1
|
Bellini N, Ye C, Ajibola O, Murooka TT, Lodge R, Cohen ÉA. Downregulation of miRNA-26a by HIV-1 Enhances CD59 Expression and Packaging, Impacting Virus Susceptibility to Antibody-Dependent Complement-Mediated Lysis. Viruses 2024; 16:1076. [PMID: 39066239 PMCID: PMC11281366 DOI: 10.3390/v16071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
MicroRNAs (miRNAs) play important roles in the control of HIV-1 infection. Here, we performed RNA-seq profiling of miRNAs and mRNAs expressed in CD4+ T lymphocytes upon HIV-1 infection. Our results reveal significant alterations in miRNA and mRNA expression profiles in infected relative to uninfected cells. One of the miRNAs markedly downregulated in infected cells is miRNA-26a. Among the putative targets of miRNA-26a are CD59 receptor transcripts, which are significantly upregulated in infected CD4+ T cells. The addition of miRNA-26a mimics to CD4+ T cells reduces CD59 at both the mRNA and surface protein levels, validating CD59 as a miRNA-26a target. Consistent with the reported inhibitory role of CD59 in complement-mediated lysis (CML), knocking out CD59 in CD4+ T cells renders both HIV-1-infected cells and progeny virions more prone to antibody-dependent CML (ADCML). The addition of miRNA-26a mimics to infected cells leads to enhanced sensitivity of progeny virions to ADCML, a condition linked to a reduction in CD59 packaging into released virions. Lastly, HIV-1-mediated downregulation of miRNA-26a expression is shown to be dependent on integrated HIV-1 expression but does not involve viral accessory proteins. Overall, these results highlight a novel mechanism by which HIV-1 limits ADCML by upregulating CD59 expression via miRNA-26a downmodulation.
Collapse
Affiliation(s)
- Nicolas Bellini
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chengyu Ye
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (O.A.); (T.T.M.)
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (O.A.); (T.T.M.)
| | - Robert Lodge
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
2
|
Han D, Zhu S, Li X, Li Z, Huang H, Gao W, Liu Y, Zhu H, Yu X. The NF-κB/miR-488/ERBB2 axis modulates pancreatic cancer cell malignancy and tumor growth through cell cycle signaling. Cancer Biol Ther 2022; 23:294-309. [PMID: 35343383 PMCID: PMC8966990 DOI: 10.1080/15384047.2022.2054257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/27/2021] [Accepted: 01/17/2022] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the malignancies having the poorest prognosis due to late diagnoses and lack of efficient treatment regimens. The identification of potential miRNA-targeted gene axes could act as targets for developing novel treatment strategies. Herein, it was assessed that miR-488 expression was markedly downregulated within pancreatic carcinoma. Higher expression of miR-488 was shown to be linked to better prognosis rates of pancreatic carcinoma as per online data. Within two pancreatic tumor cells, MIA PaCa-2 and PANC-1, miR-488 overexpression significantly suppressed malignant cytological behavior by inhibiting cell viability, enhancing cell apoptosis, and inducing cell cycle G2/M-phase arrest. Moreover, miR-488 overexpression also decreased the protein levels of cell cycle regulators, including cyclin A, cyclin B, CDK1, and CDK2. miR-488 directly targets ERBB2 (receptor tyrosine-protein kinase2) to suppress the expression of ERBB2 by targeting its 3'UTR. ERBB2 knockdown in MIA PaCa-2 and PANC-1 cell lines suppressed, but miR-488 inhibition enhanced the cancer cell biological malignant behavior; the effects of miR-488 inhibition on pancreatic cancer cells were significantly reversed by ERBB2 knockdown. NF-κB suppressed the expression of miR-488 transcriptionally via targeting its promoter region, consequentially repressing the tumor-suppressive effects of miR-488 upon pancreatic tumor cells. Thus, an NF-κB/miR-488/ERBB2 axis modulating pancreatic cancer cell malignancy and tumor growth through cell cycle signaling was conclusively demonstrated.
Collapse
Affiliation(s)
- Duo Han
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shaihong Zhu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xia Li
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yunfei Liu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Chinniah R, Adimulam T, Nandlal L, Arumugam T, Ramsuran V. The Effect of miRNA Gene Regulation on HIV Disease. Front Genet 2022; 13:862642. [PMID: 35601502 PMCID: PMC9117004 DOI: 10.3389/fgene.2022.862642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over many years, research on HIV/AIDS has advanced with the introduction of HAART. Despite these advancements, significant gaps remain with respect to aspects in HIV life cycle, with specific attention to virus-host interactions. Investigating virus-host interactions may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably, host gene silencing can be facilitated by cellular small non-coding RNAs such as microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can either promote viral infection, while others can be detrimental to viral replication. This is accomplished by targeting the HIV-proviral genome or by regulating host genes required for viral replication and immune responses. In this review, we report on 1) the direct association of microRNAs with HIV infection; 2) the indirect association of known human genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other diseases that can be explored experimentally to determine their effect on HIV-1 infection; and 4) therapeutic interactions of microRNA against HIV infection.
Collapse
Affiliation(s)
- Romona Chinniah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Qiao J, Peng Q, Qian F, You Q, Feng L, Hu S, Liu W, Huang L, Shu X, Sun B. HIV-1 Vpr protein upregulates microRNA-210-5p expression to induce G2 arrest by targeting TGIF2. PLoS One 2021; 16:e0261971. [PMID: 34965271 PMCID: PMC8716043 DOI: 10.1371/journal.pone.0261971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important molecules that mediate virus-host interactions, mainly by regulating gene expression via gene silencing. Here, we demonstrated that HIV-1 infection upregulated miR-210-5p in HIV-1-inoculated cell lines and in the serum of HIV-1-infected individuals. Luciferase reporter assays and western blotting confirmed that a target protein of miR-210-5p, TGIF2, is regulated by HIV-1 infection. Furthermore, HIV-1 Vpr protein induced miR-210-5p expression. The use of a miR-210-5p inhibitor and TGIF2 overexpression showed that Vpr upregulated miR-210-5p and thereby downregulated TGIF2, which might be one of the mechanisms used by Vpr to induce G2 arrest. Moreover, we identified a transcription factor, NF-κB p50, which upregulated miR-210-5p in response to Vpr protein. In conclusion, we identified a mechanism whereby miR-210-5p, which is induced upon HIV-1 infection, targets TGIF2. This pathway was initiated by Vpr protein activating NF-κB p50, which promoted G2 arrest. These alterations orchestrated by miRNA provide new evidence on how HIV-1 interacts with its host during infection and increase our understanding of the mechanism by which Vpr regulates the cell cycle.
Collapse
Affiliation(s)
- Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Feng Qian
- Division of HIV/AIDS, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lingyan Feng
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lixia Huang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- * E-mail: (BS); (XS)
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- * E-mail: (BS); (XS)
| |
Collapse
|
5
|
Pheiffer C, Dias S, Rheeder P, Adam S. MicroRNA Profiling in HIV-Infected South African Women with Gestational Diabetes Mellitus. Mol Diagn Ther 2020; 23:499-505. [PMID: 31111446 DOI: 10.1007/s40291-019-00404-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recently, we reported that the microRNAs (miRNAs) miR-20a-5p and-to a lesser extent-miR-222-3p hold potential as biomarkers for gestational diabetes mellitus (GDM) in human immunodeficiency virus (HIV)-negative South African women. METHODS In this preliminary study, we measured the expression of these miRNAs in HIV-positive women (GDM 15, non-GDM 52; median 26.0 weeks; range 16-30). RESULTS Although the same trend of decreased expression of miR-20a-5p (1.5-fold decrease) and miR-222-3p (1.4-fold decrease) was observed in sera of women with and without GDM, these differences were not statistically significant. Stratification according to antiretroviral treatment (ART) confirmed decreased expression of miR-20a-5p and miR-222-3p in ART-naïve and ART-treated women with GDM, although again this was not statistically significant. CONCLUSION Our results demonstrate that HIV infection modifies the expression of miR-20a-5p and miR-222-3p in women with GDM. Importantly, this study highlights the complexities of miRNA profiling and the need for GDM biomarker discovery in both HIV-infected and uninfected individuals, particularly in South Africa, where approximately 30% of pregnancies are complicated by HIV. Further studies to elucidate the mechanisms that underlie these miRNA differences are needed.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Francie Van Zijl Drive, Tygerberg, Western Cape, 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Francie Van Zijl Drive, Tygerberg, Western Cape, 7505, South Africa.,Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Paul Rheeder
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
7
|
HIV-1 infection increases microRNAs that inhibit Dicer1, HRB and HIV-EP2, thereby reducing viral replication. PLoS One 2019; 14:e0211111. [PMID: 30682089 PMCID: PMC6347224 DOI: 10.1371/journal.pone.0211111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
HIV-1 is the causative agent of AIDS (Autoimmune Deficiency Syndrome). HIV-1 infection results in systemic CD4+ T cell depletion, thereby impairing cell-mediated immunity. MicroRNAs are short (~22 nucleotides long), endogenous single-stranded RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3' UTR) of mRNA transcripts. The relation between HIV-1 infection and human miRNA expression profile has been previously investigated, and studies have shown that the virus can alter miRNA expression and vice versa. Here, we broaden the understanding of the HIV-1 infection process, and show that miRNA-186, 210 and 222 are up-regulated following HIV-1 infection of human Sup-T1 cells. As a result, the host miRNA target genes: Dicer1 (Double-Stranded RNA-Specific Endoribonuclease), HRB (HIV-1 Rev-binding protein) and HIV-EP2 (Human Immunodeficiency Virus Type I Enhancer Binding Protein 2), are down-regulated. Moreover, testing the miRNA-gene anti- correlation on the Jurkat and the HeLa-MAGI cell lines demonstrated the ability of the miRNAs to down-regulate viral expression as well. To conclude, we found that human miR-186, 210 and 222 directly regulate the human genes Dicer1, HRB and HIV-EP2, thus may be filling key roles during HIV-1 replication and miRNA biogenesis. This finding may contribute to the development of new therapeutic strategies.
Collapse
|
8
|
Zhang X, Gao X, Hu J, Xie Y, Zuo Y, Xu H, Zhu S. ADAR1p150 Forms a Complex with Dicer to Promote miRNA-222 Activity and Regulate PTEN Expression in CVB3-Induced Viral Myocarditis. Int J Mol Sci 2019; 20:ijms20020407. [PMID: 30669342 PMCID: PMC6359435 DOI: 10.3390/ijms20020407] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Adenosine deaminases acting on RNA (ADAR) are enzymes that regulate RNA metabolism through post-transcriptional mechanisms. ADAR1 is involved in a variety of pathological conditions including inflammation, cancer, and the host defense against viral infections. However, the role of ADAR1p150 in vascular disease remains unclear. In this study, we examined the expression of ADAR1p150 and its role in viral myocarditis (VMC) in a mouse model. VMC mouse cardiomyocytes showed significantly higher expression of ADAR1p150 compared to the control samples. Coimmunoprecipitation verified that ADAR1p150 forms a complex with Dicer in VMC. miRNA-222, which is involved in many cardiac diseases, is highly expressed in cardiomyocytes in VMC. In addition, the expression of miRNA-222 was promoted by ADAR1p150/Dicer. Among the target genes of miRNA-222, the expression of phosphatase-and-tensin (PTEN) protein was significantly reduced in VMC. By using a bioinformatics tool, we found a potential binding site of miRNA-222 on the PTEN gene’s 3′-UTR, suggesting that miRNA-222 might play a regulatory role. In cultured cells, miR-222 suppressed PTEN expression. Our findings suggest that ADAR1p150 plays a key role in complexing with Dicer and promoting the expression of miRNA-222, the latter of which suppresses the expression of the target gene PTEN during VMC. Our work reveals a previously unknown role of ADAR1p150 in gene expression in VMC.
Collapse
Affiliation(s)
- Xincai Zhang
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Xiangting Gao
- Department of Pathology, School of Medicine, Shihezi University, Shihezi 215021, China.
| | - Jun Hu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Yuxin Xie
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Yuanyi Zuo
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Hongfei Xu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Shaohua Zhu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| |
Collapse
|
9
|
Host MicroRNAs-221 and -222 Inhibit HIV-1 Entry in Macrophages by Targeting the CD4 Viral Receptor. Cell Rep 2018; 21:141-153. [PMID: 28978468 DOI: 10.1016/j.celrep.2017.09.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/18/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Macrophages are heterogeneous immune cells with distinct origins, phenotypes, functions, and tissue localization. Their susceptibility to HIV-1 is subject to variations from permissiveness to resistance, owing in part to regulatory microRNAs. Here, we used RNA sequencing (RNA-seq) to examine the expression of >400 microRNAs in productively infected and bystander cells of HIV-1-exposed macrophage cultures. Two microRNAs upregulated in bystander macrophages, miR-221 and miR-222, were identified as negative regulators of CD4 expression and CD4-mediated HIV-1 entry. Both microRNAs were enhanced by tumor necrosis factor alpha (TNF-α), an inhibitor of CD4 expression. MiR-221/miR-222 inhibitors recovered HIV-1 entry in TNF-α-treated macrophages by enhancing CD4 expression and increased HIV-1 replication and spread in macrophages by countering TNF-α-enhanced miR-221/miR-222 expression in bystander cells. In line with these findings, HIV-1-resistant intestinal myeloid cells express higher levels of miR-221 than peripheral blood monocytes. Thus, miR-221/miR-222 act as effectors of the antiviral host response activated during macrophage infection that restrict HIV-1 entry.
Collapse
|
10
|
Lodge R, Gilmore JC, Ferreira Barbosa JA, Lombard-Vadnais F, Cohen ÉA. Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells. Viruses 2017; 10:v10010013. [PMID: 29301198 PMCID: PMC5795426 DOI: 10.3390/v10010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.
Collapse
Affiliation(s)
- Robert Lodge
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Julian C. Gilmore
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Jérémy A. Ferreira Barbosa
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Félix Lombard-Vadnais
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-987-5804
| |
Collapse
|
11
|
Changes in the cellular microRNA profile by the intracellular expression of HIV-1 Tat regulator: A potential mechanism for resistance to apoptosis and impaired proliferation in HIV-1 infected CD4+ T cells. PLoS One 2017; 12:e0185677. [PMID: 28968466 PMCID: PMC5624617 DOI: 10.1371/journal.pone.0185677] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
HIV-1 induces changes in the miRNA expression profile of infected CD4+ T cells that could improve viral replication. HIV-1 regulator Tat modifies the cellular gene expression and has been appointed as an RNA silencing suppressor. Tat is a 101-residue protein codified by two exons that regulates the elongation of viral transcripts. The first exon of Tat (amino acids 1–72) forms the transcriptionally active protein Tat72, but the presence of the second exon (amino acids 73–101) results in a more competent regulatory protein (Tat101) with additional functions. Intracellular, full-length Tat101 induces functional and morphological changes in CD4+ T cells that contribute to HIV-1 pathogenesis such as delay in T-cell proliferation and protection against FasL-mediated apoptosis. But the precise mechanism by which Tat produces these changes remains unknown. We analyzed how the stable expression of intracellular Tat101 and Tat72 modified the miRNA expression profile in Jurkat cells and if this correlated with changes in apoptotic pathways and cell cycle observed in Tat-expressing cells. Specifically, the enhanced expression of hsa-miR-21 and hsa-miR-222 in Jurkat-Tat101 cells was associated with the reduced expression of target mRNAs encoding proteins related to apoptosis and cell cycle such as PTEN, PDCD4 and CDKN1B. We developed Jurkat cells with stable expression of hsa-miR-21 or hsa-miR-222 and observed a similar pattern to Jurkat-Tat101 in resistance to FasL-mediated apoptosis, cell cycle arrest in G2/M and altered cell morphology. Consequently, upregulation of hsa-miR-21 and hsa-miR-222 by Tat may contribute to protect against apoptosis and to anergy observed in HIV-infected CD4+ T cells.
Collapse
|
12
|
MicroRNA-210, MicroRNA-331, and MicroRNA-7 Are Differentially Regulated in Treated HIV-1-Infected Individuals and Are Associated With Markers of Systemic Inflammation. J Acquir Immune Defic Syndr 2017; 74:e104-e113. [PMID: 27749601 DOI: 10.1097/qai.0000000000001191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Inflammation may contribute to an increased risk of cardiovascular disease (CVD) in HIV-1 infection. MicroRNAs (miRNAs) are involved in the regulation of inflammation. In treated HIV-1-infected individuals, we aimed to identify differentially expressed miRNAs with known roles in inflammation and CVD risk and to investigate associations between these and systemic inflammation. METHODS In a screening cohort including 14 HIV-1-infected individuals and 9 uninfected controls, microarray profiling was performed using peripheral blood mononuclear cells (PBMCs). Differentially regulated miRNAs previously related to inflammation and CVD were validated using real-time quantitative reverse-transcription polymerase chain reaction in 26 HIV-1-infected individuals and 20 uninfected controls. Validated miRNAs were measured in PBMCs, CD4 and CD8 T cells. Interleukin-6, tumor necrosis factor-alpha, high-sensitivity C-reactive protein, lipopolysaccharide (LPS), cytomegalovirus immunoglobulin G, lipids, and fasting glucose were measured, and associations with validated miRNAs were assessed with multiple linear regression analysis. RESULTS Upregulation of miR-210, miR-7, and miR-331 was found in PBMCs from HIV-1-infected individuals when compared with those from uninfected controls (P < 0.005). In contrast, miR-210 and miR-331 were downregulated in CD8 T cells. In multivariate analysis, miR-210 in CD8 T cells was negatively associated with LPS (P = 0.023) and triglycerides (P = 0.003) but positively associated with tumor necrosis factor-alpha (P = 0.004). MiR-7 in PBMC was positively associated with interleukin-6 (P = 0.025) and fasting glucose (P = 0.005), whereas miR-331 was negatively associated with LPS (P = 0.006). In PBMCs from HIV-1-infected individuals with low cytomegalovirus immunoglobulin G, miR-7, miR-29a, miR-221, and miR-222 were downregulated. CONCLUSION In 2 independent cohorts, miR-210, miR-7, and miR-331 were differentially regulated in treated HIV-1-infected individuals and associated with markers of systemic inflammation.
Collapse
|
13
|
Galardi S, Savino M, Scagnoli F, Pellegatta S, Pisati F, Zambelli F, Illi B, Annibali D, Beji S, Orecchini E, Alberelli MA, Apicella C, Fontanella RA, Michienzi A, Finocchiaro G, Farace MG, Pavesi G, Ciafrè SA, Nasi S. Resetting cancer stem cell regulatory nodes upon MYC inhibition. EMBO Rep 2016; 17:1872-1889. [PMID: 27852622 DOI: 10.15252/embr.201541489] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/07/2023] Open
Abstract
MYC deregulation is common in human cancer and has a role in sustaining the aggressive cancer stem cell populations. MYC mediates a broad transcriptional response controlling normal biological programmes, but its activity is not clearly understood. We address MYC function in cancer stem cells through the inducible expression of Omomyc-a MYC-derived polypeptide interfering with MYC activity-taking as model the most lethal brain tumour, glioblastoma. Omomyc bridles the key cancer stemlike cell features and affects the tumour microenvironment, inhibiting angiogenesis. This occurs because Omomyc interferes with proper MYC localization and itself associates with the genome, with a preference for sites occupied by MYC This is accompanied by selective repression of master transcription factors for glioblastoma stemlike cell identity such as OLIG2, POU3F2, SOX2, upregulation of effectors of tumour suppression and differentiation such as ID4, MIAT, PTEN, and modulation of the expression of microRNAs that target molecules implicated in glioblastoma growth and invasion such as EGFR and ZEB1. Data support a novel view of MYC as a network stabilizer that strengthens the regulatory nodes of gene expression networks controlling cell phenotype and highlight Omomyc as model molecule for targeting cancer stem cells.
Collapse
Affiliation(s)
- Silvia Galardi
- Biomedicine and Prevention Department, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Serena Pellegatta
- Molecular Neuro-Oncology Unit, Istituto Besta, Milan, Italy.,Experimental Oncology Department, IEO, Milan, Italy
| | - Federica Pisati
- IFOM, the FIRC Institute for Molecular Oncology Foundation, and Cogentech, Milan, Italy
| | - Federico Zambelli
- IBBE - CNR, Bari, Italy.,Biosciences Department, University of Milano, Milan, Italy
| | | | | | | | - Elisa Orecchini
- Biomedicine and Prevention Department, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | - Alessandro Michienzi
- Biomedicine and Prevention Department, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Giulia Farace
- Biomedicine and Prevention Department, University of Rome Tor Vergata, Rome, Italy
| | - Giulio Pavesi
- Biosciences Department, University of Milano, Milan, Italy
| | - Silvia Anna Ciafrè
- Biomedicine and Prevention Department, University of Rome Tor Vergata, Rome, Italy
| | - Sergio Nasi
- IBPM - CNR, Rome, Italy .,Biology and Biotechnologies Department, Sapienza University, Rome, Italy
| |
Collapse
|
14
|
Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome Expression Profiling Techniques. Viruses 2016; 8:v8050121. [PMID: 27144577 PMCID: PMC4885076 DOI: 10.3390/v8050121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/02/2023] Open
Abstract
While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs) in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s) for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR) arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death.
Collapse
|
15
|
Pilakka-Kanthikeel S, Nair MPN. Interaction of drugs of abuse and microRNA with HIV: a brief review. Front Microbiol 2015; 6:967. [PMID: 26483757 PMCID: PMC4586453 DOI: 10.3389/fmicb.2015.00967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs), the post-transcriptional regulators of gene expression, play key roles in modulating many cellular processes. The changes in the expression profiles of several specific miRNAs affect the interactions between miRNA and their targets in various illnesses, including addiction, HIV, cancer etc. The presence of anti-HIV-1 microRNAs (which regulate the level of infectivity of HIV-1) have been validated in the cells which are the primary targets of HIV infection. Drugs of abuse impair the intracellular innate anti-HIV mechanism(s) in monocytes, contributing to cell susceptibility to HIV infection. Emerging evidence has implicated miRNAs are differentially expressed in response to chronic morphine treatment. Activation of mu opioid receptors (MOR) by morphine is shown to down regulate the expression of anti-HIV miRNAs. In this review, we summarize the results which demonstrate that several drugs of abuse related miRNAs have roles in the mechanisms that define addiction, and how they interact with HIV.
Collapse
Affiliation(s)
- Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Madhavan P N Nair
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| |
Collapse
|
16
|
Wang L, Li G, Yao ZQ, Moorman JP, Ning S. MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV. Rev Med Virol 2015; 25:320-41. [PMID: 26258805 DOI: 10.1002/rmv.1850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/09/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) function as key regulators in immune responses and cancer development. In the contexts of infection with oncogenic viruses, miRNAs are engaged in viral persistence, latency establishment and maintenance, and oncogenesis. In this review, we summarize the potential roles and mechanisms of viral and cellular miRNAs in the host-pathogen interactions during infection with selected tumor viruses and HIV, which include (i) repressing viral replication and facilitating latency establishment by targeting viral transcripts, (ii) evading innate and adaptive immune responses via toll-like receptors, RIG-I-like receptors, T-cell receptor, and B-cell receptor pathways by targeting signaling molecules such as TRAF6, IRAK1, IKKε, and MyD88, as well as downstream targets including regulatory cytokines such as tumor necrosis factor α, interferon γ, interleukin 10, and transforming growth factor β, (iii) antagonizing intrinsic and extrinsic apoptosis pathways by targeting pro-apoptotic or anti-apoptotic gene transcripts such as the Bcl-2 family and caspase-3, (iv) modulating cell proliferation and survival through regulation of the Wnt, PI3K/Akt, Erk/MAPK, and Jak/STAT signaling pathways, as well as the signaling pathways triggered by viral oncoproteins such as Epstein-Barr Virus LMP1, by targeting Wnt-inhibiting factor 1, SHIP, pTEN, and SOCSs, and (v) regulating cell cycle progression by targeting cell cycle inhibitors such as p21/WAF1 and p27/KIP1. Further elucidation of the interaction between miRNAs and these key biological events will facilitate our understanding of the pathogenesis of viral latency and oncogenesis and may lead to the identification of miRNAs as novel targets for developing new therapeutic or preventive interventions.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Guangyu Li
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
17
|
Chung HK, Chen Y, Rao JN, Liu L, Xiao L, Turner DJ, Yang P, Gorospe M, Wang JY. Transgenic Expression of miR-222 Disrupts Intestinal Epithelial Regeneration by Targeting Multiple Genes Including Frizzled-7. Mol Med 2015; 21:676-687. [PMID: 26252186 DOI: 10.2119/molmed.2015.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/30/2015] [Indexed: 01/15/2023] Open
Abstract
Defects in intestinal epithelial integrity occur commonly in various pathologies. miR-222 is implicated in many aspects of cellular function and plays an important role in several diseases, but its exact biological function in the intestinal epithelium is underexplored. We generated mice with intestinal epithelial tissue-specific overexpression of miR-222 to investigate the function of miR-222 in intestinal physiology and diseases in vivo. Transgenic expression of miR-222 inhibited mucosal growth and increased susceptibility to apoptosis in the small intestine, thus leading to mucosal atrophy. The miR-222-elevated intestinal epithelium was vulnerable to pathological stress, since local overexpression of miR-222 not only delayed mucosal repair after ischemia/reperfusion-induced injury, but also exacerbated gut barrier dysfunction induced by exposure to cecal ligation and puncture. miR-222 overexpression also decreased expression of the Wnt receptor Frizzled-7 (FZD7), cyclin-dependent kinase 4 and tight junctions in the mucosal tissue. Mechanistically, we identified the Fzd7 messenger ribonucleic acid (mRNA) as a novel target of miR-222 and found that [miR-222/Fzd7 mRNA] association repressed Fzd7 mRNA translation. These results implicate miR-222 as a negative regulator of normal intestinal epithelial regeneration and protection by downregulating expression of multiple genes including the Fzd7. Our findings also suggest a novel role of increased miR-222 in the pathogenesis of mucosal growth inhibition, delayed healing and barrier dysfunction.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Yu Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging (NIA)-Intramural Research Program (IRP), National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
The miRNA miR-34a enhances HIV-1 replication by targeting PNUTS/PPP1R10, which negatively regulates HIV-1 transcriptional complex formation. Biochem J 2015; 470:293-302. [PMID: 26188041 DOI: 10.1042/bj20150700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/16/2015] [Indexed: 12/20/2022]
Abstract
HIV-1 relies heavily on the host cellular machinery for its replication. During infection, HIV-1 is known to modulate the host-cell miRNA profile. One of the miRNAs, miR-34a, is up-regulated by HIV-1 in T-cells as suggested by miRNA microarray studies. However, the functional consequences and the mechanism behind this phenomenon were not explored. The present study shows that HIV-1 enhances miR-34a in a time-dependent manner in T-cells. Our overexpression and knockdown-based experimental results suggest that miR-34a promotes HIV-1 replication in T-cells. Hence, there is a positive feedback loop between miR-34a and HIV-1 replication. We show that the mechanism of action of miR-34a in HIV-1 replication involves a cellular protein, the phosphatase 1 nuclear-targeting subunit (PNUTS). PNUTS expression levels decrease with the progression of HIV-1 infection in T-cells. Also, the overexpression of PNUTS potently inhibits HIV-1 replication in a dose-dependent manner. We report for the first time that PNUTS negatively regulates HIV-1 transcription by inhibiting the assembly of core components of the transcription elongation factor P-TEFb, i.e. cyclin T1 and CDK9. Thus, HIV-1 increases miR-34a expression in cells to overcome the inhibitory effect of PNUTS on HIV-1 transcription. So, the present study provides new mechanistic details with regard to our understanding of a complex interplay between miR-34a and the HIV-1 transcription machinery involving PNUTS.
Collapse
|
19
|
Masotti A, Donninelli G, Da Sacco L, Varano B, Del Cornò M, Gessani S. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation. BMC Genomics 2015; 16:480. [PMID: 26116514 PMCID: PMC4483217 DOI: 10.1186/s12864-015-1673-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND MicroRNAs (miRs) are an abundant class of small non-coding RNAs (~22 nt) that reprogram gene expression by targeting mRNA degradation and translational disruption. An emerging concept implicates miR coupling with transcription factors in myeloid cell development and function, thus contributing to host defense and inflammation. The important role that these molecules play in the pathogenesis of HIV-1 is only now emerging. RESULTS We provide evidence that exposure of monocyte-derived dendritic cells (MDDCs) to recombinant HIV-1 R5 gp120, but not to CCR5 natural ligand CCL4, influences the expression of a panel of miRs (i.e., miR-21, miR-155 and miR-181b) regulated by STAT3 and potentially targeting genes belonging to the STAT3 signaling pathway. The blockage of gp120-induced STAT3 activation impairs gp120 capacity to modulate the expression level of above mentioned miRs. Predictive analysis of miR putative targets emphasizes that these miRs share common target genes. Furthermore, gene ontology and pathway enrichment analysis outline that these genes mainly belong to biological processes related to regulation of transcription, in a complex network of interactions involving pathways relevant to HIV-DC interaction. CONCLUSIONS Overall, these results point to gp120-triggered modulation of miR expression via STAT3 activation as a novel molecular mechanism exploited by HIV-1 to affect DC biology and thus modulate the immune response through complex regulatory loops involving, at the same time, miRs and transcription factors.
Collapse
Affiliation(s)
- Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Viale di San Paolo 15, 00146, Rome, Italy.
| | - Gloria Donninelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Letizia Da Sacco
- Bambino Gesù Children's Hospital-IRCCS, Viale di San Paolo 15, 00146, Rome, Italy.
| | - Barbara Varano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Manuela Del Cornò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
20
|
Farberov L, Herzig E, Modai S, Isakov O, Hizi A, Shomron N. MicroRNA-mediated regulation of p21 and TASK1 cellular restriction factors enhances HIV-1 infection. J Cell Sci 2015; 128:1607-16. [PMID: 25717002 PMCID: PMC4406127 DOI: 10.1242/jcs.167817] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/07/2015] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play a central role in the regulation of gene expression by binding to target mRNAs. Several studies have revealed alterations in cellular miRNA profiles following HIV-1 infection, mostly for miRNAs involved in inhibiting viral infection. These miRNA expression modifications might also serve to block the innate HIV-1 inhibition mechanism. As a result, it is expected that during HIV-1 infection miRNAs target genes that hinder or prevent the progression of the HIV-1 replication cycle. One of the major sets of genes known to inhibit the progression of HIV-1 infection are cellular restriction factors. In this study, we identified a direct miRNA target gene that modulates viral spread in T-lymphocytes and HeLa-CCR5 cell lines. Following infection, let-7c, miR-34a or miR-124a were upregulated, and they targeted and downregulated p21 and TASK1 (also known as CDKN1A and KCNK3, respectively) cellular proteins. This eventually led to increased virion release and higher copy number of viral genome transcripts in infected cells. Conversely, by downregulating these miRNAs, we could suppress viral replication and spread. Our data suggest that HIV-1 exploits the host miRNA cellular systems in order to block the innate inhibition mechanism, allowing a more efficient infection process.
Collapse
Affiliation(s)
- Luba Farberov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eytan Herzig
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shira Modai
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofer Isakov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amnon Hizi
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
Kleinman CL, Doria M, Orecchini E, Giuliani E, Galardi S, De Jay N, Michienzi A. HIV-1 infection causes a down-regulation of genes involved in ribosome biogenesis. PLoS One 2014; 9:e113908. [PMID: 25462981 PMCID: PMC4252078 DOI: 10.1371/journal.pone.0113908] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/28/2014] [Indexed: 01/04/2023] Open
Abstract
HIV-1 preferentially infects CD4+ T cells, causing fundamental changes that eventually lead to the release of new viral particles and cell death. To investigate in detail alterations in the transcriptome of the CD4+ T cells upon viral infection, we sequenced polyadenylated RNA isolated from Jurkat cells infected or not with HIV-1. We found a marked global alteration of gene expression following infection, with an overall trend toward induction of genes, indicating widespread modification of the host biology. Annotation and pathway analysis of the most deregulated genes showed that viral infection produces a down-regulation of genes associated with the nucleolus, in particular those implicated in regulating the different steps of ribosome biogenesis, such as ribosomal RNA (rRNA) transcription, pre-rRNA processing, and ribosome maturation. The impact of HIV-1 infection on genes involved in ribosome biogenesis was further validated in primary CD4+ T cells. Moreover, we provided evidence by Northern Blot experiments, that host pre-rRNA processing in Jurkat cells might be perturbed during HIV-1 infection, thus strengthening the hypothesis of a crosstalk between nucleolar functions and viral pathogenesis.
Collapse
Affiliation(s)
- Claudia L. Kleinman
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital and Department of Human Genetics, McGill University, 3755 Côte Ste-Catherine Road, Montréal, Quebec, H3T 1E2, Canada
| | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Erica Giuliani
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicolas De Jay
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital and Department of Human Genetics, McGill University, 3755 Côte Ste-Catherine Road, Montréal, Quebec, H3T 1E2, Canada
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- * E-mail:
| |
Collapse
|