1
|
Maazouzi M, Rasheed M, Mbarek L, Wang X, Liang J, Ma H, Chen Z, Deng Y. Exploring Non-Coding RNA Regulation of the Blood-Brain Barrier in Neurodegenerative Diseases: A Systematic Review. J Neurochem 2025; 169:e70031. [PMID: 40035356 DOI: 10.1111/jnc.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive neuronal loss and dysfunction, leading to significant cognitive and motor impairments. The disruption of the blood-brain barrier (BBB) integrity, a key regulator of central nervous system homeostasis, emerges as a critical factor in the pathogenesis of these disorders. Accumulating evidence implicates non-coding RNAs, particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in BBB regulation. However, the intricate network governing BBB dysfunction and consequent neurodegeneration remains obscure. This systematic review maps the convergent microRNA networks in Alzheimer's, Parkinson's, and multiple sclerosis, unveiling their putative roles in BBB modulation. We analyzed data from 11 peer-reviewed clinical studies, identifying key miRNAs such as hsa-miR-155, hsa-miR-22, hsa-miR-146a, hsa-miR-100-3p, and hsa-miR-182-5p as critical regulators of BBB permeability and inflammatory responses. Enrichment analysis revealed that these miRNAs modulate pathways related to inflammation, oxidative stress, and neuronal survival. Our review also uncovered extensive interactions between these miRNAs and transcription factors like JUN, RELA, STAT3, and TP53, as well as lncRNAs such as MALAT1, NEAT1, NORAD, and SNHG16. These interactions highlight complex regulatory networks involving miRNA sponging and chromatin remodeling, which may play crucial roles in maintaining BBB integrity. These analyses underscore the importance of miRNA-mediated regulatory networks in BBB function and offer insights into potential therapeutic targets for NDs.
Collapse
Affiliation(s)
- Mohamed Maazouzi
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lamia Mbarek
- Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuezhe Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Junhan Liang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Hong Ma
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
2
|
Naujack AM, Krause C, Britsemmer JH, Taege N, Mittag J, Kirchner H. Epigenetic regulation of thyroid hormone action in human metabolic dysfunction-associated steatohepatitis. Eur Thyroid J 2024; 13:e240080. [PMID: 39312733 PMCID: PMC11466269 DOI: 10.1530/etj-24-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024] Open
Abstract
Objective Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by inflammation, fibrosis, and accumulation of fatty acids in the liver. MASH disease progression has been associated with reduced thyroid hormone (TH) signaling in the liver, including reduced expression of deiodinase type I (DIO1) and TH receptor beta (THRB). However, the underlying mechanisms mediating these effects remain elusive. Here, we hypothesized that epigenetic mechanisms may be involved in modulating hepatic TH action. Methods Liver samples from patients with and without MASH were analyzed by qRT-PCR and correlated with clinical parameters. Luciferase reporter assays and overexpression of miRNA in HepG2 cells were used to validate the functional binding of miRNA to predicted targets. DNA methylation was analyzed by bisulfite pyrosequencing. Results miR-34a-5p was upregulated in MASH patients and correlated positively with the clinical parameters of MASH. Using in silico and in vitro analysis, we demonstrate that miR-34a-5p is capable of targeting several modulators of local hepatic TH action, as evidenced by the functional binding of miR-34a-5p to the seed sequence in the THRB and DIO1 genes. Consequently, overexpression of miR-34a-5p in HepG2 cells reduced the expression of THRA, THRB, DIO1, and SLC10A1, thus potentially mediating an acquired hepatic resistance to TH in MASH. As an additional regulatory mechanism, DNA methylation of THRB intron 1 was increased in MASH and negatively correlated with THRB expression. Conclusion miR-34a-5p constitutes a possible epigenetic master regulator of hepatic TH action, which together with THRB-specific DNA methylation could explain a possible developing TH resistance in the liver during MASH progression on the molecular level.
Collapse
Affiliation(s)
- Alison-Michelle Naujack
- Institute for Human Genetics, Department of Epigenetics & Metabolism, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Christin Krause
- Institute for Human Genetics, Department of Epigenetics & Metabolism, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Jan H Britsemmer
- Institute for Human Genetics, Department of Epigenetics & Metabolism, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Natalie Taege
- Institute for Human Genetics, Department of Epigenetics & Metabolism, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Henriette Kirchner
- Institute for Human Genetics, Department of Epigenetics & Metabolism, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Zhang Y, Béland LC, Roussel S, Bertrand N, Hébert SS, Vallières L. Optimization of a lipid nanoparticle-based protocol for RNA transfection into primary mononuclear phagocytes. J Leukoc Biol 2024; 115:1165-1176. [PMID: 38466819 DOI: 10.1093/jleuko/qiae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
The effective delivery of synthetic RNA into mononuclear phagocytes is a prerequisite for experimental research and therapeutic development. However, traditional methods are highly ineffective and toxic for these cells. Here, we aimed to optimize a transfection protocol for primary bone marrow-derived phagocytes, specifically dendritic cells and macrophages, using lipid nanoparticles generated by microfluidics. Our results show that a lipid mixture similar to that used in Moderna's COVID-19 messenger RNA vaccine outperforms the others tested. Improved messenger RNA transfection can be achieved by replacing uridine with methylpseudouridine but not methoxyuridine, which interferes with transfection. The addition of diphenyleneiodonium or apocynin can enhance transfection in a cell type-dependent manner without adverse effects, while apolipoprotein E provides no added value. These optimized transfection conditions can also be used for microRNA agonists and antagonists. In sum, this study offers a straightforward, highly efficient, reproducible, and nontoxic protocol to deliver RNA into different primary mononuclear phagocytes in culture.
Collapse
Affiliation(s)
- Yu Zhang
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Louis-Charles Béland
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Sabrina Roussel
- Endocrinology and Nephrology Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Nicolas Bertrand
- Endocrinology and Nephrology Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Sébastien S Hébert
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| |
Collapse
|
4
|
Wu HY, liu K, Zhang JL. LINC00240/miR-155 axis regulates function of trophoblasts and M2 macrophage polarization via modulating oxidative stress-induced pyroptosis in preeclampsia. Mol Med 2022; 28:119. [PMID: 36153499 PMCID: PMC9509611 DOI: 10.1186/s10020-022-00531-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This study aimed to investigate the effects of LINC00240/miR-155/Nrf2 axis on trophoblast function and macrophage polarization in the pathogenesis of preeclampsia.
Methods
Bindings between LINC00240, miR-155 and Nrf2 were validated by dual luciferase reporter assay or RNA-immunoprecipitation. Cell proliferation, migration, invasion, and pyroptosis were detected by CCK-8, clone formation, wound healing, Transwell system, and flow cytometry, respectively. Macrophage polarization was tested by flow cytometry. The expression levels of LINC00240, miR-155, Nrf2, and oxidative stress and pyroptosis-related markers in in vitro and in vivo preeclampsia models were analyzed by qPCR, western blot, or ELISA assays. Blood pressure, urine protein levels, liver and kidney damages, and trophoblast markers in placenta tissues were further studied in vivo.
Results
Placenta tissues from preeclampsia patients and animals showed decreased LINC00240 and Nrf2 and increased miR-155 expression levels, and the decreased M2 macrophage polarization. LINC00240 directly bound and inhibited expression of miR-155, which then inhibited oxidative stress-induced pyroptosis, promoting proliferation, migration and invasion abilities of trophoblasts, and M2 macrophage polarization. Inhibition of miR-155 led to increased Nrf2 expression and similar changes as LINC00240 overexpression in trophoblast function and macrophage polarization. Overexpression of LINC00240 in in vivo preeclampsia model decreased blood pressure, urine protein, liver and kidney damages, increased fetal weight and length, and induced trophoblast function and M2 macrophage polarization.
Conclusion
LINC00240 inhibited symptoms of preeclampsia through regulation on miR-155/Nrf2 axis, which suppressed oxidative stress-induced pyroptosis to improve trophoblast function and M2 macrophage polarization. LINC00240 could be a potential therapeutic target for preeclampsia.
Collapse
|
5
|
Reinkens T, Stalke A, Huge N, Vajen B, Eilers M, Schäffer V, Dittrich-Breiholz O, Schlegelberger B, Illig T, Skawran B. Ago-RIP Sequencing Identifies New MicroRNA-449a-5p Target Genes Increasing Sorafenib Efficacy in Hepatocellular Carcinoma. J Cancer 2022; 13:62-75. [PMID: 34976171 PMCID: PMC8692677 DOI: 10.7150/jca.66016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND: Patients with hepatocellular carcinoma (HCC) have very limited treatment options. For the last fourteen years, the multi-tyrosine kinase inhibitor sorafenib has been used as standard-of-care therapeutic agent in advanced HCC. Unfortunately, drug resistance develops in many cases. Therefore, we aimed to find a way to mitigate drug resistance and to improve the sorafenib efficacy in HCC cells. MicroRNAs play a significant role in targeting genes involved in tumor control suggesting microRNA/sorafenib combination therapy as a promising treatment option in advanced HCC. METHODS: MiR-449a-5p target genes were identified by Ago-RIP sequencing and validated by luciferase reporter assays and expression analyses. Target gene expression and survival data were analyzed in public HCC datasets. Tumor-relevant functional effects of miR-449a-5p and its target genes as well as their impact on the effects of sorafenib were analyzed using in vitro assays. An indirect transwell co-culture system was used to survey anti-angiogenic effects of miR-449a-5p. RESULTS: PEA15, PPP1CA and TUFT1 were identified as direct target genes of miR-449a-5p. Overexpression of these genes correlated with a poor outcome of HCC patients. Transfection with miR-449a-5p and repression of miR-449a-5p target genes inhibited cell proliferation and angiogenesis, induced apoptosis and reduced AKT and ERK signaling in HLE and Huh7 cells. Importantly, miR-449a-5p potentiated the efficacy of sorafenib in HCC cells via downregulation of PEA15, PPP1CA and TUFT1. CONCLUSIONS: This study provides detailed insights into the targetome and regulatory network of miR-449a-5p. Our results demonstrate for the first time that targeting PEA15, PPP1CA and TUFT1 via miR-449a overexpression could have significant implications in counteracting sorafenib resistance suggesting miR-449a-5p as a promising candidate for a microRNA/sorafenib combination therapy.
Collapse
Affiliation(s)
- Thea Reinkens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicole Huge
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Beate Vajen
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank (HUB), Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Dedeoğlu BG, Noyan S. Experimental MicroRNA Targeting Validation. Methods Mol Biol 2022; 2257:79-90. [PMID: 34432274 DOI: 10.1007/978-1-0716-1170-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
microRNAs (miRNAs) have recently been recognized as a new dimension of posttranscriptional regulation. It is well defined that most human protein-coding genes are regulated by one or more miRNAs. Therefore, it is crucial to identify genes targeted by the miRNAs to better understand their functions. Although bioinformatics tools have the ability to identify target candidates it is still essential to identify physiological targets by experimental approaches. Currently, the majority of miRNA-target experimental validation approaches assess the changes in target expression in mRNA or protein level upon miRNA upregulation or downregulation. Additionally, finding out direct physical interactions between miRNAs and their targets is also among the experimental techniques. In this chapter we reviewed the existing experimental techniques for miRNA target identification by considering their advantages and potential drawbacks.
Collapse
Affiliation(s)
| | - Senem Noyan
- Biotechnology Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Frank AC, Raue R, Fuhrmann DC, Sirait-Fischer E, Reuse C, Weigert A, Lütjohann D, Hiller K, Syed SN, Brüne B. Lactate dehydrogenase B regulates macrophage metabolism in the tumor microenvironment. Am J Cancer Res 2021; 11:7570-7588. [PMID: 34158867 PMCID: PMC8210612 DOI: 10.7150/thno.58380] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.
Collapse
|
8
|
Kim S, Lee ES, Lee EJ, Jung JY, Lee SB, Lee HJ, Kim J, Kim HJ, Lee JW, Son BH, Gong G, Ahn SH, Chang S. Targeted eicosanoids profiling reveals a prostaglandin reprogramming in breast Cancer by microRNA-155. J Exp Clin Cancer Res 2021; 40:43. [PMID: 33494773 PMCID: PMC7831268 DOI: 10.1186/s13046-021-01839-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract Background Prostaglandin is one of the key metabolites for inflammation-related carcinogenesis. Despite the microRNA-155 is implicated in various types of cancers, it’s function in prostaglandin metabolism is largely unknown. Methods A targeted profiling of eicosanoids including prostaglandin, leukotriene and thromboxanes was performed in miR-155 deficient breast tumors and cancer cells. The molecular mechanism of miR-155-mediated prostaglandin reprogramming was investigated in primary and cancer cell lines, by analyzing key enzymes responsible for the prostaglandin production. Results We found miR-155-deficient breast tumors, plasma of tumor-bearing mouse and cancer cells show altered prostaglandin level, especially for the prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2). Subsequent analysis in primary cancer cells, 20 triple-negative breast cancer (TNBC) specimens and breast cancer cell lines with miR-155 knockdown consistently showed a positive correlation between miR-155 level and PGE2/PGD2 ratio. Mechanistically, we reveal the miR-155 reprograms the prostaglandin metabolism by up-regulating PGE2-producing enzymes PTGES/PTGES2 while down-regulating PGD2-producing enzyme PTGDS. Further, we show the up-regulation of PTGES2 is driven by miR-155-cMYC axis, whereas PTGES is transactivated by miR-155-KLF4. Thus, miR-155 hires dual-regulatory mode for the metabolic enzyme expression to reprogram the PGE2/PGD2 balance. Lastly, we show the miR-155-driven cellular proliferation is restored by the siRNA of PTGES1/2, of which expression also significantly correlates with breast cancer patients’ survival. Conclusions Considering clinical trials targeting PGE2 production largely have focused on the inhibition of Cox1 or Cox2 that showed cardiac toxicity, our data suggest an alternative way for suppressing PGE2 production via the inhibition of miR-155. As the antagomiR of miR-155 (MRG-106) underwent a phase-1 clinical trial, its effect should be considered and analyzed in prostaglandin metabolism in tumor. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01839-4.
Collapse
Affiliation(s)
- Sinae Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun Sung Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sae Byul Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jisun Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee Jeong Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jong Won Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Byung Ho Son
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sei-Hyun Ahn
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
9
|
Gonzalez-Rivera JC, Sherman MW, Wang DS, Chuvalo-Abraham JCL, Hildebrandt Ruiz L, Contreras LM. RNA oxidation in chromatin modification and DNA-damage response following exposure to formaldehyde. Sci Rep 2020; 10:16545. [PMID: 33024153 PMCID: PMC7538935 DOI: 10.1038/s41598-020-73376-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/11/2020] [Indexed: 01/18/2023] Open
Abstract
Formaldehyde is an environmental and occupational chemical carcinogen implicated in the damage of proteins and nucleic acids. However, whether formaldehyde provokes modifications of RNAs such as 8-oxo-7,8-dihydroguanine (8-oxoG) and the role that these modifications play on conferring long-term adverse health effects remains unexplored. Here, we profile 8-oxoG modifications using RNA-immunoprecipitation and RNA sequencing (8-oxoG RIP-seq) to identify 343 RNA transcripts heavily enriched in oxidations in human bronchial epithelial BEAS-2B cell cultures exposed to 1 ppm formaldehyde for 2 h. RNA oxidation altered expression of many transcripts involved in chromatin modification and p53-mediated DNA-damage responses, two pathways that play key roles in sustaining genome integrity and typically deregulated in tumorigenesis. Given that these observations were identified in normal cells exhibiting minimal cell stress and death phenotypes (for example, lack of nuclear shrinkage, F-actin alterations or increased LDH activity); we hypothesize that oxidative modification of specific RNA transcripts following formaldehyde exposure denotes an early process occurring in carcinogenesis analogous to the oxidative events surfacing at early stages of neurodegenerative diseases. As such, we provide initial investigations of RNA oxidation as a potentially novel mechanism underlying formaldehyde-induced tumorigenesis.
Collapse
Affiliation(s)
- Juan C Gonzalez-Rivera
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA
| | - Mark W Sherman
- Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78714, USA
| | - Dongyu S Wang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA
| | | | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA.
- Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78714, USA.
| |
Collapse
|
10
|
Zhuo Z, Wan Y, Guan D, Ni S, Wang L, Zhang Z, Liu J, Liang C, Yu Y, Lu A, Zhang G, Zhang B. A Loop-Based and AGO-Incorporated Virtual Screening Model Targeting AGO-Mediated miRNA-mRNA Interactions for Drug Discovery to Rescue Bone Phenotype in Genetically Modified Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903451. [PMID: 32670749 PMCID: PMC7341099 DOI: 10.1002/advs.201903451] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/18/2020] [Indexed: 05/05/2023]
Abstract
Several virtual screening models are proposed to screen small molecules only targeting primary miRNAs without selectivity. Few attempts have been made to develop virtual screening strategies for discovering small molecules targeting mature miRNAs. Mature miRNAs and their specific target mRNA can form unique functional loops during argonaute (AGO)-mediated miRNA-mRNA interactions, which may serve as potential targets for small-molecule drug discovery. Thus, a loop-based and AGO-incorporated virtual screening model is constructed for targeting the loops. The previously published studies have found that miR-214 can target ATF4 to inhibit osteoblastic bone formation, whereas miR-214 can target TRAF3 to promote osteoclast activity. By using the virtual model, the top ten candidate small molecules targeting miR-214-ATF4 mRNA interactions and top ten candidate small molecules targeting miR-214-TRAF3 mRNA interactions are selected, respectively. Based on both in vitro and in vivo data, one small molecule can target miR-214-ATF4 mRNA to promote ATF4 protein expression and enhance osteogenic potential, whereas one small molecule can target miR-214-TRAF3 mRNA to promote TRAF3 protein expression and inhibit osteoclast activity. These data indicate that the loop-based and AGO-incorporated virtual screening model can help to obtain small molecules specifically targeting miRNA-mRNA interactions to rescue bone phenotype in genetically modified mice.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Aptacure Therapeutics LimitedKowloonHong Kong SARChina
| | - Youyang Wan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint DiseasesSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Institute of Integrated Bioinformedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
| | - Daogang Guan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint DiseasesSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Institute of Integrated Bioinformedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint DiseasesSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Institute of Integrated Bioinformedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Guangdong‐Hong Kong‐Macao Greater BayArea International Research Platform for Aptamer‐based Translational Medicine and Drug DiscoveryHong Kong999077China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint DiseasesSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Institute of Integrated Bioinformedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Guangdong‐Hong Kong‐Macao Greater BayArea International Research Platform for Aptamer‐based Translational Medicine and Drug DiscoveryHong Kong999077China
| | - Zongkang Zhang
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint DiseasesSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Institute of Integrated Bioinformedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint DiseasesSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Institute of Integrated Bioinformedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint DiseasesSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Institute of Integrated Bioinformedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Guangdong‐Hong Kong‐Macao Greater BayArea International Research Platform for Aptamer‐based Translational Medicine and Drug DiscoveryHong Kong999077China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint DiseasesSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Institute of Integrated Bioinformedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Guangdong‐Hong Kong‐Macao Greater BayArea International Research Platform for Aptamer‐based Translational Medicine and Drug DiscoveryHong Kong999077China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint DiseasesSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
- Institute of Integrated Bioinformedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
| | - Bao‐Ting Zhang
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
11
|
Joshi P, Seki T, Kitamura S, Bergano A, Lee B, Perera RJ. Transcriptome stability profiling using 5'-bromouridine IP chase (BRIC-seq) identifies novel and functional microRNA targets in human melanoma cells. RNA Biol 2019; 16:1355-1363. [PMID: 31179855 DOI: 10.1080/15476286.2019.1629769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA half-life is closely related to its cellular physiological function, so stability determinants may have regulatory functions. Micro(mi)RNAs have primarily been studied with respect to post-transcriptional mRNA regulation and target degradation. Here we study the impact of the tumour suppressive melanoma miRNA miR-211 on transcriptome stability and phenotype in the non-pigmented melanoma cell line, A375. Using 5'-bromouridine IP chase (BRIC)-seq, transcriptome-wide RNA stability profiles revealed highly regulated genes and pathways important in this melanoma cell line. By combining BRIC-seq, RNA-seq and in silico predictions, we identified both existing and novel direct miR-211 targets. We validated DUSP3 as one such novel miR-211 target, which itself sustains colony formation and invasion in A375 cells via MAPK/PI3K signalling. miRNAs have the capacity to control RNA turnover as a gene expression mechanism, and RNA stability profiling is an excellent tool for interrogating functionally relevant gene regulatory pathways and miRNA targets when combined with other high-throughput and in silico approaches.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Oncology, Johns Hopkins University School of Medicine , Baltimore , MD , USA.,Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Tatsuya Seki
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Medical and Biological Laboratories , Nagoya , Japan
| | | | - Andrea Bergano
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Bongyong Lee
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA
| | - Ranjan J Perera
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
12
|
Frank AC, Ebersberger S, Fink AF, Lampe S, Weigert A, Schmid T, Ebersberger I, Syed SN, Brüne B. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun 2019; 10:1135. [PMID: 30850595 PMCID: PMC6408494 DOI: 10.1038/s41467-019-08989-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/09/2019] [Indexed: 01/01/2023] Open
Abstract
Tumor-immune cell interactions shape the immune cell phenotype, with microRNAs (miRs) being crucial components of this crosstalk. How they are transferred and how they affect their target landscape, especially in tumor-associated macrophages (TAMs), is largely unknown. Here we report that breast cancer cells have a high constitutive expression of miR-375, which is released as a non-exosome entity during apoptosis. Deep sequencing of the miRome pointed to enhanced accumulation of miR-375 in TAMs, facilitated by the uptake of tumor-derived miR-375 via CD36. In macrophages, miR-375 directly targets TNS3 and PXN to enhance macrophage migration and infiltration into tumor spheroids and in tumors of a xenograft mouse model. In tumor cells, miR-375 regulates CCL2 expression to increase recruitment of macrophages. Our study provides evidence for miR transfer from tumor cells to TAMs and identifies miR-375 as a crucial regulator of phagocyte infiltration and the subsequent development of a tumor-promoting microenvironment. The mode of miRNA transfer between tumour-immune cells is usually via exosomes. Here, the authors show that an alternative mode of transfer whereby miR-375 from apoptotic tumour cells can be transferred to tumour-associated macrophages via CD36 receptor, which induces macrophage migration and infiltration to the tumours.
Collapse
Affiliation(s)
- Ann-Christin Frank
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | | | - Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Sebastian Lampe
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-University Frankfurt, Max-von-Laue Strasse 13, 60438, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre Frankfurt (BIK-F), Frankfurt, 60325, Germany
| | - Shahzad Nawaz Syed
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Research Consortium (DKTK), Partner Site, Frankfurt, 60590, Germany.
| |
Collapse
|
13
|
Li J, Zhang Y. Current experimental strategies for intracellular target identification of microRNA. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-018-0002-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Ren G, Zhu J, Li J, Meng X. Noncoding RNAs in acute kidney injury. J Cell Physiol 2018; 234:2266-2276. [PMID: 30146769 DOI: 10.1002/jcp.27203] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/16/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Gui‐Ling Ren
- Department of PharmacyThe 105 Hospital of Chinese People’s Liberation ArmyHefei China
| | - Jie Zhu
- Department of PharmacyThe 105 Hospital of Chinese People’s Liberation ArmyHefei China
| | - Jun Li
- Department of PharmacologySchool of Pharmacy, Anhui Medical UniversityHefei China
- Anhui Institute of Innovative Drugs, Anhui Medical UniversityHefei China
| | - Xiao‐Ming Meng
- Department of PharmacologySchool of Pharmacy, Anhui Medical UniversityHefei China
- Anhui Institute of Innovative Drugs, Anhui Medical UniversityHefei China
| |
Collapse
|
15
|
Cui S, Zhang K, Li C, Chen J, Pan Y, Feng B, Lu L, Zhu Z, Wang R, Chen L. Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A. Oncotarget 2018; 7:78009-78028. [PMID: 27793005 PMCID: PMC5363640 DOI: 10.18632/oncotarget.12870] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Metastasis and recurrence has become one major obstacle for further improving the survival of hepatocelluar cancer (HCC) patients. Therefore, it is critical to elucidate the mechanisms involved in HCC metastasis. This study aimed to investigate the roles of microRNA (miR)-129-3p in HCC metastasis and its possible molecular mechanisms. By using microarray analysis to compare levels of different miRNAs in HCC tissues with or without lymph node metastasis (LNM), we showed that HCC tissues with LNM had reduced levels of miR-129-3p, which was related to its promoter hypermethylation and correlated with tumor metastasis, recurrence and poor prognosis. Gain - and loss - of - function assays indicated that re-expression of miR-129-3p could reverse epithelial-mesenchymal transition (EMT), and reduce in vitro invasion and in vivo metastasis of HCC cells. Aurora-A, a serine/threonine protein kinase, was identified as a direct target of miR-129-3p. Knockdown of Aurora-A phenocopied the effect of miR-129-3p overexpression on HCC metastasis. In addition, Aurora-A upregulation could partially rescue the effect of miR-129-3p. We further demonstrated that activation of PI3K/Akt and p38-MAPK signalings were involved in miR-129-3p-mediated HCC metastasis. These findings suggest that methylation-mediated miR-129-3p downregulation promotes EMT, in vitro invasion and in vivo metastasis of HCC cells via activation of PI3K/Akt and p38-MAPK signalings partially by targeting Aurora-A. Therefore, miR-129-3p may be a novel prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Shiyun Cui
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Chen Li
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Yan Pan
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Lei Lu
- Liver Disease Center of PLA, The 81th Hospital of PLA, Nanjing 210002, Jiangsu, PR China
| | - Ziman Zhu
- Department of Hepatobiliary Surgery, First Hospital Affiliated to the Chinese PLA General Hospital, Haidian District, Beijing 100048, PR China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| |
Collapse
|
16
|
Schliesser MG, Claus R, Hielscher T, Grimm C, Weichenhan D, Blaes J, Wiestler B, Hau P, Schramm J, Sahm F, Weiß EK, Weiler M, Baer C, Schmidt-Graf F, Schackert G, Westphal M, Hertenstein A, Roth P, Galldiks N, Hartmann C, Pietsch T, Felsberg J, Reifenberger G, Sabel MC, Winkler F, von Deimling A, Meisner C, Vajkoczy P, Platten M, Weller M, Plass C, Wick W. Prognostic relevance of miRNA-155 methylation in anaplastic glioma. Oncotarget 2018; 7:82028-82045. [PMID: 27880937 PMCID: PMC5347671 DOI: 10.18632/oncotarget.13452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/13/2016] [Indexed: 02/03/2023] Open
Abstract
The outcome of patients with anaplastic gliomas varies considerably depending on single molecular markers, such as mutations of the isocitrate dehydrogenase (IDH) genes, as well as molecular classifications based on epigenetic or genetic profiles. Remarkably, 98% of the RNA within a cell is not translated into proteins. Of those, especially microRNAs (miRNAs) have been shown not only to have a major influence on physiologic processes but also to be deregulated and prognostic in malignancies.To find novel survival markers and treatment options we performed unbiased DNA methylation screens that revealed 12 putative miRNA promoter regions with differential DNA methylation in anaplastic gliomas. Methylation of these candidate regions was validated in different independent patient cohorts revealing a set of miRNA promoter regions with prognostic relevance across data sets. Of those, miR-155 promoter methylation and miR-155 expression were negatively correlated and especially the methylation showed superior correlation with patient survival compared to established biomarkers.Functional examinations in malignant glioma cells further cemented the relevance of miR-155 for tumor cell viability with transient and stable modifications indicating an onco-miRNA activity. MiR-155 also conferred resistance towards alkylating temozolomide and radiotherapy as consequence of nuclear factor (NF)κB activation.Preconditioning glioma cells with an NFκB inhibitor reduced therapy resistance of miR-155 overexpressing cells. These cells resembled tumors with a low methylation of the miR-155 promoter and thus mir-155 or NFκB inhibition may provide treatment options with a special focus on patients with IDH wild type tumors.
Collapse
Affiliation(s)
- Maximilian Georg Schliesser
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Claus
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christiane Grimm
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Blaes
- Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Wiestler
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Hau
- Neurology Clinic, Regensburg University, Regensburg, Germany
| | - Johannes Schramm
- Neurosurgery Clinic, University of Bonn Medical Center, TU Munich, Munich, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisa K Weiß
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of General Neurology, University Hospital Tübingen, Germany
| | - Constance Baer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friederike Schmidt-Graf
- Department of General Neurology, University Hospital Tübingen, Germany.,Neurology Clinic, TU Munich, Munich, Germany
| | | | - Manfred Westphal
- Neurosurgery Clinic, University Clinic Hamburg, Eppendorf, Germany
| | - Anne Hertenstein
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Roth
- Department of General Neurology, University Hospital Tübingen, Germany.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | - Christian Hartmann
- Department of Neuropathology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Neuropathology, Institute of Pathology, Medical University of Hannover, Hannover, Germany
| | - Torsten Pietsch
- Department of Neuropathology, Heinrich-Heine-University, Germany
| | - Joerg Felsberg
- Department of Neurosurgery, Heinrich-Heine-University, Germany.,Neurosurgery Clinic, Charité, Berlin, Germany
| | - Guido Reifenberger
- Department of Neurosurgery, Heinrich-Heine-University, Germany.,Neurosurgery Clinic, Charité, Berlin, Germany
| | | | - Frank Winkler
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Peter Vajkoczy
- Department Hematology, Oncology and Stem Cell Transplantation, University Hospital Freiburg, Germany
| | - Michael Platten
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of General Neurology, University Hospital Tübingen, Germany
| | - Michael Weller
- Department of General Neurology, University Hospital Tübingen, Germany.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of General Neurology, University Hospital Tübingen, Germany
| |
Collapse
|
17
|
Pickl JMA, Tichy D, Kuryshev VY, Tolstov Y, Falkenstein M, Schüler J, Reidenbach D, Hotz-Wagenblatt A, Kristiansen G, Roth W, Hadaschik B, Hohenfellner M, Duensing S, Heckmann D, Sültmann H. Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget 2018; 7:59589-59603. [PMID: 27449098 PMCID: PMC5312160 DOI: 10.18632/oncotarget.10729] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/09/2016] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a heterogeneous disease. MiR-375 is a marker for prostate cancer progression, but its cellular function is not characterized. Here, we provide the first comprehensive investigation of miR-375 in prostate cancer. We show that miR-375 is enriched in prostate cancer compared to normal cells. Furthermore, miR-375 enhanced proliferation, migration and invasion in vitro and induced tumor growth and reduced survival in vivo showing that miR-375 has oncogenic properties in prostate cancer. On the molecular level, we provide the targetome and genome-wide transcriptional changes of miR-375 expression by applying a generalized linear model for Ago-RIP-Seq and RNA-Seq, and show that miR-375 is involved in tumorigenic networks and Polycomb regulation. Integration of tissue and gene ontology data prioritized miR-375 targets and identified the tumor suppressor gene CBX7, a member of Polycomb repressive complex 1, as a major miR-375 target. MiR-375-mediated repression of CBX7 was accompanied by increased expression of its homolog CBX8 and activated transcriptional programs linked to malignant progression in prostate cancer cells. Tissue analysis showed association of CBX7 loss with advanced prostate cancer. Our study indicates that miR-375 exerts its tumor-promoting role in prostate cancer by influencing the epigenetic regulation of transcriptional programs through its ability to directly target the Polycomb complex member CBX7.
Collapse
Affiliation(s)
- Julia M A Pickl
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Diana Tichy
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Y Kuryshev
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Yanis Tolstov
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Michael Falkenstein
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Julia Schüler
- Oncotest GmbH, Institute for Experimental Oncology, Freiburg, Germany
| | - Daniel Reidenbach
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Core Facility Genomics & Proteomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany
| | - Wilfried Roth
- NCT Tissue Bank of The National Center of Tumor Diseases (NCT) and Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Doreen Heckmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
18
|
Kim S, Song JH, Kim S, Qu P, Martin BK, Sehareen WS, Haines DC, Lin PC, Sharan SK, Chang S. Loss of oncogenic miR-155 in tumor cells promotes tumor growth by enhancing C/EBP-β-mediated MDSC infiltration. Oncotarget 2017; 7:11094-112. [PMID: 26848978 PMCID: PMC4905460 DOI: 10.18632/oncotarget.7150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/19/2015] [Indexed: 11/25/2022] Open
Abstract
The oncogenic role of microRNA-155 (miR-155) in leukemia is well established but its role in other cancers, especially breast cancer, is gradually emerging. In this study we examined the effect of mir-155 loss in a well-characterized spontaneous breast cancer mouse model where Brca1 and Trp53 are deleted by K14-Cre. miR-155 is known to be up-regulated in BRCA1-deficient tumors. Surprisingly, complete loss of miR-155 (miR-155ko/ko) did not alter the tumor free survival of the mutant mice. However, we found increased infiltration of myeloid derived suppressor cells (MDSCs) in miR-155 deficient tumors. In addition, cytokine/chemokine array analysis revealed altered level of cytokines that are implicated in the recruitment of MDSCs. Mechanistically, we identified C/EBP-β, a known miR-155 target, to regulate the expression of these cytokines in the miR-155-deficient cells. Furthermore, using an allograft model, we showed that inhibition of miR-155 in cancer cells suppressed in vivo growth, which was restored by the loss of miR-155 in the microenvironment. Taken together, we have uncovered a novel tumor suppressive function of miR-155 in the tumor microenvironment, which is also dependent on miR-155 expression in the tumor cells. Because of the oncogenic as well as tumor suppressive roles of miR-155, our findings warrant caution against a systemic inhibition of miR-155 for anticancer therapy.
Collapse
Affiliation(s)
- Sinae Kim
- Department of Biomedical Sciences, Department of Physiology, University of Ulsan School of Medicine, Seoul, South Korea
| | - Jin Hoi Song
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Taejeon, South Korea
| | - Seokho Kim
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Taejeon, South Korea
| | - Peng Qu
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Waheed S Sehareen
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Diana C Haines
- Pathology Histotechnology Laboratory, Leidos Inc., Frederick National Laboratory for Cancer, Frederick, MD, USA
| | - Pengnian C Lin
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Suhwan Chang
- Department of Biomedical Sciences, Department of Physiology, University of Ulsan School of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
MicroRNA-155 regulates casein kinase 1 gamma 2: a potential pathogenetic role in chronic lymphocytic leukemia. Blood Cancer J 2017; 7:e606. [PMID: 28885613 PMCID: PMC5709749 DOI: 10.1038/bcj.2017.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Tichy D, Pickl JMA, Benner A, Sültmann H. Experimental design and data analysis of Ago-RIP-Seq experiments for the identification of microRNA targets. Brief Bioinform 2017; 19:918-929. [DOI: 10.1093/bib/bbx032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Diana Tichy
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | | | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
21
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by either degrading transcripts or repressing translation . Over the past decade the significance of miRNAs has been unraveled by the characterization of their involvement in crucial cellular functions and the development of disease. However, continued progress in understanding the endogenous importance of miRNAs, as well as their potential uses as therapeutic tools, has been hindered by the difficulty of positively identifying miRNA targets. To face this challenge algorithmic approaches have primarily been utilized to date, but strictly mathematical models have thus far failed to produce a generally accurate, widely accepted methodology for accurate miRNA target determination. As such, several laboratory-based, comprehensive strategies for experimentally identifying all cellular miRNA regulations simultaneously have recently been developed. This chapter discusses the advantages and limitations of both classic and comprehensive strategies for miRNA target prediction .
Collapse
|
22
|
Slezak-Prochazka I, Kluiver J, de Jong D, Smigielska-Czepiel K, Kortman G, Winkle M, Rutgers B, Koerts J, Visser L, Diepstra A, Kroesen BJ, van den Berg A. Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell lymphoma. Oncotarget 2016; 7:2391-400. [PMID: 26497687 PMCID: PMC4823043 DOI: 10.18632/oncotarget.6165] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/04/2015] [Indexed: 11/25/2022] Open
Abstract
Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.
Collapse
Affiliation(s)
- Izabella Slezak-Prochazka
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katarzyna Smigielska-Czepiel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gertrud Kortman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Vaghi V, Potrich C, Lunelli L, Facci P, Pasquardini L, Vanzetti L, Pederzolli C. Bio-functional surfaces for the immunocapture of AGO2-bound microRNAs. Colloids Surf B Biointerfaces 2016; 146:746-53. [PMID: 27449965 DOI: 10.1016/j.colsurfb.2016.06.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are endogenous, small (18-24nt), non-coding RNAs that regulate gene expression. Among miRNAs, those bound to the AGO2 protein are the functionally active fraction which mediates the cell regulatory processes and regulate messages exchanged by cells. Several methods have been developed to purify this fraction of microRNAs, such as immunoprecipitation and immunoprecipitation-derived techniques. However, all these techniques are generally recognized as technically complicated and time consuming. Here, a new bio-functional surface for the specific capture of AGO2-bound microRNAs is proposed. Starting from a silicon oxide surface, a protein A layer was covalently bound via epoxy chemistry to orient specific anti-AGO2 antibodies on the surface. The anti-AGO2 antibodies captured the AGO2 protein present in cell lysate and in human plasma. The AGO2-bound microRNAs were then released by enzymatic digestion and detected via RT-qPCR. Control surfaces were also prepared and tested. Every step in the preparation of the bio-functional surfaces was fully characterized from the chemical, morphological and functional point of view. The resulting bio-functional surface is able to specifically capture the AGO2-bound miRNAs from biologically-relevant samples, such as cell lysate and human plasma. These samples contain different proportions of AGO2-bound microRNAs, as reliably detected with the immunocapture method here proposed. This work opens new perspectives for a simple and faster method to isolate not only AGO2-bound microRNAs, but also the multiprotein complex containing AGO2 and miRNAs.
Collapse
Affiliation(s)
- V Vaghi
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, via Sommarive 18, I-38123 Povo (Trento), Italy
| | - C Potrich
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, via Sommarive 18, I-38123 Povo (Trento), Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via alla Cascata 56/C, I-38123 Povo (Trento), Italy.
| | - L Lunelli
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, via Sommarive 18, I-38123 Povo (Trento), Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via alla Cascata 56/C, I-38123 Povo (Trento), Italy
| | - P Facci
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via De Marini 6, I-16149 Genova, Italy
| | - L Pasquardini
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, via Sommarive 18, I-38123 Povo (Trento), Italy
| | - L Vanzetti
- Fondazione Bruno Kessler, Center for Materials and Microsystems, MNF-MateC, via Sommarive 18, I-38123 Povo (Trento), Italy
| | - C Pederzolli
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, via Sommarive 18, I-38123 Povo (Trento), Italy
| |
Collapse
|
24
|
Luoni A, Riva MA. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol Ther 2016; 167:13-27. [PMID: 27452338 DOI: 10.1016/j.pharmthera.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
The emergence of psychiatric disorders relies on the interaction between genetic vulnerability and environmental adversities. Several studies have demonstrated a crucial role for epigenetics (e.g. DNA methylation, post-translational histone modifications and microRNA-mediated post-transcriptional regulation) in the translation of environmental cues into adult behavioural outcome, which can prove to be harmful thus increasing the risk to develop psychopathology. Within this frame, non-coding RNAs, especially microRNAs, came to light as pivotal regulators of many biological processes occurring in the Central Nervous System, both during the neuronal development as well as in the regulation of adult function, including learning, memory and neuronal plasticity. On these basis, in recent years it has been hypothesised a central role for microRNA modulation and expression regulation in many brain disorders, including neurodegenerative disorders and mental illnesses. Indeed, the aim of the present review is to present the most recent state of the art regarding microRNA involvement in psychiatric disorders. We will first describe the mechanisms that regulate microRNA biogenesis and we will report evidences of microRNA dysregulation in peripheral body fluids, in postmortem brain tissues from patients suffering from psychopathology as well as in animal models. Last, we will discuss the potential to consider microRNAs as putative target for pharmacological intervention, using common psychotropic drugs or more specific tools, with the aim to normalize functions that are disrupted in different psychiatric conditions.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
25
|
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:311-62. [PMID: 26950183 PMCID: PMC4949569 DOI: 10.1002/wdev.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA-target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high-throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA-target binding events in vivo drove the emergence of a slew of high-throughput multiplex strategies, which now provide a viable prospect for elucidating genome-wide miRNA-target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post-transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high-precision interference with their direct, endogenous targets. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bruno R Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Toegel
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells. Cell Death Dis 2016; 7:e2086. [PMID: 26844700 PMCID: PMC4849150 DOI: 10.1038/cddis.2016.10] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/15/2015] [Accepted: 01/03/2016] [Indexed: 02/01/2023]
Abstract
A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein.
Collapse
|
27
|
Zhao JJ, Chu ZB, Hu Y, Lin J, Wang Z, Jiang M, Chen M, Wang X, Kang Y, Zhou Y, Ni Chonghaile T, Johncilla ME, Tai YT, Cheng JQ, Letai A, Munshi NC, Anderson KC, Carrasco RD. Targeting the miR-221-222/PUMA/BAK/BAX Pathway Abrogates Dexamethasone Resistance in Multiple Myeloma. Cancer Res 2015; 75:4384-4397. [PMID: 26249174 DOI: 10.1158/0008-5472.can-15-0457] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022]
Abstract
Despite recent therapeutic advances that have doubled the median survival time of patients with multiple myeloma, intratumor genetic heterogeneity contributes to disease progression and emergence of drug resistance. miRNAs are noncoding small RNAs that play important roles in the regulation of gene expression and have been implicated in cancer progression and drug resistance. We investigated the role of the miR-221-222 family in dexamethasone-induced drug resistance in multiple myeloma using the isogenic cell lines MM1R and MM1S, which represent models of resistance and sensitivity, respectively. Analysis of array comparative genome hybridization data revealed gain of chromosome X regions at band p11.3, wherein the miR-221-222 resides, in resistant MM1R cells but not in sensitive MM1S cells. DNA copy number gains in MM1R cells were associated with increased miR-221-222 expression and downregulation of p53-upregulated modulator of apoptosis (PUMA) as a likely proapoptotic target. We confirmed PUMA mRNA as a direct target of miR-221-222 in MM1S and MM1R cells by both gain-of-function and loss-of-function studies. In addition, miR-221-222 treatment rendered MM1S cells resistant to dexamethasone, whereas anti-miR-221-222 partially restored the dexamethasone sensitivity of MM1R cells. These studies have uncovered a role for miR-221-222 in multiple myeloma drug resistance and suggest a potential therapeutic role for inhibitors of miR-221-222 binding to PUMA mRNA as a means of overcoming dexamethasone resistance in patients. The clinical utility of this approach is predicated on the ability of antisense miR-221-222 to increase survival while reducing tumor burden and is strongly supported by the metastatic propensity of MM1R cells in preclinical mouse xenograft models of multiple myeloma. Moreover, our observation of increased levels of miR-221-222 with decreased PUMA expression in multiple myeloma cells from patients at relapse versus untreated controls suggests an even broader role for miR-221-222 in drug resistance and provides a rationale for the targeting of miR-221-222 as a means of improving patient outcomes.
Collapse
Affiliation(s)
- Jian-Jun Zhao
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Zhang-Bo Chu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhong Lin
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA
| | - Zhongqiu Wang
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Meng Jiang
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ming Chen
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Xujun Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yue Kang
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yangsheng Zhou
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Triona Ni Chonghaile
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Yu-Tzu Tai
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA
| | - Jin Q Cheng
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Antony Letai
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nikhil C Munshi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA.,Boston VA Healthcare System, Boston, MA
| | - Kenneth C Anderson
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA
| | - Ruben D Carrasco
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA.,Department of Pathology, Brigham & Women's Hospital, Boston, MA
| |
Collapse
|
28
|
Merkel O, Hamacher F, Griessl R, Grabner L, Schiefer AI, Prutsch N, Baer C, Egger G, Schlederer M, Krenn PW, Hartmann TN, Simonitsch-Klupp I, Plass C, Staber PB, Moriggl R, Turner SD, Greil R, Kenner L. Oncogenic role of miR-155 in anaplastic large cell lymphoma lacking the t(2;5) translocation. J Pathol 2015; 236:445-56. [PMID: 25820993 PMCID: PMC4557053 DOI: 10.1002/path.4539] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/20/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is a rare, aggressive, non-Hodgkin's lymphoma that is characterized by CD30 expression and disease onset in young patients. About half of ALCL patients bear the t(2;5)(p23;q35) translocation, which results in the formation of the nucleophosmin-anaplastic lymphoma tyrosine kinase (NPM-ALK) fusion protein (ALCL ALK(+)). However, little is known about the molecular features and tumour drivers in ALK-negative ALCL (ALCL ALK(-)), which is characterized by a worse prognosis. We found that ALCL ALK(-), in contrast to ALCL ALK(+), lymphomas display high miR-155 expression. Consistent with this, we observed an inverse correlation between miR-155 promoter methylation and miR-155 expression in ALCL. However, no direct effect of the ALK kinase on miR-155 levels was observed. Ago2 immunoprecipitation revealed miR-155 as the most abundant miRNA, and enrichment of target mRNAs C/EBPβ and SOCS1. To investigate its function, we over-expressed miR-155 in ALCL ALK(+) cell lines and demonstrated reduced levels of C/EBPβ and SOCS1. In murine engraftment models of ALCL ALK(-), we showed that anti-miR-155 mimics are able to reduce tumour growth. This goes hand-in-hand with increased levels of cleaved caspase-3 and high SOCS1 in these tumours, which leads to suppression of STAT3 signalling. Moreover, miR-155 induces IL-22 expression and suppresses the C/EBPβ target IL-8. These data suggest that miR-155 can act as a tumour driver in ALCL ALK(-) and blocking miR-155 could be therapeutically relevant. Original miRNA array data are to be found in the supplementary material (Table S1).
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Case-Control Studies
- Caspase 3/metabolism
- Cell Line, Tumor
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 5
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Genetic Therapy/methods
- Humans
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Lymphoma, Large-Cell, Anaplastic/therapy
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Promoter Regions, Genetic
- Receptor Protein-Tyrosine Kinases/deficiency
- Receptor Protein-Tyrosine Kinases/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Suppressor of Cytokine Signaling 1 Protein
- Suppressor of Cytokine Signaling Proteins/genetics
- Suppressor of Cytokine Signaling Proteins/metabolism
- Transfection
- Translocation, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Olaf Merkel
- Department of Translational Oncology, National Centre for Tumour Diseases (NCT), German Cancer Research Centre (DKFZ)Heidelberg, Germany
- Department of Clinical Pathology, Medical University ViennaAustria
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| | - Frank Hamacher
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Robert Griessl
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Lisa Grabner
- Department of Clinical Pathology, Medical University ViennaAustria
| | | | - Nicole Prutsch
- Department of Clinical Pathology, Medical University ViennaAustria
| | - Constance Baer
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Centre (DKFZ)Heidelberg, Germany
| | - Gerda Egger
- Department of Clinical Pathology, Medical University ViennaAustria
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| | - Michaela Schlederer
- Department of Clinical Pathology, Medical University ViennaAustria
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
| | - Peter William Krenn
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Tanja Nicole Hartmann
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | | | - Christoph Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Centre (DKFZ)Heidelberg, Germany
| | - Philipp Bernhard Staber
- Division of Hematology and Hemostaseology, Comprehensive Cancer Centre Vienna, Medical University of Vienna1090, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna and Medical University of ViennaAustria
| | - Suzanne D Turner
- Division of Molecular Histopathology, Department of Pathology, University of CambridgeUK
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| | - Richard Greil
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Lukas Kenner
- Department of Clinical Pathology, Medical University ViennaAustria
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine ViennaAustria
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| |
Collapse
|
29
|
Abstract
MicroRNAs (miRNAs) are key players in the regulation of neuronal processes by targeting a large network of target messenger RNAs (mRNAs). However, the identity and function of mRNAs targeted by miRNAs in specific cells of the brain are largely unknown. Here, we established an adeno-associated viral vector (AAV)-based neuron-specific Argonaute2:GFP-RNA immunoprecipitation followed by high-throughput sequencing to analyse the regulatory role of miRNAs in mouse hippocampal neurons. Using this approach, we identified more than two thousand miRNA targets in hippocampal neurons, regulating essential neuronal features such as cell signalling, transcription and axon guidance. Furthermore, we found that stable inhibition of the highly expressed miR-124 and miR-125 in hippocampal neurons led to significant but distinct changes in the AGO2 binding of target mRNAs, resulting in subsequent upregulation of numerous miRNA target genes. These findings greatly enhance our understanding of the miRNA targetome in hippocampal neurons.
Collapse
|
30
|
Hausser J, Zavolan M. Identification and consequences of miRNA-target interactions--beyond repression of gene expression. Nat Rev Genet 2014; 15:599-612. [PMID: 25022902 DOI: 10.1038/nrg3765] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Comparative genomics analyses and high-throughput experimental studies indicate that a microRNA (miRNA) binds to hundreds of sites across the transcriptome. Although the knockout of components of the miRNA biogenesis pathway has profound phenotypic consequences, most predicted miRNA targets undergo small changes at the mRNA and protein levels when the expression of the miRNA is perturbed. Alternatively, miRNAs can establish thresholds in and increase the coherence of the expression of their target genes, as well as reduce the cell-to-cell variability in target gene expression. Here, we review the recent progress in identifying miRNA targets and the emerging paradigms of how miRNAs shape the dynamics of target gene expression.
Collapse
Affiliation(s)
- Jean Hausser
- Department of Molecular Cell Biology, Weizmann Institute of Science, Herzl Street 234, 76100 Rehovot, Israel
| | - Mihaela Zavolan
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, 4156 Basel, Switzerland
| |
Collapse
|
31
|
Horswell SD, Fryer LGD, Hutchison CE, Zindrou D, Speedy HE, Town MM, Duncan EJ, Sivapackianathan R, Patel HN, Jones EL, Braithwaite A, Salm MPA, Neuwirth CKY, Potter E, Anderson JR, Taylor KM, Seed M, Betteridge DJ, Crook MA, Wierzbicki AS, Scott J, Naoumova RP, Shoulders CC. CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients. J Lipid Res 2013; 54:3491-505. [PMID: 24103848 DOI: 10.1194/jlr.m041814] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the core biological processes perturbed in the subcutaneous adipose tissue of familial combined hyperlipidemia (FCHL) patients. Annotation of FCHL and control microarray datasets revealed a distinctive FCHL transcriptome, characterized by gene expression changes regulating five overlapping systems: the cytoskeleton, cell adhesion and extracellular matrix; vesicular trafficking; lipid homeostasis; and cell cycle and apoptosis. Expression values for the cell-cycle inhibitor CDKN2B were increased, replicating data from an independent FCHL cohort. In 3T3-L1 cells, CDKN2B knockdown induced C/EBPα expression and lipid accumulation. The minor allele at SNP site rs1063192 (C) was predicted to create a perfect seed for the human miRNA-323b-5p. A miR-323b-5p mimic significantly reduced endogenous CDKN2B protein levels and the activity of a CDKN2B 3'UTR luciferase reporter carrying the rs1063192 C allele. Although the allele displayed suggestive evidence of association with reduced CDKN2B mRNA in the MuTHER adipose tissue dataset, family studies suggest the association between increased CDKN2B expression and FCHL-lipid abnormalities is driven by factors external to this gene locus. In conclusion, from a comparative annotation analysis of two separate FCHL adipose tissue transcriptomes and a subsequent focus on CDKN2B, we propose that dysfunctional adipogenesis forms an integral part of FCHL pathogenesis.
Collapse
Affiliation(s)
- Stuart D Horswell
- Medical Research Council, Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|