show that manipulating mtlA transcription is sufficient to drive inverse changes in MtlS levels, likely through transcriptional interference. This work has uncovered a cis-acting sRNA whose expression pattern is predominantly controlled by transcription of the sRNA’s target gene. IMPORTANCEVibrio cholerae is a bacterial pathogen that relies on genetic tools, such as regulatory RNAs, to adapt to changing extracellular conditions. While many studies have focused on how these regulatory RNAs function, fewer have focused on how they are themselves modulated. V. cholerae expresses the noncoding RNA MtlS, which can regulate mannitol transport and use, and here we demonstrate that MtlS levels are controlled by the level of transcription occurring in the antisense direction. Our findings provide a model of regulation describing how bacteria like V. cholerae can modulate the levels of an important regulatory RNA. Our work contributes to knowledge of how bacteria deploy regulatory RNAs as an adaptive mechanism to buffer against environmental flux.
Collapse
|
16
|
Ahmed SA, Raabe CA, Cheah HL, Hoe CH, Rozhdestvensky TS, Tang TH. Utilization of Small RNA Genes to Distinguish Vibrio cholerae Biotypes via Multiplex Polymerase Chain Reaction. Am J Trop Med Hyg 2019; 100:1328-1334. [PMID: 30963989 PMCID: PMC6553896 DOI: 10.4269/ajtmh.18-0525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
The diarrheal disease "cholera" is caused by Vibrio cholerae, and is primarily confined to endemic regions, mostly in Africa and Asia. It is punctuated by outbreaks and creates severe challenges to public health. The disease-causing strains are most-often members of serogroups O1 and O139. PCR-based methods allow rapid diagnosis of these pathogens, including the identification of their biotypes. However, this necessitates the selection of specific target sequences to differentiate even the closely related biotypes of V. cholerae. Oligonucleotides for selective amplification of small RNA (sRNA) genes that are specific to these V. cholerae subtypes were designed. The resulting multiplex PCR assay was validated using V. cholerae cultures (i.e., 19 V. cholerae and 22 non-V. cholerae isolates) and spiked stool samples. The validation using V. cholerae cultures and spiked stool suspensions revealed detection limits of 10-100 pg DNA per reaction and 1.5 cells/mL suspension, respectively. The multiplex PCR assay that targets sRNA genes for amplification enables the sensitive and specific detection, as well as the differentiation of V. cholerae-O1 classical, O1 El Tor, and O139 biotypes. Most importantly, the assay enables fast and cheaper diagnosis compared with classic culture-based methods.
Collapse
Affiliation(s)
- Siti Aminah Ahmed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| | - Carsten A. Raabe
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
- Brandenburg Medical School (Medizinische Hochschule Brandenburg [MHB]), Neuruppin, Germany
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Hong Leong Cheah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| | - Chee Hock Hoe
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kelantan, Malaysia
| | - Timofey S. Rozhdestvensky
- Medical Faculty, Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Thean Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| |
Collapse
|
17
|
Sinha D, Matz LM, Cameron TA, De Lay NR. Poly(A) polymerase is required for RyhB sRNA stability and function in Escherichia coli. RNA (NEW YORK, N.Y.) 2018; 24:1496-1511. [PMID: 30061117 PMCID: PMC6191717 DOI: 10.1261/rna.067181.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/24/2018] [Indexed: 05/05/2023]
Abstract
Small regulatory RNAs (sRNAs) are an important class of bacterial post-transcriptional regulators that control numerous physiological processes, including stress responses. In Gram-negative bacteria including Escherichia coli, the RNA chaperone Hfq binds many sRNAs and facilitates pairing to target transcripts, resulting in changes in mRNA transcription, translation, or stability. Here, we report that poly(A) polymerase (PAP I), which promotes RNA degradation by exoribonucleases through the addition of poly(A) tails, has a crucial role in the regulation of gene expression by Hfq-dependent sRNAs. Specifically, we show that deletion of pcnB, encoding PAP I, paradoxically resulted in an increased turnover of certain Hfq-dependent sRNAs, including RyhB. RyhB instability in the pcnB deletion strain was suppressed by mutations in hfq or ryhB that disrupt pairing of RyhB with target RNAs, by mutations in the 3' external transcribed spacer of the glyW-cysT-leuZ transcript (3'ETSLeuZ) involved in pairing with RyhB, or an internal deletion in rne, which encodes the endoribonuclease RNase E. Finally, the reduced stability of RyhB in the pcnB deletion strain resulted in impaired regulation of some of its target mRNAs, specifically sodB and sdhCDAB. Altogether our data support a model where PAP I plays a critical role in ensuring the efficient decay of the 3'ETSLeuZ In the absence of PAP I, the 3'ETSLeuZ transcripts accumulate, bind Hfq, and pair with RyhB, resulting in its depletion via RNase E-mediated decay. This ultimately leads to a defect in RyhB function in a PAP I deficient strain.
Collapse
Affiliation(s)
- Dhriti Sinha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Lisa M Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Transcriptome-Wide Analysis of Protein-RNA and RNA-RNA Interactions in Pathogenic Bacteria. Methods Enzymol 2018; 612:467-488. [PMID: 30502953 DOI: 10.1016/bs.mie.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Regulatory RNAs and RNA-binding proteins (RBPs) play critical roles in virulence gene expression in pathogenic bacteria. A wealth of regulatory RNAs have been identified in bacterial pathogens using RNA-seq and recent technical advances are uncovering their mRNA targets. UV-crosslinking is a powerful tool for identifying protein binding sites throughout the transcriptome providing base-pair resolution of sites in vivo. With minor modifications to the protocol, RNA-RNA interactions can also be captured by proximity-dependent ligation of RNA pairs on the protein. Here, we described a high-stringency UV-crosslinking method for recovery of both protein-RNA interactions (CRAC) and RNA-RNA interactions occurring on the bait protein (CLASH). These analyses provide complementary data that provide insights into RBP, and regulatory RNA function.
Collapse
|
19
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
20
|
Xiong C, Li X, Liu J, Zhao X, Xu S, Huang X. Identification and Characterization of a Cis Antisense RNA of the rpoH Gene of Salmonella enterica Serovar Typhi. Front Microbiol 2018; 9:978. [PMID: 29867881 PMCID: PMC5963218 DOI: 10.3389/fmicb.2018.00978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Antisense RNAs from complementary strands of protein coding genes regulate the expression of genes involved in many cellular processes. Using deep sequencing analysis of the Salmonella enterica serovar Typhi (S. Typhi) transcriptome, a novel antisense RNA encoded on the strand complementary to the rpoH gene was revealed. In this study, the molecular features of this antisense RNA were assessed using northern blotting and rapid amplification of cDNA ends. The 3,508 nt sequence of RNA was identified as the antisense RNA of the rpoH gene and was named ArpH. ArpH was found to attenuate the invasion of HeLa cells by S. Typhi by regulating the expression of SPI-1 genes. In an rpoH mutant strain, the invasive capacity of S. Typhi was increased, whereas overexpression of ArpH positively regulates rpoH mRNA levels. Results of this study suggest that the cis-encoded antisense RNA ArpH is likely to affect the invasive capacity of S. Typhi by regulating the expression of rpoH.
Collapse
Affiliation(s)
- Changyan Xiong
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China.,Department of Forensic Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuejiao Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China.,Department of Laboratory Diagnosis, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Juanli Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xin Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shungao Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Sheehan LM, Caswell CC. An account of evolutionary specialization: the AbcR small RNAs in the Rhizobiales. Mol Microbiol 2017; 107:24-33. [PMID: 29076560 DOI: 10.1111/mmi.13869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 01/26/2023]
Abstract
The AbcR small RNAs (sRNAs) are a fascinating example of two highly conserved sRNAs that differ tremendously at the functional level among organisms. From their transcriptional activation to their regulatory capabilities, the AbcR sRNAs exhibit varying characteristics in three well-studied bacteria belonging to the Rhizobiales order: the plant symbiont Sinorhizobium meliloti, the plant pathogen Agrobacterium tumefaciens, and the animal pathogen Brucella abortus. This review outlines the similarities and differences of the AbcR sRNAs between each of these organisms, and discusses reasons as to why this group of sRNAs has diverged in their genetic organization and regulatory functions across species. In the end, this review will shed light on how regulatory systems, although seemingly conserved among bacteria, can vary based on the environmental niche and lifestyle of an organism.
Collapse
Affiliation(s)
- Lauren M Sheehan
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
22
|
Saramago M, Peregrina A, Robledo M, Matos RG, Hilker R, Serrania J, Becker A, Arraiano CM, Jiménez-Zurdo JI. Sinorhizobium meliloti YbeY is an endoribonuclease with unprecedented catalytic features, acting as silencing enzyme in riboregulation. Nucleic Acids Res 2017; 45:1371-1391. [PMID: 28180335 PMCID: PMC5388416 DOI: 10.1093/nar/gkw1234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/23/2023] Open
Abstract
Structural and biochemical features suggest that the almost ubiquitous bacterial YbeY protein may serve catalytic and/or Hfq-like protective functions central to small RNA (sRNA)-mediated regulation and RNA metabolism. We have biochemically and genetically characterized the YbeY ortholog of the legume symbiont Sinorhizobium meliloti (SmYbeY). Co-immunoprecipitation (CoIP) with a FLAG-tagged SmYbeY yielded a poor enrichment in RNA species, compared to Hfq CoIP-RNA uncovered previously by a similar experimental setup. Purified SmYbeY behaved as a monomer that indistinctly cleaved single- and double-stranded RNA substrates, a unique ability among bacterial endoribonucleases. SmYbeY-mediated catalysis was supported by the divalent metal ions Mg2+, Mn2+ and Ca2+, which influenced in a different manner cleavage efficiency and reactivity patterns, with Ca2+ specifically blocking activity on double-stranded and some structured RNA molecules. SmYbeY loss-of-function compromised expression of core energy and RNA metabolism genes, whilst promoting accumulation of motility, late symbiotic and transport mRNAs. Some of the latter transcripts are known Hfq-binding sRNA targets and might be SmYbeY substrates. Genetic reporter and in vitro assays confirmed that SmYbeY is required for sRNA-mediated down-regulation of the amino acid ABC transporter prbA mRNA. We have thus discovered a bacterial endoribonuclease with unprecedented catalytic features, acting also as gene silencing enzyme.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
- These authors contributed equally to the work as the first authors
| | - Alexandra Peregrina
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- These authors contributed equally to the work as the first authors
| | - Marta Robledo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- These authors contributed equally to the work as the first authors
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Rolf Hilker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Cecilia M. Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - José I. Jiménez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- To whom correspondence should be addressed. Tel: +34 958181600; Fax: +34 958181609;
| |
Collapse
|
23
|
McNerney MP, Styczynski MP. Small molecule signaling, regulation, and potential applications in cellular therapeutics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [PMID: 28960879 DOI: 10.1002/wsbm.1405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Small molecules have many important roles across the tree of life: they regulate processes from metabolism to transcription, they enable signaling within and between species, and they serve as the biochemical building blocks for cells. They also represent valuable phenotypic endpoints that are promising for use as biomarkers of disease states. In the context of engineering cell-based therapeutics, they hold particularly great promise for enabling finer control over the therapeutic cells and allowing them to be responsive to extracellular cues. The natural signaling and regulatory functions of small molecules can be harnessed and rewired to control cell activity and delivery of therapeutic payloads, potentially increasing efficacy while decreasing toxicity. To that end, this review considers small molecule-mediated regulation and signaling in bacteria. We first discuss some of the most prominent applications and aspirations for responsive cell-based therapeutics. We then describe the transport, signaling, and regulation associated with three classes of molecules that may be exploited in the engineering of therapeutic bacteria: amino acids, fatty acids, and quorum-sensing signaling molecules. We also present examples of existing engineering efforts to generate cells that sense and respond to levels of different small molecules. Finally, we discuss future directions for how small molecule-mediated regulation could be harnessed for therapeutic applications, as well as some critical considerations for the ultimate success of such endeavors. WIREs Syst Biol Med 2018, 10:e1405. doi: 10.1002/wsbm.1405 This article is categorized under: Biological Mechanisms > Cell Signaling Biological Mechanisms > Metabolism Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Monica P McNerney
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
24
|
Chen ICK, Velicer GJ, Yu YTN. Divergence of functional effects among bacterial sRNA paralogs. BMC Evol Biol 2017; 17:199. [PMID: 28830343 PMCID: PMC5568312 DOI: 10.1186/s12862-017-1037-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-coding small RNAs (sRNAs) regulate a variety of important biological processes across all life domains, including bacteria. However, little is known about the functional evolution of sRNAs in bacteria, which might occur via changes in sRNA structure and/or stability or changes in interactions between sRNAs and their associated regulatory networks, including target mRNAs. The sRNA Pxr functions as a developmental gatekeeper in the model cooperative bacterium Myxococcus xanthus. Specifically, Pxr prevents the initiation of fruiting body development when nutrients are abundant. Previous work has shown that Pxr appears to have a recent origin within a sub-clade of the myxobacteria, which allowed us to infer the most recent common ancestor of pxr and examine the divergence of Pxr since its origin. RESULTS To test for inter-specific divergence in functional effects, extant pxr homologs from several species and their inferred ancestor were introduced into an M. xanthus deletion mutant lacking pxr. Both the inferred ancestral pxr and all extant alleles from species containing only one copy of pxr were found to control development in M. xanthus in a qualitatively similar manner to the native M. xanthus allele. However, multiple paralogs present in Cystobacter species exhibited divergent effects, with two paralogs controlling M. xanthus development but two others failing to do so. These differences may have occurred through changes in gene expression caused by apparent structural differences in the sRNA variants encoded by these paralogs. CONCLUSIONS Taken together, our results suggest that Pxr plays a common fundamental role in developmental gene regulation across diverse species of myxobacteria but also that the functional effects of some Pxr variants may be evolving in some lineages.
Collapse
Affiliation(s)
- I-Chen Kimberly Chen
- Department of Biology, Indiana University, Bloomington, IN47405, USA. .,Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland. .,Present address: School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332, USA.
| | - Gregory J Velicer
- Department of Biology, Indiana University, Bloomington, IN47405, USA.,Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- Department of Biology, Indiana University, Bloomington, IN47405, USA.,Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| |
Collapse
|
25
|
Pannekoek Y, Huis In 't Veld R, Schipper K, Bovenkerk S, Kramer G, Speijer D, van der Ende A. Regulation of Neisseria meningitidis cytochrome bc1 components by NrrF, a Fur-controlled small noncoding RNA. FEBS Open Bio 2017; 7:1302-1315. [PMID: 28904860 PMCID: PMC5586341 DOI: 10.1002/2211-5463.12266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
Abstract
NrrF is a small regulatory RNA of the human pathogen Neisseria meningitidis. NrrF was previously shown to repress succinate dehydrogenase (sdhCDAB) under control of the ferric uptake regulator (Fur). Here, we provide evidence that cytochrome bc1 , encoded by the polycistronic mRNA petABC, is a NrrF target as well. We demonstrated differential expression of cytochrome bc1 comparing wild-type meningococci and meningococci expressing NrrF when sufficient iron is available. Using a gfp-reporter system monitoring translational control and target recognition of sRNA in Escherichia coli, we show that interaction between NrrF and the 5' untranslated region of the petABC mRNA results in its repression. The NrrF region essential for repression of petABC was identified by site-directed mutagenesis and is fully conserved among meningococci. Our results provide further insights into the mechanism by which Fur controls essential components of the N. meningitidis respiratory chain. Adaptation of cytochrome bc1 complex component levels upon iron limitation is post-transcriptionally regulated via the small regulatory RNA NrrF.
Collapse
Affiliation(s)
- Yvonne Pannekoek
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Robert Huis In 't Veld
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Kim Schipper
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Sandra Bovenkerk
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Gertjan Kramer
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands.,Present address: Genome Biology Unit EMBL Heidelberg Heidelberg Germany
| | - Dave Speijer
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| |
Collapse
|
26
|
Álvarez-Fraga L, Rumbo-Feal S, Pérez A, Gómez MJ, Gayoso C, Vallejo JA, Ohneck EJ, Valle J, Actis LA, Beceiro A, Bou G, Poza M. Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978. PLoS One 2017; 12:e0182084. [PMID: 28763494 PMCID: PMC5538643 DOI: 10.1371/journal.pone.0182084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022] Open
Abstract
Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978.
Collapse
Affiliation(s)
- Laura Álvarez-Fraga
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Soraya Rumbo-Feal
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Astrid Pérez
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Manuel J. Gómez
- Department of Molecular Evolution, Center for Astrobiology, INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Carmen Gayoso
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Juan A. Vallejo
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Emily J. Ohneck
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Jaione Valle
- Departamento de Biofilms Microbianos, Instituto de Agrobiotecnología, Navarra, Spain
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Alejandro Beceiro
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Germán Bou
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- * E-mail: (GB); (MP)
| | - Margarita Poza
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- * E-mail: (GB); (MP)
| |
Collapse
|
27
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
28
|
James K, Cockell SJ, Zenkin N. Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics. Methods 2017; 120:76-84. [PMID: 28434904 DOI: 10.1016/j.ymeth.2017.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/13/2023] Open
Abstract
The identification of the protein-coding regions of a genome is straightforward due to the universality of start and stop codons. However, the boundaries of the transcribed regions, conditional operon structures, non-coding RNAs and the dynamics of transcription, such as pausing of elongation, are non-trivial to identify, even in the comparatively simple genomes of prokaryotes. Traditional methods for the study of these areas, such as tiling arrays, are noisy, labour-intensive and lack the resolution required for densely-packed bacterial genomes. Recently, deep sequencing has become increasingly popular for the study of the transcriptome due to its lower costs, higher accuracy and single nucleotide resolution. These methods have revolutionised our understanding of prokaryotic transcriptional dynamics. Here, we review the deep sequencing and data analysis techniques that are available for the study of transcription in prokaryotes, and discuss the bioinformatic considerations of these analyses.
Collapse
Affiliation(s)
- Katherine James
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK.
| | - Simon J Cockell
- Bioinformatics Support Unit, Newcastle University, William Leech Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
29
|
Pérez-Reytor D, Plaza N, Espejo RT, Navarrete P, Bastías R, Garcia K. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios. Front Microbiol 2017; 7:2160. [PMID: 28123382 PMCID: PMC5225090 DOI: 10.3389/fmicb.2016.02160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
In recent decades, the identification of small non-coding RNAs in bacteria has revealed an important regulatory mechanism of gene expression involved in the response to environmental signals and to the control of virulence. In the family Vibrionaceae, which includes several human and animal pathogens, small non-coding RNAs (sRNAs) are closely related to important processes including metabolism, quorum sensing, virulence, and fitness. Studies conducted in silico and experiments using microarrays and high-throughput RNA sequencing have led to the discovery of an unexpected number of sRNAs in Vibrios. The present review discusses the most relevant reports regarding the mechanisms of action of sRNAs and their implications in the virulence of the main human pathogens in the family Vibrionaceae: Vibrio parahaemolyticus, V. vulnificus and V. cholerae.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile San Miguel, Chile
| | - Nicolás Plaza
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSan Miguel, Chile; Institute of Nutrition and Food Technology, University of ChileSantiago, Chile
| | - Romilio T Espejo
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Roberto Bastías
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Katherine Garcia
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile San Miguel, Chile
| |
Collapse
|
30
|
Hawver LA, Giulietti JM, Baleja JD, Ng WL. Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability. mBio 2016; 7:e01863-16. [PMID: 27923919 PMCID: PMC5142617 DOI: 10.1128/mbio.01863-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Quorum sensing (QS) is a microbial cell-cell communication system that regulates gene expression in response to population density to coordinate collective behaviors. Yet, the role of QS in resolving the stresses caused by the accumulation of toxic metabolic by-products at high cell density is not well defined. In response to cell density, QS could be involved in reprogramming of the metabolic network to maintain population stability. Using unbiased metabolomics, we discovered that Vibrio cholerae mutants genetically locked in a low cell density (LCD) QS state are unable to alter the pyruvate flux to convert fermentable carbon sources into neutral acetoin and 2,3-butanediol molecules to offset organic acid production. As a consequence, LCD-locked QS mutants rapidly lose viability when grown with fermentable carbon sources. This key metabolic switch relies on the QS-regulated small RNAs Qrr1-4 but is independent of known QS regulators AphA and HapR. Qrr1-4 dictate pyruvate flux by translational repression of the enzyme AlsS, which carries out the first step in acetoin and 2,3-butanediol biosynthesis. Consistent with the idea that QS facilitates the expression of a common trait in the population, AlsS needs to be expressed cooperatively in a group of cells. Heterogeneous populations with high percentages of cells not expressing AlsS are unstable. All of the cells, regardless of their respective QS states, succumb to stresses caused by toxic by-product accumulation. Our results indicate that the ability of the bacteria to cooperatively control metabolic flux through QS is critical in maintaining a sustainable environment and overall population stability. IMPORTANCE Our work reveals a novel role for Vibrio cholerae quorum sensing (QS) in relieving the stresses caused by toxic metabolite accumulation when the population becomes crowded through metabolic reprogramming. QS enables V. cholerae switching from a low cell density energy-generating metabolism that is beneficial to individuals at the expense of the environment to a high cell density mode that preserves environmental habitability by sacrificing individual fitness. This cooperative switch provides a stable environment as the common good in maintaining the stability of the community. However, the common good can be exploited by uncooperative mutants that pollute the environment, causing population collapse. Our findings provide insights into the metabolic stress response of a major human pathogen, with implications for our understanding of microbial social biology and cooperation from an ecological and evolutionary perspective.
Collapse
Affiliation(s)
- Lisa A Hawver
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer M Giulietti
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - James D Baleja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Deng Y, Chen C, Zhao Z, Zhao J, Jacq A, Huang X, Yang Y. The RNA Chaperone Hfq Is Involved in Colony Morphology, Nutrient Utilization and Oxidative and Envelope Stress Response in Vibrio alginolyticus. PLoS One 2016; 11:e0163689. [PMID: 27685640 PMCID: PMC5042437 DOI: 10.1371/journal.pone.0163689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/13/2016] [Indexed: 12/26/2022] Open
Abstract
Hfq is a global regulator that is involved in environmental adaptation of bacteria and in pathogenicity. To gain insight into the role of Hfq in Vibrio alginolyticus, an hfq deletion mutant was constructed in V. alginolyticus ZJ-T strain and phenotypically characterized. Deletion of hfq led to an alteration of colony morphology and reduced extracellular polysaccharide production, a general impairment of growth in both rich medium and minimal media with different carbon sources or amino acids, enhanced sensitivity to oxidative stress and to several antibiotics. Furthermore, a differential transcriptomic analysis showed significant changes of transcript abundance for 306 protein coding genes, with 179 genes being up regulated and 127 down-regulated. Several of these changes could be related to the observed phenotypes of the mutant. Transcriptomic data also provided evidence for the induction of the extracytoplasmic stress response in absence of Hfq. Altogether, these findings point to broad regulatory functions for Hfq in V. alginolyticus cells, likely to underlie an important role in pathogenicity.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Xisha/Nansha Ocean observation and research station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| | - Zhe Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jingjing Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Annick Jacq
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Xiaochun Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiying Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Banerjee G, Ray AK. The talking language in some major Gram-negative bacteria. Arch Microbiol 2016; 198:489-99. [PMID: 27062655 DOI: 10.1007/s00203-016-1220-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Cell-cell interaction or quorum sensing (QS) is a vital biochemical/physiological process in bacteria that is required for various physiological functions, including nutrient uptake, competence development, biofilm formation, sporulation, as well as for toxin secretion. In natural environment, bacteria live in close association with other bacteria and interaction among them is crucial for survival. The QS-regulated gene expression in bacteria is a cell density-dependent process and the initiation process depends on the threshold level of the signaling molecule, N-acyl-homoserine lactone (AHL). The present review summarizes the QS signal and its respective circuit in Gram-negative bacteria. Most of the human pathogens belong to Gram-negative group, and only a few of them cause disease through QS system. Thus, inhibition of pathogenic bacteria is important. Use of antibiotics creates a selective pressure (antibiotics act as natural selection factor to promote one group of bacteria over another group) for emerging multidrug-resistant bacteria and will not be suitable for long-term use. The alternative process of inhibition of QS in bacteria using different natural and synthetic molecules is called quorum quenching. However, in the long run, QS inhibitors or blockers may also develop resistance, but obviously it will solve some sort of problems. In this review, we also have stated the mode of action of quorum-quenching molecule. The understanding of QS network in pathogenic Gram-negative bacteria will help us to solve many health-related problems in future.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731 235, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731 235, India
| |
Collapse
|
33
|
Rivers AR, Burns AS, Chan LK, Moran MA. Experimental Identification of Small Non-Coding RNAs in the Model Marine Bacterium Ruegeria pomeroyi DSS-3. Front Microbiol 2016; 7:380. [PMID: 27065955 PMCID: PMC4809877 DOI: 10.3389/fmicb.2016.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/09/2016] [Indexed: 12/31/2022] Open
Abstract
In oligotrophic ocean waters where bacteria are often subjected to chronic nutrient limitation, community transcriptome sequencing has pointed to the presence of highly abundant small RNAs (sRNAs). The role of sRNAs in regulating response to nutrient stress was investigated in a model heterotrophic marine bacterium Ruegeria pomeroyi grown in continuous culture under carbon (C) and nitrogen (N) limitation. RNAseq analysis identified 99 putative sRNAs. Sixty-nine were cis-encoded and located antisense to a presumed target gene. Thirty were trans-encoded and initial target prediction was performed computationally. The most prevalent functional roles of genes anti-sense to the cis-sRNAs were transport, cell-cell interactions, signal transduction, and transcriptional regulation. Most sRNAs were transcribed equally under both C and N limitation, and may be involved in a general stress response. However, 14 were regulated differentially between the C and N treatments and may respond to specific nutrient limitations. A network analysis of the predicted target genes of the R. pomeroyi cis-sRNAs indicated that they average fewer connections than typical protein-encoding genes, and appear to be more important in peripheral or niche-defining functions encoded in the pan genome.
Collapse
Affiliation(s)
- Adam R Rivers
- United States Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | - Andrew S Burns
- Department of Marine Sciences, University of Georgia Athens, GA, USA
| | | | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia Athens, GA, USA
| |
Collapse
|
34
|
Zhu H, Mao XJ, Guo XP, Sun YC. The hmsT 3' untranslated region mediates c-di-GMP metabolism and biofilm formation in Yersinia pestis. Mol Microbiol 2016; 99:1167-78. [PMID: 26711808 DOI: 10.1111/mmi.13301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 02/04/2023]
Abstract
Yersinia pestis, the cause of plague, forms a biofilm in the proventriculus of its flea vector to enhance transmission. Biofilm formation in Y. pestis is regulated by the intracellular levels of cyclic diguanylate (c-di-GMP). In this study, we investigated the role of the 3' untranslated region (3'UTR) in hmsT mRNA, a transcript that encodes a diguanylate cyclase that stimulates biofilm formation in Y. pestis by synthesizing the second messenger c-di-GMP. Deletion of the 3'UTR increased the half-life of hmsT mRNA, thereby upregulating c-di-GMP levels and biofilm formation. Our findings indicate that multiple regulatory sequences might be present in the hmsT 3'UTR that function together to mediate mRNA turnover. We also found that polynucleotide phosphorylase is partially responsible for hmsT 3'UTR-mediated mRNA decay. In addition, the hmsT 3'UTR strongly repressed gene expression at 37°C and 26°C, but affected gene expression only slightly at 21°C. Our findings suggest that the 3'UTR might be involved in precise and rapid regulation of hmsT expression, allowing Y. pestis to fine-tune c-di-GMP synthesis and consequently regulate biofilm production to adapt to the changing host environment.
Collapse
Affiliation(s)
- Hui Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Xu-Jian Mao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
35
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
36
|
|
37
|
Arjunan P, El-Awady A, Dannebaum RO, Kunde-Ramamoorthy G, Cutler CW. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants. Mol Oral Microbiol 2015; 31:78-93. [PMID: 26466817 DOI: 10.1111/omi.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis.
Collapse
Affiliation(s)
- P Arjunan
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - A El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - R O Dannebaum
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - G Kunde-Ramamoorthy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Biochemistry, National University of Singapore, Singapore
| | - C W Cutler
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
38
|
Barquist L, Vogel J. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Annu Rev Genet 2015; 49:367-94. [PMID: 26473381 DOI: 10.1146/annurev-genet-112414-054804] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, bacterial small RNAs (sRNAs) have gone from a biological curiosity to being recognized as a major class of regulatory molecules. High-throughput methods for sampling the transcriptional output of bacterial cells demonstrate that sRNAs are universal features of bacterial transcriptomes, are plentiful, and appear to vary extensively over evolutionary time. With ever more bacteria coming under study, the question becomes how can we accelerate the discovery and functional characterization of sRNAs in diverse organisms. New technologies built on high-throughput sequencing are emerging that can rapidly provide global insight into the numbers and functions of sRNAs in bacteria of interest, providing information that can shape hypotheses and guide research. In this review, we describe recent developments in transcriptomics (RNA-seq) and functional genomics that we expect to help us develop an integrated, systems-level view of sRNA biology in bacteria.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| |
Collapse
|
39
|
Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. Genetic control of bacterial biofilms. J Appl Genet 2015; 57:225-38. [PMID: 26294280 PMCID: PMC4830867 DOI: 10.1007/s13353-015-0309-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/20/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022]
Abstract
Nearly all bacterial species, including pathogens, have the ability to form biofilms. Biofilms are defined as structured ecosystems in which microbes are attached to surfaces and embedded in a matrix composed of polysaccharides, eDNA, and proteins, and their development is a multistep process. Bacterial biofilms constitute a large medical problem due to their extremely high resistance to various types of therapeutics, including conventional antibiotics. Several environmental and genetic signals control every step of biofilm development and dispersal. From among the latter, quorum sensing, cyclic diguanosine-5'-monophosphate, and small RNAs are considered as the main regulators. The present review describes the control role of these three regulators in the life cycles of biofilms built by Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella enterica serovar Typhimurium, and Vibrio cholerae. The interconnections between their activities are shown. Compounds and strategies which target the activity of these regulators, mainly quorum sensing inhibitors, and their potential role in therapy are also assessed.
Collapse
Affiliation(s)
- Krystyna I Wolska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Anna M Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Zofia Rudnicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Katarzyna Markowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.
| |
Collapse
|
40
|
Small RNA Transcriptome of the Oral Microbiome during Periodontitis Progression. Appl Environ Microbiol 2015; 81:6688-99. [PMID: 26187962 DOI: 10.1128/aem.01782-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023] Open
Abstract
The oral microbiome is one of the most complex microbial communities in the human body, and due to circumstances not completely understood, the healthy microbial community becomes dysbiotic, giving rise to periodontitis, a polymicrobial inflammatory disease. We previously reported the results of community-wide gene expression changes in the oral microbiome during periodontitis progression and identified signatures associated with increasing severity of the disease. Small noncoding RNAs (sRNAs) are key players in posttranscriptional regulation, especially in fast-changing environments such as the oral cavity. Here, we expanded our analysis to the study of the sRNA metatranscriptome during periodontitis progression on the same samples for which mRNA expression changes were analyzed. We observed differential expression of 12,097 sRNAs, identifying a total of 20 Rfam sRNA families as being overrepresented in progression and 23 at baseline. Gene ontology activities regulated by the differentially expressed (DE) sRNAs included amino acid metabolism, ethanolamine catabolism, signal recognition particle-dependent cotranslational protein targeting to membrane, intron splicing, carbohydrate metabolism, control of plasmid copy number, and response to stress. In integrating patterns of expression of protein coding transcripts and sRNAs, we found that functional activities of genes that correlated positively with profiles of expression of DE sRNAs were involved in pathogenesis, proteolysis, ferrous iron transport, and oligopeptide transport. These findings represent the first integrated sequencing analysis of the community-wide sRNA transcriptome of the oral microbiome during periodontitis progression and show that sRNAs are key regulatory elements of the dysbiotic process leading to disease.
Collapse
|
41
|
Abstract
ABSTRACT
Many Gram-positive and Gram-negative bacteria can become naturally competent to take up extracellular DNA from the environment via a dedicated uptake apparatus. The genetic material that is acquired can (i) be used for nutrients, (ii) aid in genome repair, and (iii) promote horizontal gene transfer when incorporated onto the genome by homologous recombination, the process of “transformation.” Recent studies have identified multiple environmental cues sufficient to induce natural transformation in
Vibrio cholerae
and several other
Vibrio
species. In
V. cholerae
, nutrient limitation activates the cAMP receptor protein regulator, quorum-sensing signals promote synthesis of HapR-controlled QstR, chitin stimulates production of TfoX, and low extracellular nucleosides allow CytR to serve as an additional positive regulator. The network of signaling systems that trigger expression of each of these required regulators is well described, but the mechanisms by which each in turn controls competence apparatus genes is poorly understood. Recent work has defined a minimal set of genes that encode apparatus components and begun to characterize the architecture of the machinery by fluorescence microscopy. While studies with a small set of
V. cholerae
reference isolates have identified regulatory and competence genes required for DNA uptake, future studies may identify additional genes and regulatory connections, as well as revealing how common natural competence is among diverse
V. cholerae
isolates and other
Vibrio
species.
Collapse
|
42
|
Updegrove TB, Shabalina SA, Storz G. How do base-pairing small RNAs evolve? FEMS Microbiol Rev 2015; 39:379-91. [PMID: 25934120 DOI: 10.1093/femsre/fuv014] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 01/12/2023] Open
Abstract
The increasing numbers of characterized base-pairing small RNAs (sRNAs) and the identification of these regulators in a broad range of bacteria are allowing comparisons between species and explorations of sRNA evolution. In this review, we describe some examples of trans-encoded base-pairing sRNAs that are species-specific and others that are more broadly distributed. We also describe examples of sRNA orthologs where different features are conserved. These examples provide the background for a discussion of mechanisms of sRNA evolution and selective pressures on the sRNAs and their mRNA target(s).
Collapse
Affiliation(s)
- Taylor B Updegrove
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Rogers E, Heitsch CE. Profiling small RNA reveals multimodal substructural signals in a Boltzmann ensemble. Nucleic Acids Res 2014; 42:e171. [PMID: 25392423 PMCID: PMC4267672 DOI: 10.1093/nar/gku959] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 11/13/2022] Open
Abstract
As the biomedical impact of small RNAs grows, so does the need to understand competing structural alternatives for regions of functional interest. Suboptimal structure analysis provides significantly more RNA base pairing information than a single minimum free energy prediction. Yet computational enhancements like Boltzmann sampling have not been fully adopted by experimentalists since identifying meaningful patterns in this data can be challenging. Profiling is a novel approach to mining RNA suboptimal structure data which makes the power of ensemble-based analysis accessible in a stable and reliable way. Balancing abstraction and specificity, profiling identifies significant combinations of base pairs which dominate low-energy RNA secondary structures. By design, critical similarities and differences are highlighted, yielding crucial information for molecular biologists. The code is freely available via http://gtfold.sourceforge.net/profiling.html.
Collapse
Affiliation(s)
- Emily Rogers
- School of Computational Science and Engineering, Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA 30332-0765, USA
| | - Christine E Heitsch
- School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332-0160, USA
| |
Collapse
|
44
|
Caswell CC, Oglesby-Sherrouse AG, Murphy ER. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles. Front Cell Infect Microbiol 2014; 4:151. [PMID: 25389522 PMCID: PMC4211561 DOI: 10.3389/fcimb.2014.00151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/07/2014] [Indexed: 11/13/2022] Open
Abstract
Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.
Collapse
Affiliation(s)
- Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD Regional College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| | - Amanda G Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine Athens, OH, USA
| |
Collapse
|
45
|
McClure R, Tjaden B, Genco C. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions. Front Microbiol 2014; 5:456. [PMID: 25221548 PMCID: PMC4148029 DOI: 10.3389/fmicb.2014.00456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023] Open
Abstract
In the last several years, bacterial gene regulation via small RNAs (sRNAs) has been recognized as an important mechanism controlling expression of essential proteins that are critical to bacterial growth and metabolism. Technologies such as RNA-seq are rapidly expanding the field of sRNAs and are enabling a global view of the “sRNAome” of several bacterial species. While numerous sRNAs have been identified in a variety of both Gram-negative and Gram-positive bacteria, only a very small number have been fully characterized in the human pathogen Neisseria gonorrhoeae, the etiological agent of the STD gonorrhea. Here we present the first analysis of N. gonorrhoeae specifically focused on the identification of sRNAs through RNA-seq analysis of the organism cultured under different in vitro growth conditions. Using a new computational program, Rockhopper, to analyze prokaryotic RNA-seq data obtained from N. gonorrhoeae we identified several putative sRNAs and confirmed their expression and size through Northern blot analysis. In addition, RNA was collected from four different growth conditions (iron replete and deplete, as well as with and without co-culture with human endocervical cells). Many of the putative sRNAs identified shoed varying expression levels relative to the different growth conditions examine or were detected only under certain conditions but not others. Comparisons of identified sRNAs with the regulatory pattern of putative mRNA targets revealed possible functional roles for these sRNAs. These studies are the first to carry out a global analysis of N. gonorrhoeae specifically focused on sRNAs and show that RNA-mediated regulation may be an important mechanism of gene control in this human pathogen.
Collapse
Affiliation(s)
- Ryan McClure
- Department of Medicine Section of Infectious Disease, Boston University School of Medicine Boston, MA, USA ; Department of Microbiology, Boston University School of Medicine Boston, MA, USA
| | - Brian Tjaden
- Department of Computer Science, Wellesley College Wellesley, MA, USA
| | - Caroline Genco
- Department of Medicine Section of Infectious Disease, Boston University School of Medicine Boston, MA, USA ; Department of Microbiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
46
|
Haning K, Cho SH, Contreras LM. Small RNAs in mycobacteria: an unfolding story. Front Cell Infect Microbiol 2014; 4:96. [PMID: 25105095 PMCID: PMC4109619 DOI: 10.3389/fcimb.2014.00096] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/03/2014] [Indexed: 01/10/2023] Open
Abstract
Mycobacteria represent a class of powerful pathogens, including those causing tuberculosis and leprosy, which continue to be worldwide health challenges. In the last 20 years, an abundance of non-coding, small RNAs (sRNAs) have been discovered in model bacteria and gained significant attention as regulators of cellular responses, including pathogenesis. Naturally, a search in mycobacteria followed, revealing over 200 sRNAs thus far. Characterization of these sRNAs is only beginning, but differential expression under environmental stresses suggests relevance to mycobacterial pathogenesis. This review provides a comprehensive overview of the current knowledge of sRNAs in mycobacteria, including historical perspective and techniques used for identification and characterization.
Collapse
Affiliation(s)
- Katie Haning
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at AustinAustin, TX, USA
| | - Seung Hee Cho
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at AustinAustin, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at AustinAustin, TX, USA
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at AustinAustin, TX, USA
| |
Collapse
|
47
|
Vercruysse M, Köhrer C, Davies BW, Arnold MFF, Mekalanos JJ, RajBhandary UL, Walker GC. The highly conserved bacterial RNase YbeY is essential in Vibrio cholerae, playing a critical role in virulence, stress regulation, and RNA processing. PLoS Pathog 2014; 10:e1004175. [PMID: 24901994 PMCID: PMC4047096 DOI: 10.1371/journal.ppat.1004175] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
YbeY, a highly conserved protein, is an RNase in E. coli and plays key roles in both processing of the critical 3′ end of 16 S rRNA and in 70 S ribosome quality control under stress. These central roles account for YbeY's inclusion in the postulated minimal bacterial genome. However, YbeY is not essential in E. coli although loss of ybeY severely sensitizes it to multiple physiological stresses. Here, we show that YbeY is an essential endoribonuclease in Vibrio cholerae and is crucial for virulence, stress regulation, RNA processing and ribosome quality control, and is part of a core set of RNases essential in most representative pathogens. To understand its function, we analyzed the rRNA and ribosome profiles of a V. cholerae strain partially depleted for YbeY and other RNase mutants associated with 16 S rRNA processing; our results demonstrate that YbeY is also crucial for 16 S rRNA 3′ end maturation in V. cholerae and that its depletion impedes subunit assembly into 70 S ribosomes. YbeY's importance to V. cholerae pathogenesis was demonstrated by the complete loss of mice colonization and biofilm formation, reduced cholera toxin production, and altered expression levels of virulence-associated small RNAs of a V. cholerae strain partially depleted for YbeY. Notably, the ybeY genes of several distantly related pathogens can fully complement an E. coli ΔybeY strain under various stress conditions, demonstrating the high conservation of YbeY's activity in stress regulation. Taken together, this work provides the first comprehensive exploration of YbeY's physiological role in a human pathogen, showing its conserved function across species in essential cellular processes. Bacteria adapt and survive unfavorable environments by quickly changing their gene expression and physiology, for example as pathogens do during infection of host cells. Gene expression is often determined by RNA turnover, a balance between transcription and RNA decay carried out by multiple RNases. The recently identified RNase YbeY was shown in E. coli to participate in rRNA maturation and 70 S ribosome quality control, however YbeY's roles in other organisms and the extent of functional conservation is unknown. Here, we show that YbeY is an essential RNase in the pathogen Vibrio cholerae, critical for cell fitness and general stress tolerance. We demonstrate that YbeY is crucial for 16 S rRNA 3′ end maturation, assembly of functional 70 S ribosomes and ribosome quality control. Moreover, YbeY regulates virulence-associated small RNAs and its depletion leads to an overall reduction in pathogenesis, exemplified by significantly decreased biofilm formation, mouse colonization and cholera toxin production. We also show that YbeY belongs to a minimal core set of RNases essential in most representative pathogens. The multifaceted roles of YbeY in several essential cellular processes and its highly conserved function across bacterial species, suggest that YbeY could be an attractive new antimicrobial target.
Collapse
Affiliation(s)
- Maarten Vercruysse
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bryan W. Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Markus F. F. Arnold
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John J. Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachussets, United States of America
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Zeng Q, Sundin GW. Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function. BMC Genomics 2014; 15:414. [PMID: 24885615 PMCID: PMC4070566 DOI: 10.1186/1471-2164-15-414] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Erwinia amylovora is a phytopathogenic bacterium and causal agent of fire blight disease in apples and pears. Although many virulence factors have been characterized, the coordination of expression of these virulence factors in E. amylovora is still not clear. Regulatory small RNAs (sRNAs) are important post-transcriptional regulatory components in bacteria. A large number of sRNAs require the RNA chaperone Hfq for both stability and functional activation. In E. amylovora, Hfq was identified as a major regulator of virulence and various virulence traits. However, information is still lacking about Hfq-dependent sRNAs on a genome scale, including the virulence regulatory functions of these sRNAs in E. amylovora. RESULTS Using both an RNA-seq analysis and a Rho-independent terminator search, 40 candidate Hfq-dependent sRNAs were identified in E. amylovora. The expression and sizes of 12 sRNAs and the sequence boundaries of seven sRNAs were confirmed by Northern blot and 5' RACE assay respectively. Sequence conservation analysis identified sRNAs conserved only in the Erwinia genus as well as E. amylovora species-specific sRNAs. In addition, a dynamic re-patterning of expression of Hfq-dependent sRNAs was observed at 6 and 12 hours after induction in Hrp-inducing minimal medium. Furthermore, sRNAs that control virulence traits were characterized, among which ArcZ positively controls the type III secretion system (T3SS), amylovoran exopolysaccahride production, biofilm formation, and motility, and negatively modulates attachment while RmaA (Hrs6) and OmrAB both negatively regulate amylovoran production and positively regulate motility. CONCLUSIONS This study has significantly enhanced our understanding of the Hfq-dependent sRNAs in E. amylovora at the genome level. The identification of multiple virulence-regulating sRNAs also suggests that post-transcriptional regulation by sRNAs may play a role in the deployment of virulence factors needed during varying stages of pathogenesis during host invasion by E. amylovora.
Collapse
Affiliation(s)
- Quan Zeng
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
49
|
Abstract
Efforts to understand the molecular basis of mycobacterial gene regulation are dominated by a protein-centric view. However, there is a growing appreciation that noncoding RNA, i.e., RNA that is not translated, plays a role in a wide variety of molecular mechanisms. Noncoding RNA comprises rRNA, tRNA, 4.5S RNA, RnpB, and transfer-messenger RNA, as well as a vast population of regulatory RNA, often dubbed "the dark matter of gene regulation." The regulatory RNA species comprise 5' and 3' untranslated regions and a rapidly expanding category of transcripts with the ability to base-pair with mRNAs or to interact with proteins. Regulatory RNA plays a central role in the bacterium's response to changes in the environment, and in this article we review emerging information on the presence and abundance of different types of noncoding RNA in mycobacteria.
Collapse
|
50
|
Abendroth U, Schmidtke C, Bonas U. Small non-coding RNAs in plant-pathogenic Xanthomonas spp. RNA Biol 2014; 11:457-63. [PMID: 24667380 DOI: 10.4161/rna.28240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genus Xanthomonas comprises a large group of plant-pathogenic bacteria. The infection and bacterial multiplication in the plant tissue depends on the type III secretion system and other virulence determinants. Recent studies revealed that bacterial virulence is also controlled at the post-transcriptional level by small non-coding RNAs (sRNAs). In this review, we highlight our current knowledge about sRNAs and RNA-binding proteins in Xanthomonas species.
Collapse
Affiliation(s)
- Ulrike Abendroth
- Dept. of Genetics; Martin-Luther-Universität Halle-Wittenberg; Halle, Germany
| | - Cornelius Schmidtke
- Dept. of Genetics; Martin-Luther-Universität Halle-Wittenberg; Halle, Germany
| | - Ulla Bonas
- Dept. of Genetics; Martin-Luther-Universität Halle-Wittenberg; Halle, Germany
| |
Collapse
|