1
|
Bhandare P, Narain A, Hofstetter J, Rummel T, Wenzel J, Schülein-Völk C, Lamer S, Eilers U, Schlosser A, Eilers M, Erhard F, Wolf E. Phenotypic screens identify SCAF1 as critical activator of RNAPII elongation and global transcription. Nucleic Acids Res 2025; 53:gkae1219. [PMID: 39698826 PMCID: PMC11879057 DOI: 10.1093/nar/gkae1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Transcripts produced by RNA polymerase II (RNAPII) are fundamental for cellular responses to environmental changes. It is therefore no surprise that there exist multiple avenues for the regulation of this process. To explore the regulation mediated by RNAPII-interacting proteins, we used a small interfering RNA (siRNA)-based screen to systematically evaluate their influence on RNA synthesis. We identified several proteins that strongly affected RNAPII activity. We evaluated one of the top hits, SCAF1 (SR-related C-terminal domain-associated factor 1), using an auxin-inducible degradation system and sequencing approaches. In agreement with our screen results, acute depletion of SCAF1 decreased RNA synthesis, and showed an increase of Serine-2 phosphorylated-RNAPII (pS2-RNAPII). We found that the accumulation of pS2-RNAPII within the gene body occurred at GC-rich regions and was indicative of stalled RNAPII complexes. The accumulation of stalled RNAPII complexes was accompanied by reduced recruitment of initiating RNAPII, explaining the observed global decrease in transcriptional output. Furthermore, upon SCAF1 depletion, RNAPII complexes showed increased association with components of the proteasomal-degradation machinery. We concluded that in cells lacking SCAF1, RNAPII undergoes a rather interrupted passage, resulting in intervention by the proteasomal-degradation machinery to clear stalled RNAPII. While cells survive the compromised transcription caused by absence of SCAF1, further inhibition of proteasomal-degradation machinery is synthetically lethal.
Collapse
Affiliation(s)
- Pranjali Bhandare
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Teresa Rummel
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Julia Wenzel
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Stephanie Lamer
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Ursula Eilers
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Martin Eilers
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Florian Erhard
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Elmar Wolf
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
2
|
Pan Q, Tao Y, Cai T, Veluchamy A, Hebert HL, Zhu P, Haque M, Dottorini T, Colvin LA, Smith BH, Meng W. A genome-wide association study identifies genetic variants associated with hip pain in the UK Biobank cohort (N = 221,127). Sci Rep 2025; 15:2812. [PMID: 39843573 PMCID: PMC11754597 DOI: 10.1038/s41598-025-85871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Hip pain is a common musculoskeletal complaint that leads many people to seek medical attention. We conducted a primary genome-wide association study (GWAS) on the hip pain phenotype within the UK Biobank cohort. Sex-stratified GWAS analysis approach was also performed to explore sex specific variants associated with hip pain. We found seven different loci associated with hip pain at GWAS significance level, with the most significant single nucleotide polymorphism (SNP) being rs77641763 within the EXD3 (p value = 2.20 × 10-13). We utilized summary statistics from the FinnGen cohort and a previous GWAS meta-analysis on hip osteoarthritis as replication cohorts. Four loci (rs509345, rs73581564, rs9597759, rs2018384) were replicated with a p value less than 0.05. Sex-stratified GWAS analyses revealed a unique locus within the CUL1 gene (rs4726995, p = 2.56 × 10-9) in males, and three unique loci in females: rs1651359966 on chromosome 7 (p = 1.15 × 10-8), rs552965738 on chromosome 9 (p = 2.72 × 10-8), and rs1978969 on chromosome 13 (p = 2.87 × 10-9). This study has identified seven genetic loci associated with hip pain. Sex-stratified analysis also revealed sex specific variants associated with hip pain in males and females. This study has provided a foundation for advancing research of hip pain and hip osteoarthritis.
Collapse
Affiliation(s)
- Qi Pan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yiwen Tao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Tengda Cai
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Abi Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Harry L Hebert
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Mainul Haque
- School of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Lesley A Colvin
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Weihua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK.
- Center for Public Health, Faculty of Medicine, Health and Life Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
| |
Collapse
|
3
|
Moreno RY, Panina SB, Zhang YJ. RPRD1B's direct interaction with phosphorylated RNA polymerase II regulates polyadenylation of cell cycle genes and drives cancer progression. RSC Chem Biol 2025:d4cb00212a. [PMID: 39886382 PMCID: PMC11775580 DOI: 10.1039/d4cb00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
RNA polymerase II (Pol II) regulates eukaryotic gene expression through dynamic phosphorylation of its C-terminal domain (CTD). Phosphorylation at Ser2 and Thr4 on the CTD is crucial for RNA 3' end processing and facilitating the recruitment of cleavage and termination factors. However, the transcriptional roles of most CTD-binding proteins remain poorly understood. In this study, we focus on RPRD1B, a transcriptional regulator that interacts with the phosphorylated CTD and has been implicated in various cancers. We investigated its molecular mechanism during transcription and found that RPRD1B modulates alternative polyadenylation of cell growth transcripts by directly interacting with the CTD. RPRD1B is recruited to transcribing Pol II near the 3' end of the transcript, specifically in response to Ser2 and Thr4 phosphorylation, but only after flanking Ser5 phosphorylation is removed. Transcriptomic analysis of RPRD1B knockdown cells revealed its role in cell proliferation via termination of the key cell growth genes at upstream polyadenylation sites, leading to the production of tumor suppressor transcripts that lack AU-rich elements (AREs) with increased mRNA stability. Overall, our study uncovers previously unrecognized connections between the Pol II CTD and CID, highlighting their influence on 3' end processing and their contribution to abnormal cell growth in cancer.
Collapse
Affiliation(s)
- Rosamaria Y Moreno
- Department of Molecular Biosciences, University of Texas Austin Texas USA
| | - Svetlana B Panina
- Department of Molecular Biosciences, University of Texas Austin Texas USA
| | - Y Jessie Zhang
- Department of Molecular Biosciences, University of Texas Austin Texas USA
| |
Collapse
|
4
|
Lopez Martinez D, Svejstrup JQ. Mechanisms of RNA Polymerase II Termination at the 3'-End of Genes. J Mol Biol 2025; 437:168735. [PMID: 39098594 DOI: 10.1016/j.jmb.2024.168735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
RNA polymerase II (RNAPII) is responsible for the synthesis of a diverse set of RNA molecules, including protein-coding messenger RNAs (mRNAs) and many short non-coding RNAs (ncRNAs). For this purpose, RNAPII relies on a multitude of factors that regulate the transcription cycle, from initiation and promoter-proximal pausing, through elongation and finally termination. RNAPII transcription termination at the end of genes ensures the release of RNAPII from the DNA template and its efficient recycling for further rounds of transcription. Termination of RNAPII is tightly coupled to 3'-end mRNA processing, which constitutes an important trigger for the subsequent transcription termination event. In this review, we discuss the current understanding of RNAPII termination mechanisms, focusing on 'canonical' termination at the 3'-end of genes. We also integrate the allosteric and 'torpedo' models into a unified model of termination, and describe the different termination factors that have been identified to date, paying special attention to the human factors and their mechanism of action at the molecular level. Indeed, in recent years the development of novel approaches in structural biology, biochemistry and cell biology have together led to a more detailed comprehension of the different mechanisms of RNAPII termination, and a better understanding of their importance in regulating gene expression, especially under cellular stress and pathological situations.
Collapse
Affiliation(s)
- David Lopez Martinez
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Q Svejstrup
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Moreno RY, Panina SB, Irani S, Hardtke HA, Stephenson R, Floyd BM, Marcotte EM, Zhang Q, Zhang YJ. Thr 4 phosphorylation on RNA Pol II occurs at early transcription regulating 3'-end processing. SCIENCE ADVANCES 2024; 10:eadq0350. [PMID: 39241064 PMCID: PMC11378909 DOI: 10.1126/sciadv.adq0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024]
Abstract
RNA polymerase II relies on a repetitive sequence domain (YSPTSPS) within its largest subunit to orchestrate transcription. While phosphorylation on serine-2/serine-5 of the carboxyl-terminal heptad repeats is well established, threonine-4's role remains enigmatic. Paradoxically, threonine-4 phosphorylation was only detected after transcription end sites despite functionally implicated in pausing, elongation, termination, and messenger RNA processing. Our investigation revealed that threonine-4 phosphorylation detection was obstructed by flanking serine-5 phosphorylation at the onset of transcription, which can be removed selectively. Subsequent proteomic analyses identified many proteins recruited to transcription via threonine-4 phosphorylation, which previously were attributed to serine-2. Loss of threonine-4 phosphorylation greatly reduces serine-2 phosphorylation, revealing a cross-talk between the two marks. Last, the function analysis of the threonine-4 phosphorylation highlighted its role in alternative 3'-end processing within pro-proliferative genes. Our findings unveil the true genomic location of this evolutionarily conserved phosphorylation mark and prompt a reassessment of functional assignments of the carboxyl-terminal domain.
Collapse
Affiliation(s)
| | - Svetlana B. Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Seema Irani
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Haley A. Hardtke
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Renee Stephenson
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Brendan M. Floyd
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Qian Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
6
|
Kuang H, Li Y, Wang Y, Shi M, Duan R, Xiao Q, She H, Liu Y, Liang Q, Teng Y, Zhou M, Liang D, Li Z, Wu L. A homozygous variant in INTS11 links mitosis and neurogenesis defects to a severe neurodevelopmental disorder. Cell Rep 2023; 42:113445. [PMID: 37980560 DOI: 10.1016/j.celrep.2023.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
The INTS11 endonuclease is crucial in modulating gene expression and has only recently been linked to human neurodevelopmental disorders (NDDs). However, how INTS11 participates in human development and disease remains unclear. Here, we identify a homozygous INTS11 variant in two siblings with a severe NDD. The variant impairs INTS11 catalytic activity, supported by its substrate's accumulation, and causes G2/M arrest in patient cells with length-dependent dysregulation of genes involved in mitosis and neural development, including the NDD gene CDKL5. The mutant knockin (KI) in induced pluripotent stem cells (iPSCs) disturbs their mitotic spindle organization and thus leads to slow proliferation and increased apoptosis, possibly through the decreased neurally functional CDKL5-induced extracellular signal-regulated kinase (ERK) pathway inhibition. The generation of neural progenitor cells (NPCs) from the mutant iPSCs is also delayed, with long transcript loss concerning neurogenesis. Our work reveals a mechanism underlying INTS11 dysfunction-caused human NDD and provides an iPSC model for this disease.
Collapse
Affiliation(s)
- Hanzhe Kuang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yunlong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yixuan Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Meizhen Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiao Xiao
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Haoyuan She
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yingdi Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiaowei Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Miaojin Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| |
Collapse
|
7
|
Andrabi SBA, Batkulwar K, Bhosale SD, Moulder R, Khan MH, Buchacher T, Khan MM, Arnkil I, Rasool O, Marson A, Kalim UU, Lahesmaa R. HIC1 interacts with FOXP3 multi protein complex: Novel pleiotropic mechanisms to regulate human regulatory T cell differentiation and function. Immunol Lett 2023; 263:123-132. [PMID: 37838026 DOI: 10.1016/j.imlet.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/16/2023]
Abstract
Transcriptional repressor, hypermethylated in cancer 1 (HIC1) participates in a range of important biological processes, such as tumor repression, immune suppression, embryonic development and epigenetic gene regulation. Further to these, we previously demonstrated that HIC1 provides a significant contribution to the function and development of regulatory T (Treg) cells. However, the mechanism by which it regulates these processes was not apparent. To address this question, we used affinity-purification mass spectrometry to characterize the HIC1 interactome in human Treg cells. Altogether 61 high-confidence interactors were identified, including IKZF3, which is a key transcription factor in the development of Treg cells. The biological processes associated with these interacting proteins include protein transport, mRNA processing, non-coding (ncRNA) transcription and RNA metabolism. The results revealed that HIC1 is part of a FOXP3-RUNX1-CBFB protein complex that regulates Treg signature genes thus improving our understanding of HIC1 function during early Treg cell differentiation.
Collapse
Affiliation(s)
- Syed Bilal Ahmad Andrabi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Kedar Batkulwar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Santosh D Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Meraj Hasan Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Ilona Arnkil
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku; Institute of Biomedicine, University of Turku.
| |
Collapse
|
8
|
Ebenezer Samuel King JP, Sinha MK, Kumaresan A, Nag P, Das Gupta M, Arul Prakash M, Talluri TR, Datta TK. Cryopreservation process alters the expression of genes involved in pathways associated with the fertility of bull spermatozoa. Front Genet 2022; 13:1025004. [PMID: 36386822 PMCID: PMC9640914 DOI: 10.3389/fgene.2022.1025004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 08/22/2023] Open
Abstract
In bovines, cryopreserved semen is used for artificial insemination; however, the fertility of cryopreserved semen is far lower than that of fresh semen. Although cryopreservation alters sperm phenotypic characteristics, its effect on sperm molecular health is not thoroughly understood. The present study applied next-generation sequencing to investigate the effect of cryopreservation on the sperm transcriptomic composition of bull spermatozoa. While freshly ejaculated bull spermatozoa showed 14,280 transcripts, cryopreserved spermatozoa showed only 12,375 transcripts. Comparative analysis revealed that 241 genes were upregulated, 662 genes were downregulated, and 215 genes showed neutral expression in cryopreserved spermatozoa compared to fresh spermatozoa. Gene ontology analysis indicated that the dysregulated transcripts were involved in nucleic acid binding, transcription-specific activity, and protein kinase binding involving protein autophosphorylation, ventricular septum morphogenesis, and organ development. Moreover, the dysregulated genes in cryopreserved spermatozoa were involved in pathways associated with glycogen metabolism, MAPK signalling, embryonic organ morphogenesis, ectodermal placode formation, and regulation of protein auto-phosphorylation. These findings suggest that the cryopreservation process induced alterations in the abundance of sperm transcripts related to potential fertility-associated functions and pathways, which might partly explain the reduced fertility observed with cryopreserved bull spermatozoa.
Collapse
Affiliation(s)
- John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka
| | - Mohua Das Gupta
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka
| | - Mani Arul Prakash
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka
| | - Thirumala Rao Talluri
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka
| | | |
Collapse
|
9
|
Cugusi S, Bajpe PK, Mitter R, Patel H, Stewart A, Svejstrup JQ. An Important Role for RPRD1B in the Heat Shock Response. Mol Cell Biol 2022; 42:e0017322. [PMID: 36121223 PMCID: PMC9583720 DOI: 10.1128/mcb.00173-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
During the heat shock response (HSR), heat shock factor (HSF1 in mammals) binds to target gene promoters, resulting in increased expression of heat shock proteins that help maintain protein homeostasis and ensure cell survival. Besides HSF1, only a relatively few transcription factors with a specific role in ensuring correctly regulated gene expression during the HSR have been described. Here, we use proteomic and genomic (CRISPR) screening to identify a role for RPRD1B in the response to heat shock. Indeed, cells depleted for RPRD1B are heat shock sensitive and show decreased expression of key heat shock proteins (HSPs). These results add to our understanding of the connection between basic gene expression mechanisms and the HSR.
Collapse
Affiliation(s)
- Simona Cugusi
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Prashanth Kumar Bajpe
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Xie Z, Li J, Hao X, Xu L. Purification and Analysis of the CREPT Antibody from Mouse Ascites. Appl Bionics Biomech 2022; 2022:8776565. [PMID: 36106137 PMCID: PMC9467789 DOI: 10.1155/2022/8776565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Methods Cells were cultivated properly to obtain 3E10 CREPT monoclonal antibody cells in the logarithmic growth stage. Monoclonal antibody cells were injected into the abdominal cavity of sensitized mice. The flowing ascites were observed for 7-15 days. The antibody protein was obtained by collection, filtration, dilution, loading, and chromatography. Furthermore, its binding force was detected by SDS-PAGE and Western blot techniques. Results The antibody protein was successfully obtained with a purity of 1895 μg/mL with high liveness. Conclusion This study establishes a one-step purification method for obtaining monoclonal antibody with high liveness and purity for CREPT ascites antibody. This method is simple to perform and lays a foundation for the preparation and purification of humanized monoclonal antibodies in the future. In addition, it provides a basis for further research to investigate how CREPT affects the occurrence and development of different tumors.
Collapse
Affiliation(s)
- Zhihao Xie
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Jun Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100091, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| |
Collapse
|
11
|
Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Targeting transcription cycles in cancer. Nat Rev Cancer 2022; 22:5-24. [PMID: 34675395 DOI: 10.1038/s41568-021-00411-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Accurate control of gene expression is essential for normal development and dysregulation of transcription underpins cancer onset and progression. Similar to cell cycle regulation, RNA polymerase II-driven transcription can be considered as a unidirectional multistep cycle, with thousands of unique transcription cycles occurring in concert within each cell. Each transcription cycle comprises recruitment, initiation, pausing, elongation, termination and recycling stages that are tightly controlled by the coordinated action of transcriptional cyclin-dependent kinases and their cognate cyclins as well as the opposing activity of transcriptional phosphatases. Oncogenic dysregulation of transcription can entail defective control of gene expression, either at select loci or more globally, impacting a large proportion of the genome. The resultant dependency on the core-transcriptional machinery is believed to render 'transcriptionally addicted' cancers sensitive to perturbation of transcription. Based on these findings, small molecules targeting transcriptional cyclin-dependent kinases and associated proteins hold promise for the treatment of cancer. Here, we utilize the transcription cycles concept to explain how dysregulation of these finely tuned gene expression processes may drive tumorigenesis and how therapeutically beneficial responses may arise from global or selective transcriptional perturbation. This conceptual framework helps to explain tumour-selective transcriptional dependencies and facilitates the rational design of combination therapies.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer R Devlin
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingxing Teng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Murray LM, Thillaiyampalam G, Xi Y, Cristino AS, Upham JW. Whole transcriptome analysis of high and low IFN-α producers reveals differential response patterns following rhinovirus stimulation. Clin Transl Immunology 2021; 10:e1356. [PMID: 34868584 PMCID: PMC8599968 DOI: 10.1002/cti2.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives Viral respiratory infections cause considerable morbidity and economic loss. While rhinoviruses (RV) typically cause little more than the common cold, they can produce severe infections and disease exacerbations in susceptible individuals, such as those with asthma. Variations in the regulation of key antiviral cytokines, particularly type I interferon (IFN‐α and IFN‐β), may contribute to RV susceptibility. To understand this variability, we compared the transcriptomes of high and low type I IFN producers. Methods Blood mononuclear cells from 238 individuals with or without asthma were cultured in the presence or absence of RV. Those samples demonstrating high or low RV‐stimulated IFN‐α production (N = 75) underwent RNA‐sequencing. Results Gene expression patterns were similar in samples from healthy participants and those with asthma. At baseline, the high IFN‐α producer group showed higher expression of genes associated with plasmacytoid dendritic cells, the innate immune response and vitamin D activation, but lower expression of oxidative stress pathways than the low IFN‐α producer group. After RV stimulation, the high IFN‐α producer group showed higher expression of genes found in immune response biological pathways and lower expression of genes linked to developmental and catabolic processes when compared to the low IFN‐α producer group. Conclusions These differences suggest that the high IFN‐α group has a higher level of immune system readiness, resulting in a more intense and perhaps more focussed pathogen‐specific immune response. These results contribute to a better understanding of the variability in type I IFN production between individuals.
Collapse
Affiliation(s)
- Liisa M Murray
- Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Gayathri Thillaiyampalam
- Diamantina Institute The University of Queensland Brisbane QLD Australia.,Griffith Institute for Drug Discovery Griffith University Brisbane QLD Australia
| | - Yang Xi
- Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Alexandre S Cristino
- Diamantina Institute The University of Queensland Brisbane QLD Australia.,Griffith Institute for Drug Discovery Griffith University Brisbane QLD Australia
| | - John W Upham
- Diamantina Institute The University of Queensland Brisbane QLD Australia.,Respiratory and Sleep Medicine Princess Alexandra Hospital Brisbane QLD Australia
| |
Collapse
|
13
|
Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus 2021; 12:21-41. [PMID: 33435791 PMCID: PMC7889174 DOI: 10.1080/19491034.2021.1874135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
Collapse
Affiliation(s)
- Norma E. Padilla-Mejia
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexandr A. Makarov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lael D. Barlow
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Erin R. Butterfield
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České, Czech Republic
| |
Collapse
|
14
|
Salmerón-Bárcenas EG, Zacapala-Gómez AE, Lozano-Amado D, Castro-Muñoz LJ, Leyva-Vázquez MA, Manzo-Merino J, Ávila-López PA. Comprehensive bioinformatic analysis reveals oncogenic role of H2A.Z isoforms in cervical cancer progression. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1470-1481. [PMID: 35317119 PMCID: PMC8917839 DOI: 10.22038/ijbms.2021.58287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
Objectives Cervical cancer ranks as the fourth most common neoplasia in women worldwide in which epigenetic alterations play an important role. Several studies have reported pro-oncogenic role of the histone variant H2A.Z in different types of cancer; however, the role of H2A.Z in cervical cancer remains poorly studied. This study aimed to determine the potential role of H2A.Z in cervical cancer through a bioinformatic approach. Materials and Methods H2A.Z expression was analyzed in The Human Protein Atlas, The Cancer Genome Atlas, and Gene Expression Omnibus datasets. The promoter regions of H2AZ1 and H2AZ2 genes were downloaded from Expasy, and the prediction of transcription factor binding motifs was performed using CONSITE, Alibaba, and ALGGEN. ChIP-seq and RNA-seq data from HeLa-S3 cells were downloaded from ENCODE. The discovery motif was investigated using MEME-ChIP. The functional annotation was examined in Enrich. Results The expression of H2A.Z is elevated in cervical cancer. Interestingly, DNA methylation, copy number, and transcription factors AP2α and ELK1 are involved in H2A.Z overexpression. Additionally, H2A.Z is enriched on promoter and enhancer regions of genes involved in pathways associated with cancer development. In these regions, H2A.Z enables the recruitment of transcription factors such as NRF1, NFYA, and RNA Pol II. Finally, H2A.Z allows the expression of genes associated with proliferation in patients with cervical cancer. Conclusion Our findings suggest that H2A.Z overexpression and its presence in promoters and enhancers could be regulating the transcription of genes involved in cervical carcinogenesis.
Collapse
Affiliation(s)
- Eric G. Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto
| | - Ana E. Zacapala-Gómez
- Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México
| | - Daniela Lozano-Amado
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, 39090, Gro
| | | | - Marco A. Leyva-Vázquez
- Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México
| | | | - Pedro A. Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto ,Corresponding author: Pedro A. Ávila-López. Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México. Tel: +52 55 6098 2694;
| |
Collapse
|
15
|
Fianu I, Dienemann C, Aibara S, Schilbach S, Cramer P. Cryo-EM structure of mammalian RNA polymerase II in complex with human RPAP2. Commun Biol 2021; 4:606. [PMID: 34021257 PMCID: PMC8140126 DOI: 10.1038/s42003-021-02088-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Nuclear import of RNA polymerase II (Pol II) involves the conserved factor RPAP2. Here we report the cryo-electron microscopy (cryo-EM) structure of mammalian Pol II in complex with human RPAP2 at 2.8 Å resolution. The structure shows that RPAP2 binds between the jaw domains of the polymerase subunits RPB1 and RPB5. RPAP2 is incompatible with binding of downstream DNA during transcription and is displaced upon formation of a transcription pre-initiation complex.
Collapse
Affiliation(s)
- Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Shintaro Aibara
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
16
|
Yang G, Wang Y, Xiao J, Zhao F, Qiu J, Liu Y, Chen G, Cao Z, You L, Zheng L, Zhang T, Zhao Y. CREPT serves as a biomarker of poor survival in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2021; 44:345-355. [PMID: 33125631 DOI: 10.1007/s13402-020-00569-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human malignancies. Cell-cycle-related and expression-elevated protein in tumor (CREPT) plays an important role in the phosphorylation of RNA Pol II, and has been implicated in the development of several types of cancer. As yet, however, there have been no reports on its role in PDAC. Here, we aimed to explore the value of CREPT as a prognostic biomarker in PDAC. METHODS CREPT expression was assessed by immunohistochemistry (IHC) on a tissue microarray containing samples from 375 PDAC patients. Kaplan-Meier and Cox regression analyses were performed to explore the independent prognostic value of CREPT expression for the disease-free survival (DFS) and overall survival (OS) of PDAC patients. A Cell Counting Kit-8 (CCK8) assay was used to determine the growth rates and gemcitabine sensitivities of PDAC cells, while a Transwell assay was used to determine the migration and invasion abilities of PDAC cells. Subcutaneous xenografts were used to explore the effect of CREPT expression on tumor growth in vivo. RESULTS We found that CREPT is highly expressed in tumor tissues and may serve as an independent prognostic biomarker for DFS and OS of PDAC patients. In vitro assays revealed that CREPT expression promotes the proliferation, migration, invasion and gemcitabine resistance of PDAC cells, and in vivo assays showed that CREPT expression knockdown led to inhibition of PDAC tumor growth. CONCLUSIONS We conclude that high CREPT expression enhances the proliferation, migration, invasion and gemcitabine resistance of PDAC cells. In addition, we conclude that CREPT may serve as an independent prognostic biomarker and therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yicheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
17
|
Zhai W, Ye X, Wang Y, Feng Y, Wang Y, Lin Y, Ding L, Yang L, Wang X, Kuang Y, Fu X, Eugene Chin Y, Jia B, Zhu B, Ren F, Chang Z. CREPT/RPRD1B promotes tumorigenesis through STAT3-driven gene transcription in a p300-dependent manner. Br J Cancer 2021; 124:1437-1448. [PMID: 33531691 PMCID: PMC8039031 DOI: 10.1038/s41416-021-01269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 11/14/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) has been shown to upregulate gene transcription during tumorigenesis. However, how STAT3 initiates transcription remains to be exploited. This study is to reveal the role of CREPT (cell cycle-related and elevated-expression protein in tumours, or RPRD1B) in promoting STAT3 transcriptional activity. METHODS BALB/c nude mice, CREPT overexpression or deletion cells were employed for the assay of tumour formation, chromatin immunoprecipitation, assay for transposase-accessible chromatin using sequencing. RESULTS We demonstrate that CREPT, a recently identified oncoprotein, enhances STAT3 transcriptional activity to promote tumorigenesis. CREPT expression is positively correlated with activation of STAT3 signalling in tumours. Deletion of CREPT led to a decrease, but overexpression of CREPT resulted in an increase, in STAT3-initiated tumour cell proliferation, colony formation and tumour growth. Mechanistically, CREPT interacts with phosphorylated STAT3 (p-STAT3) and facilitates p-STAT3 to recruit p300 to occupy at the promoters of STAT3-targeted genes. Therefore, CREPT and STAT3 coordinately facilitate p300-mediated acetylation of histone 3 (H3K18ac and H3K27ac), further augmenting RNA polymerase II recruitment. Accordingly, depletion of p300 abolished CREPT-enhanced STAT3 transcriptional activity. CONCLUSIONS We propose that CREPT is a co-activator of STAT3 for recruiting p300. Our study provides an alternative strategy for the therapy of cancers related to STAT3.
Collapse
Affiliation(s)
- Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Xiongjun Ye
- Urology and Lithotripsy Center, Peking University People's Hospital, Beijing, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Yarui Feng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Yuting Lin
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Lidan Ding
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xuning Wang
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yanshen Kuang
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Beijing, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Baoqing Jia
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Bingtao Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
18
|
Yang L, Yang H, Chu Y, Song Y, Ding L, Zhu B, Zhai W, Wang X, Kuang Y, Ren F, Jia B, Wu W, Ye X, Wang Y, Chang Z. CREPT is required for murine stem cell maintenance during intestinal regeneration. Nat Commun 2021; 12:270. [PMID: 33431892 PMCID: PMC7801528 DOI: 10.1038/s41467-020-20636-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal stem cells (ISCs) residing in the crypts are critical for the continual self-renewal and rapid recovery of the intestinal epithelium. The regulatory mechanism of ISCs is not fully understood. Here we report that CREPT, a recently identified tumor-promoting protein, is required for the maintenance of murine ISCs. CREPT is preferably expressed in the crypts but not in the villi. Deletion of CREPT in the intestinal epithelium of mice (Vil-CREPTKO) results in lower body weight and slow migration of epithelial cells in the intestine. Vil-CREPTKO intestine fails to regenerate after X-ray irradiation and dextran sulfate sodium (DSS) treatment. Accordingly, the deletion of CREPT decreases the expression of genes related to the proliferation and differentiation of ISCs and reduces Lgr5+ cell numbers at homeostasis. We identify that CREPT deficiency downregulates Wnt signaling by impairing β-catenin accumulation in the nucleus of the crypt cells during regeneration. Our study provides a previously undefined regulator of ISCs.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Haiyan Yang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yunxiang Chu
- Department of Gastroenterology, Emergency General Hospital, 100028, Beijing, China
| | - Yunhao Song
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Lidan Ding
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Bingtao Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Xuning Wang
- Department of Gastroenterology, Chinese PLA General Hospital, 100700, Beijing, China
| | - Yanshen Kuang
- Department of Gastroenterology, Chinese PLA General Hospital, 100700, Beijing, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Baoqing Jia
- Department of Gastroenterology, Chinese PLA General Hospital, 100700, Beijing, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiongjun Ye
- Urology and Lithotripsy Center, Peking University People's Hospital, 100034, Beijing, China.
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
19
|
Yang L, Yang H, Chu Y, Song Y, Ding L, Zhu B, Zhai W, Wang X, Kuang Y, Ren F, Jia B, Wu W, Ye X, Wang Y, Chang Z. CREPT is required for murine stem cell maintenance during intestinal regeneration. Nat Commun 2021. [DOI: 10.1038/s41467-020-20636-9 order by 38439--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AbstractIntestinal stem cells (ISCs) residing in the crypts are critical for the continual self-renewal and rapid recovery of the intestinal epithelium. The regulatory mechanism of ISCs is not fully understood. Here we report that CREPT, a recently identified tumor-promoting protein, is required for the maintenance of murine ISCs. CREPT is preferably expressed in the crypts but not in the villi. Deletion of CREPT in the intestinal epithelium of mice (Vil-CREPTKO) results in lower body weight and slow migration of epithelial cells in the intestine. Vil-CREPTKO intestine fails to regenerate after X-ray irradiation and dextran sulfate sodium (DSS) treatment. Accordingly, the deletion of CREPT decreases the expression of genes related to the proliferation and differentiation of ISCs and reduces Lgr5+ cell numbers at homeostasis. We identify that CREPT deficiency downregulates Wnt signaling by impairing β-catenin accumulation in the nucleus of the crypt cells during regeneration. Our study provides a previously undefined regulator of ISCs.
Collapse
|
20
|
Ma J, Zhang L, Shi Y, Wang T, Kong X, Bu R, Ren Y. Elevated CREPT Expression Enhances the Progression of Salivary Gland Adenoid Cystic Carcinoma. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juntao Ma
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University
| | - Lei Zhang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital
| | - Yueyi Shi
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital
| | - Tong Wang
- Department of Stomatology, Tianjin First Central Hospital
| | - Xiangpan Kong
- Department of Oral and Maxillofacial-Head and Neck Surgery, Beijing Stomatological Hospital, Capital Medical University
| | - Rongfa Bu
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital
| | - Yipeng Ren
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital
| |
Collapse
|
21
|
Current understanding of CREPT and p15RS, carboxy-terminal domain (CTD)-interacting proteins, in human cancers. Oncogene 2020; 40:705-716. [PMID: 33239754 DOI: 10.1038/s41388-020-01544-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
CREPT and p15RS, also named RPRD1B and RPRD1A, are RPRD (regulation of nuclear pre-mRNA-domain-containing) proteins containing C-terminal domain (CTD)-interacting domain (CID), which mediates the binding to the CTD of Rpb1, the largest subunit of RNA polymerase II (RNAPII). CREPT and p15RS are highly conserved, with a common yeast orthologue Rtt103. Intriguingly, human CREPT and p15RS possess opposite functions in the regulation of cell proliferation and tumorigenesis. While p15RS inhibits cell proliferation, CREPT promotes cell cycle and tumor growth. Aberrant expression of both CREPT and p15RS was found in numerous types of cancers. At the molecular level, both CREPT and p15RS were reported to regulate gene transcription by interacting with RNAPII. However, CREPT also exerts a key function in the processes linked to DNA damage repairs. In this review, we summarized the recent studies regarding the biological roles of CREPT and p15RS, as well as the molecular mechanisms underlying their activities. Fully revealing the mechanisms of CREPT and p15RS functions will not only provide new insights into understanding gene transcription and maintenance of DNA stability in tumors, but also promote new approach development for tumor diagnosis and therapy.
Collapse
|
22
|
Wen N, Bian L, Gon J, Meng Y. RPRD1B is a potentially molecular target for diagnosis and prevention of human papillomavirus E6/E7 infection-induced cervical cancer: A case-control study. Asia Pac J Clin Oncol 2020; 17:230-237. [PMID: 32866332 DOI: 10.1111/ajco.13439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The objective of the study is to investigate the biomarkers for diagnosis and prevention of human papillomavirus (HPV) infection-induced cervical cancer. METHODS Cervical cancer tissues were collected from patients with cervical cancer, while noncancer tissues were collected from patients diagnosed with cervical lesions or uterine fibroids at the Chinese PLA General Hospital 301 and 309, China from December 2017 to June 2018. The cancer tissues were collected from the site of lesion, while the noncancer tissues were collected from similar anatomical locations. Quantitative real-time PCR, Western blot (WB), and immunohistochemistry (IHC) were used to detect the mRNA and protein levels of HPV E6/E7, RPRD1B (regulation of nuclear pre-mRNA domain containing 1B), cyclin D1, and transcription factor 4 (TCF4) between cervical cancer tissues and noncancer tissues. The correlation of HPV E6/E7, RPRD1B, cyclin D1, and TCF4 expressions was analyzed. RESULTS Twenty patients with cervical cancer and 27 controls without cervical cancer were included in this study. The mRNA expression of HPV E6/E7and RPRD1B was significantly higher in patients with cervical cancer than controls, while cyclin D1 mRNA expression was significantly lower in patients with cervical carcinoma in situ stage, compared with controls. RPRD1B protein expression was significantly higher in patients compared to controls when analyzed by IHC. TCF4 was significantly lower in clinical stage I and Ib of cervical cancer when analyzed by WB. The mRNA and protein expressions of RPRD1B and cyclin D1 were significantly different between patients younger than 50 years old, compared to patients 50 years and older. CONCLUSIONS HPV E6/E7 expression was associated with RPRD1B level in cervical cancer. The expression of RPRD1B and cyclin D1 in patients with cervical cancer might be affected by age.
Collapse
Affiliation(s)
- Na Wen
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Obstetrics & Gynecology, Chinese PLA Genreral Hospital, Beijing, China
| | - Lihua Bian
- Department of Obstetrics & Gynecology, Chinese PLA Genreral Hospital, Beijing, China
| | - Jing Gon
- Department of Obstetrics & Gynecology, Chinese PLA Genreral Hospital, Beijing, China
| | - Yuanguang Meng
- Department of Obstetrics & Gynecology, Chinese PLA Genreral Hospital, Beijing, China
| |
Collapse
|
23
|
Lyons DE, McMahon S, Ott M. A combinatorial view of old and new RNA polymerase II modifications. Transcription 2020; 11:66-82. [PMID: 32401151 DOI: 10.1080/21541264.2020.1762468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The production of mRNA is a dynamic process that is highly regulated by reversible post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II. The CTD is a highly repetitive domain consisting mostly of the consensus heptad sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Phosphorylation of serine residues within this repeat sequence is well studied, but modifications of all residues have been described. Here, we focus on integrating newly identified and lesser-studied CTD post-translational modifications into the existing framework. We also review the growing body of work demonstrating crosstalk between different CTD modifications and the functional consequences of such crosstalk on the dynamics of transcriptional regulation.
Collapse
Affiliation(s)
- Danielle E Lyons
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Sarah McMahon
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| |
Collapse
|
24
|
Liu H, Seynhaeve ALB, Brouwer RWW, van IJcken WFJ, Yang L, Wang Y, Chang Z, ten Hagen TLM. CREPT Promotes Melanoma Progression Through Accelerated Proliferation and Enhanced Migration by RhoA-Mediated Actin Filaments and Focal Adhesion Formation. Cancers (Basel) 2019; 12:cancers12010033. [PMID: 31877646 PMCID: PMC7016535 DOI: 10.3390/cancers12010033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/24/2022] Open
Abstract
Melanoma is one of the most aggressive cancers, and patients with distant metastases have dire outcomes. We observed previously that melanoma progression is driven by a high migratory potential of melanoma cells, which survive and proliferate under harsh environmental conditions. In this study, we report that CREPT (cell-cycle related and expression-elevated protein in tumor), an oncoprotein highly expressed in other cancers, is overexpressed in melanoma cells but not melanocytes. Overexpression of CREPT stimulates cell proliferation, migration, and invasion in several melanoma cell lines. Further, we show that CREPT enhances melanoma progression through upregulating and activating Ras homolog family member A (RhoA)-induced actin organization and focal adhesion assembly. Our study reveals a novel role of CREPT in promoting melanoma progression. Targeting CREPT may be a promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Hui Liu
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ann L. B. Seynhaeve
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Center for Biomics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-Tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-Tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-Tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (T.L.M.t.H.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Correspondence: (Z.C.); (T.L.M.t.H.)
| |
Collapse
|
25
|
Ali I, Ruiz DG, Ni Z, Johnson JR, Zhang H, Li PC, Khalid MM, Conrad RJ, Guo X, Min J, Greenblatt J, Jacobson M, Krogan NJ, Ott M. Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins. Mol Cell 2019; 74:1164-1174.e4. [PMID: 31054975 DOI: 10.1016/j.molcel.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 01/01/2023]
Abstract
Post-translational modifications of the RNA polymerase II C-terminal domain (CTD) coordinate the transcription cycle. Crosstalk between different modifications is poorly understood. Here, we show how acetylation of lysine residues at position 7 of characteristic heptad repeats (K7ac)-only found in higher eukaryotes-regulates phosphorylation of serines at position 5 (S5p), a conserved mark of polymerases initiating transcription. We identified the regulator of pre-mRNA-domain-containing (RPRD) proteins as reader proteins of K7ac. K7ac enhanced CTD peptide binding to the CTD-interacting domain (CID) of RPRD1A and RPRD1B proteins in isothermal calorimetry and molecular modeling experiments. Deacetylase inhibitors increased K7ac- and decreased S5-phosphorylated polymerases, consistent with acetylation-dependent S5 dephosphorylation by an RPRD-associated S5 phosphatase. Consistent with this model, RPRD1B knockdown increased S5p but enhanced K7ac, indicating that RPRD proteins recruit K7 deacetylases, including HDAC1. We also report autoregulatory crosstalk between K7ac and S5p via RPRD proteins and their interactions with acetyl- and phospho-eraser proteins.
Collapse
Affiliation(s)
- Ibraheem Ali
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Heng Zhang
- Structural Genomics Consortium, University of Toronto, ON, Canada
| | - Pao-Chen Li
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mir M Khalid
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ryan J Conrad
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xinghua Guo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, ON, Canada
| | | | - Matthew Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences (QBC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences (QBC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Functional interaction of human Ssu72 with RNA polymerase II complexes. PLoS One 2019; 14:e0213598. [PMID: 30901332 PMCID: PMC6430399 DOI: 10.1371/journal.pone.0213598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of the C-terminal domain (CTD) of the large subunit of human RNA polymerase II (Pol II) is regulated during the transcription cycle by the combined action of specific kinases and phosphatases. Pol II enters into the preinitiation complex (PIC) unphosphorylated, but is quickly phosphorylated by Cdk7 during initiation. How phosphatases alter the pattern and extent of CTD phosphorylation at this early stage of transcription is not clear. We previously demonstrated the functional association of an early-acting, magnesium-independent phosphatase with early elongation complexes. Here we show that Ssu72 is responsible for that activity. We found that the phosphatase enters the transcription cycle during the formation of PICs and that Ssu72 is physically associated with very early elongation complexes. The association of Ssu72 with elongation complexes was stable to extensive washing with up to 200 mM KCl. Interestingly, Ssu72 ceased to function on complexes that contained RNA longer than 28 nt. However, when PICs were washed before initiation, the strict cutoff at 28 nt was lost. This suggests that factor(s) are important for the specific regulation of Ssu72 function during the transition between initiation and pausing. Overall, our results demonstrate when Ssu72 can act on early transcription complexes and suggest that Ssu72 may also function in the PIC prior to initiation.
Collapse
|
27
|
Katahira J, Ishikawa H, Tsujimura K, Kurono S, Hieda M. Human THO coordinates transcription termination and subsequent transcript release from the
HSP70
locus. Genes Cells 2019; 24:272-283. [DOI: 10.1111/gtc.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jun Katahira
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Hiroki Ishikawa
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Kakeru Tsujimura
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Sadamu Kurono
- Graduate School of Medicine and Health Sciences Osaka University Suita Osaka Japan
- Laboratory Chemicals Division Wako Pure Chemical Industries Ltd Osaka Japan
| | - Miki Hieda
- Graduate School of Health Sciences Ehime Prefectural University of Health Sciences Iyo‐gun Ehime Japan
| |
Collapse
|
28
|
Yu S, Huang H, Wang S, Xu H, Xue Y, Huang Y, He J, Xu X, Wu Z, Wu J, Zhang Y, Huang Q, Chang Z, Li E, Xu L. CREPT is a novel predictor of the response to adjuvant therapy or concurrent chemoradiotherapy in esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3301-3310. [PMID: 31934173 PMCID: PMC6949861 DOI: pmid/31934173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023]
Abstract
CREPT has been shown to be highly expressed in most tumors and is associated with a poor prognosis, but the histologic characteristics of CREPT expression and its impact on clinical outcomes in esophageal squamous cell carcinoma (ESCC) are unclear. Therefore, we retroactively evaluated tissue microarrays (TMA) from 300 surgical cases, including 300 ESCC tissues and 161 adjacent non-tumor tissues, and pretreatment tumor biopsies from 113 concurrent chemoradiotherapy (CCRT) cases by immunohistochemistry (IHC). Notably, CREPT was increasingly expressed from non-cancerous tissues to atypical hyperplasia to tumor tissues (P < 0.01). Furthermore, patients were divided into low CREPT (≤ 8 scores) and high CREPT (> 8 scores) groups. Patients with high CREPT expressions had a worse overall survival (OS) (5-year OS: 40.9% vs. 50.1%, P=0.040) and disease-free survival (DFS) (5-year DFS: 29.5 vs. 43.0%; P=0.020) than those with low expressions. Nevertheless, only in the high CREPT subgroup did adjuvant therapy (AT) prolong the OS (5-year OS: 53.8 vs. 28.9%; P=0.020), especially for adjuvant radiotherapy (ART) (5-year OS: 85.7 vs. 28.9%; P=0.037; 5-year DFS: 85.7 vs. 22.3%; P=0.020). Surprisingly, high CREPT expressions endowed CCRT-treated patients with higher complete response rates (50% vs. 26%; P=0.018) and a favorable OS (3-year OS: 54.3 vs. 28.1%; P=0.046) compared to low expression. Overall, our findings indicate that CREPT is highly expressed in ESCC tissue compared with non-cancerous tissue and this feature is associated with a poor prognosis. Otherwise, patients with high CREPT expression were more sensitive to AT and CCRT. Moreover, CREPT could be a predictive immunohistochemical biomarker used to guide individualized clinical treatment.
Collapse
Affiliation(s)
- Shuaixia Yu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- Institute of Oncologic Pathology, Shantou University Medical CollegeGuangdong, P. R. China
| | - Hecheng Huang
- Department of Radiation Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityGuangdong, P. R. China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityGuangdong, P. R. China
| | - Hongyao Xu
- Department of Radiation Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityGuangdong, P. R. China
| | - Yujie Xue
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- Institute of Oncologic Pathology, Shantou University Medical CollegeGuangdong, P. R. China
| | - Ying Huang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityGuangdong, P. R. China
| | - Jianzhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- Institute of Oncologic Pathology, Shantou University Medical CollegeGuangdong, P. R. China
| | - Xiue Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- Institute of Oncologic Pathology, Shantou University Medical CollegeGuangdong, P. R. China
| | - Zhiyong Wu
- Department of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityGuangdong, P. R. China
| | - Jianyi Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeGuangdong, P. R. China
| | - Yingli Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- Institute of Oncologic Pathology, Shantou University Medical CollegeGuangdong, P. R. China
| | - Qingfeng Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- Institute of Oncologic Pathology, Shantou University Medical CollegeGuangdong, P. R. China
| | - Zhijie Chang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijing, P. R. China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeGuangdong, P. R. China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeGuangdong, P. R. China
- Institute of Oncologic Pathology, Shantou University Medical CollegeGuangdong, P. R. China
| |
Collapse
|
29
|
Motea EA, Fattah FJ, Xiao L, Girard L, Rommel A, Morales JC, Patidar P, Zhou Y, Porter A, Xie Y, Minna JD, Boothman DA. Kub5-Hera RPRD1B Deficiency Promotes "BRCAness" and Vulnerability to PARP Inhibition in BRCA-proficient Breast Cancers. Clin Cancer Res 2018; 24:6459-6470. [PMID: 30108102 DOI: 10.1158/1078-0432.ccr-17-1118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/05/2017] [Accepted: 08/09/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Identification of novel strategies to expand the use of PARP inhibitors beyond BRCA deficiency is of great interest in personalized medicine. Here, we investigated the unannotated role of Kub5-HeraRPRD1B (K-H) in homologous recombination (HR) repair and its potential clinical significance in targeted cancer therapy. EXPERIMENTAL DESIGN Functional characterization of K-H alterations on HR repair of double-strand breaks (DSB) were assessed by targeted gene silencing, plasmid reporter assays, immunofluorescence, and Western blots. Cell survival with PARP inhibitors was evaluated through colony-forming assays and statistically analyzed for correlation with K-H expression in various BRCA1/2 nonmutated breast cancers. Gene expression microarray/qPCR analyses, chromatin immunoprecipitation, and rescue experiments were used to investigate molecular mechanisms of action. RESULTS K-H expression loss correlates with rucaparib LD50 values in a panel of BRCA1/2 nonmutated breast cancers. Mechanistically, K-H depletion promotes BRCAness, where extensive upregulation of PARP1 activity was required for the survival of breast cancer cells. PARP inhibition in these cells led to synthetic lethality that was rescued by wild-type K-H reexpression, but not by a mutant K-H (p.R106A) that weakly binds RNAPII. K-H mediates HR by facilitating recruitment of RNAPII to the promoter region of a critical DNA damage response and repair effector, cyclin-dependent kinase 1 (CDK1). CONCLUSIONS Cancer cells with low K-H expression may have exploitable BRCAness properties that greatly expand the use of PARP inhibitors beyond BRCA mutations. Our results suggest that aberrant K-H alterations may have vital translational implications in cellular responses/survival to DNA damage, carcinogenesis, and personalized medicine.
Collapse
Affiliation(s)
- Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Farjana J Fattah
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ling Xiao
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amy Rommel
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Julio C Morales
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Praveen Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico
| | - Yunyun Zhou
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Porter
- Center for Hematology, Imperial College, London, United Kingdom
| | - Yang Xie
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
30
|
Fan X, Zhao J, Ren F, Wang Y, Feng Y, Ding L, Zhao L, Shang Y, Li J, Ni J, Jia B, Liu Y, Chang Z. Dimerization of p15RS mediated by a leucine zipper-like motif is critical for its inhibitory role on Wnt signaling. J Biol Chem 2018; 293:7618-7628. [PMID: 29618509 DOI: 10.1074/jbc.ra118.001969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/27/2018] [Indexed: 01/31/2023] Open
Abstract
We previously demonstrated that p15RS, a newly discovered tumor suppressor, inhibits Wnt/β-catenin signaling by interrupting the formation of β-catenin·TCF4 complex. However, it remains unclear how p15RS helps exert such an inhibitory effect on Wnt signaling based on its molecular structure. In this study, we reported that dimerization of p15RS is required for its inhibition on the transcription regulation of Wnt-targeted genes. We found that p15RS forms a dimer through a highly conserved leucine zipper-like motif in the coiled-coil terminus domain. In particular, residues Leu-248 and Leu-255 were identified as being responsible for p15RS dimerization, as mutation of these two leucines into prolines disrupted the homodimer formation of p15RS and weakened its suppression of Wnt signaling. Functional studies further confirmed that mutations of p15RS at these residues results in diminishment of its inhibition on cell proliferation and tumor formation. We therefore concluded that dimerization of p15RS governed by the leucine zipper-like motif is critical for its inhibition of Wnt/β-catenin signaling and tumorigenesis.
Collapse
Affiliation(s)
- Xuanzi Fan
- From the State Key Laboratory of Membrane Biology, School of Medicine and.,the School of Life Sciences, Tsinghua University, Beijing 100084
| | - Juan Zhao
- From the State Key Laboratory of Membrane Biology, School of Medicine and
| | - Fangli Ren
- From the State Key Laboratory of Membrane Biology, School of Medicine and
| | - Yinyin Wang
- From the State Key Laboratory of Membrane Biology, School of Medicine and
| | - Yarui Feng
- From the State Key Laboratory of Membrane Biology, School of Medicine and
| | - Lidan Ding
- From the State Key Laboratory of Membrane Biology, School of Medicine and
| | - Linpeng Zhao
- the Department of Cell Biology, College of Life Sciences, Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Normal University, Beijing 100875
| | - Yu Shang
- the Department of Cell Biology, College of Life Sciences, Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Normal University, Beijing 100875
| | - Jun Li
- the Institute of Immunology, PLA, The Third Military Medical University, Chongqing 400038, and
| | - Jianquan Ni
- From the State Key Laboratory of Membrane Biology, School of Medicine and
| | - Baoqing Jia
- the Department of General Surgery/Pathology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yule Liu
- the School of Life Sciences, Tsinghua University, Beijing 100084
| | - Zhijie Chang
- From the State Key Laboratory of Membrane Biology, School of Medicine and
| |
Collapse
|
31
|
CREPT facilitates colorectal cancer growth through inducing Wnt/β-catenin pathway by enhancing p300-mediated β-catenin acetylation. Oncogene 2018; 37:3485-3500. [PMID: 29563608 PMCID: PMC6021369 DOI: 10.1038/s41388-018-0161-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/31/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
Using whole genome sequencing, we identified gene amplification of CREPT in colorectal cancer (CRC). In this study, we aim to clarify its clinical significance, biological effects, and mechanism in CRC. CREPT was upregulated in CRC cell lines and in 47.37% (72/152) of primary CRC tumors. Amplification of CREPT was detected in 48.28% (56/116) of primary CRC tumors, which was positively correlated with its overexpression (P < 0.001). Multivariate analysis showed that CRC patients with CREPT protein overexpression were significantly associated with poor disease-free survival (P < 0.05). CREPT significantly accelerated CRC cell proliferation and metastasis both in vitro and in vivo. RNA-sequencing (seq) analysis uncovered that the tumor-promoting effect by CREPT was attributed to enhancing Wnt/β-catenin signaling. Using co-immunoprecipitation coupled with mass spectroscopy, we identified p300 protein was a novel CREPT interacting partner. CREPT greatly increased the interaction between p300 and β-catenin, thus promoting p300-mediated β-catenin acetylation and stabilization. Moreover, CREPT cooperated with p300, leading to elevated active histone acetylation markers H3K27ac and H4Ac and decreased repressive histone marker H3K9me3 at the promoters of Wnt downstream targets. In summary, CREPT plays a pivotal oncogenic role in colorectal carcinogenesis through promoting Wnt/β-catenin pathway via cooperating with p300. CREPT may serve as a prognostic biomarker of patients with CRC.
Collapse
|
32
|
Dolan ME, El Charif O, Wheeler HE, Gamazon ER, Ardeshir-Rouhani-Fard S, Monahan P, Feldman DR, Hamilton RJ, Vaughn DJ, Beard CJ, Fung C, Kim J, Fossa SD, Hertz DL, Mushiroda T, Kubo M, Einhorn LH, Cox NJ, Travis LB. Clinical and Genome-Wide Analysis of Cisplatin-Induced Peripheral Neuropathy in Survivors of Adult-Onset Cancer. Clin Cancer Res 2017; 23:5757-5768. [PMID: 28611204 PMCID: PMC5626588 DOI: 10.1158/1078-0432.ccr-16-3224] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/17/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
Abstract
Purpose: Our purpose was to characterize the clinical influences, genetic risk factors, and gene mechanisms contributing to persistent cisplatin-induced peripheral neuropathy (CisIPN) in testicular cancer survivors (TCSs).Experimental Design: TCS given cisplatin-based therapy completed the validated EORTC QLQ-CIPN20 questionnaire. An ordinal CisIPN phenotype was derived, and associations with age, smoking, excess drinking, hypertension, body mass index, diabetes, hypercholesterolemia, cumulative cisplatin dose, and self-reported health were examined for 680 TCS. Genotyping was performed on the Illumina HumanOmniExpressExome chip. Following quality control and imputation, 5.1 million SNPs in 680 genetically European TCS formed the input set. GWAS and PrediXcan were used to identify genetic variation and genetically determined gene expression traits, respectively, contributing to CisIPN. We evaluated two independent datasets for replication: Vanderbilt's electronic health database (BioVU) and the CALGB 90401 trial.Results: Eight sensory items formed a subscale with good internal consistency (Cronbach α = 0.88). Variables significantly associated with CisIPN included age at diagnosis (OR per year, 1.06; P = 2 × 10-9), smoking (OR, 1.54; P = 0.004), excess drinking (OR, 1.83; P = 0.007), and hypertension (OR, 1.61; P = 0.03). CisIPN was correlated with lower self-reported health (OR, 0.56; P = 2.6 × 10-9) and weight gain adjusted for years since treatment (OR per Δkg/m2, 1.05; P = 0.004). PrediXcan identified lower expressions of MIDN and RPRD1B, and higher THEM5 expression as associated with CisIPN (P value for each < 5 × 10-6) with replication of RPRD1B meeting significance criteria (Fisher combined P = 0.0089).Conclusions: CisIPN is associated with age, modifiable risk factors, and genetically determined expression level of RPRD1B Further study of implicated genes could elucidate the pathophysiologic underpinnings of CisIPN. Clin Cancer Res; 23(19); 5757-68. ©2017 AACR.
Collapse
Affiliation(s)
- M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois.
| | - Omar El Charif
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Heather E Wheeler
- Departments of Biology and Computer Science, Loyola University Chicago, Chicago, Illinois
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - Patrick Monahan
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Darren R Feldman
- Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clair J Beard
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sophie D Fossa
- Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Lawrence H Einhorn
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| |
Collapse
|
33
|
Son DJ, Jung YY, Seo YS, Park H, Lee DH, Kim S, Roh YS, Han SB, Yoon DY, Hong JT. Interleukin-32α Inhibits Endothelial Inflammation, Vascular Smooth Muscle Cell Activation, and Atherosclerosis by Upregulating Timp3 and Reck through suppressing microRNA-205 Biogenesis. Am J Cancer Res 2017; 7:2186-2203. [PMID: 28740544 PMCID: PMC5505053 DOI: 10.7150/thno.18407] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Interleukin-32 (IL-32) is a multifaceted cytokine that promotes inflammation and regulates vascular endothelial cell behavior. Although some IL-32 isoforms have been reported to contribute to vascular inflammation and atherosclerosis, the functional role of IL-32α in vascular inflammation and atherogenesis has not been studied. Methods: IL-32α function was assessed in cells with transient IL-32α overexpression or treated with recombinant human IL-32α by western blotting and mRNA expression analysis. Vascular smooth muscle cell (VSMC) proliferation and migration was examined by BrdU incorporation and wound healing assays, respectively. In addition, the participation of IL-32α on vascular inflammation, arterial wall thickening, and atherosclerosis in vivo was monitored in human IL-32α transgenic (hIL-32α-Tg) mice with or without ApoE knockout (ApoE-/-/hIL-32α-Tg). Results: Our analyses showed that IL-32α suppresses genes involved in the inflammatory and immune responses and cell proliferation, and by limiting matrix metalloproteinase (MMP) function. In vivo, administration of hIL-32α inhibited vascular inflammation and atherosclerosis in hIL-32α-Tg and ApoE-/-/hIL-32α-Tg mice. Subsequent microarray and in silico analysis also revealed a marked decreased in inflammatory gene expression in hIL-32α-Tg mice. Collectively, our studies demonstrated that IL-32α upregulates the atheroprotective genes Timp3 and Reck by downregulating microRNA-205 through regulation of the Rprd2-Dgcr8/Ddx5-Dicer1 biogenesis pathway. Conclusion: Our findings provide the first direct evidence that IL-32α is an anti-inflammatory and anti-atherogenic cytokine that may be useful as a diagnostic and therapeutic protein in atherosclerosis.
Collapse
|
34
|
Ma J, Ren Y, Zhang L, Kong X, Wang T, Shi Y, Bu R. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression. PLoS One 2017; 12:e0174309. [PMID: 28369091 PMCID: PMC5378318 DOI: 10.1371/journal.pone.0174309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background As a regulator essential for many cell cycle-related proteins, the robust expression of Cell cycle-Related and Expression-elevated Protein in Tumor (CREPT) implicates a poor diagnosis of endoderm and mesoderm-derived tumors. Whether CREPT plays the same role in the tumorigenesis derived from ectodermal tissues remains elusive. Methods To explore the role of CREPT in ectoderm-derived tumors, cells from 7oral squamous cell carcinoma (OSCC) lines and 84clinical OSCC samples were exploited in this study. Quantitative PCR, Western blot assay and immunohistochemistry were applied in the evaluation of CREPT, cyclin D1 and c-Myc expression. Knocking-down of CREPT was performed by lentivirus delivering specific shRNA of CREPT. The effects of CREPT on OSCC were examined by cell proliferation, colony formation, apoptosis, cell migration and xenograft implantation experiments. Results Compared with human normal oral keratinocytes, OSCC cell lines showed a significantly elevated expression of CREPT in both mRNA and protein levels. Consistently, samples from OSCC patients also exhibited a noticeably stronger CREPT expression than the noncancerous samples. In contrast, knocking down of CREPT in OSCC cell lines significantly reduced proliferation, colony formation and migration as well as the expression of cyclin D1 and c-Myc, but promoted apoptosis. Statistical analysis also suggested that CREPT expression was significantly correlated with the T and N classification of OSCC. Furthermore, CAL27 mouse xenograft model confirmed that down-regulation of CREPT prohibited cyclin D1 and c-Myc expression, through which decreased the in vivo tumor growth, but increased the survival ratio of hosts. Conclusion In OSCC cell lines, up-regulated CREPT expression enhanced cell proliferation, migration and cell cycle as well as promoted cyclin D1 and c-Myc expression as it did in endoderm and mesoderm-origin tumors. Our study strongly suggests that CREPT could be used as a marker for the OSCC prognosis and might work as a potential target in future OSCC therapy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cyclin D1/genetics
- Disease Progression
- Down-Regulation
- Female
- Gene Expression
- Gene Knockdown Techniques
- Genes, myc
- Humans
- Male
- Mice
- Mice, Nude
- Middle Aged
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Juntao Ma
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yipeng Ren
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Lei Zhang
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Xiangpan Kong
- Department of Oral and Maxillofacial-Head and Neck Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Tong Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yueyi Shi
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Rongfa Bu
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
35
|
Xiong Y, Berrueta L, Urso K, Olenich S, Muskaj I, Badger GJ, Aliprantis A, Lafyatis R, Langevin HM. Stretching Reduces Skin Thickness and Improves Subcutaneous Tissue Mobility in a Murine Model of Systemic Sclerosis. Front Immunol 2017; 8:124. [PMID: 28261202 PMCID: PMC5311037 DOI: 10.3389/fimmu.2017.00124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/25/2017] [Indexed: 12/18/2022] Open
Abstract
Objective Although physical therapy can help preserve mobility in patients with systemic sclerosis (SSc), stretching has not been used systematically as a treatment to prevent or reverse the disease process. We previously showed in rodent models that stretching promotes the resolution of connective tissue inflammation and reduces new collagen formation after injury. Here, we tested the hypothesis that stretching would impact scleroderma development using a mouse sclerodermatous graft-versus-host disease (sclGvHD) model. Methods The model consists in the adoptive transfer (allogeneic) of splenocytes from B10.D2 mice (graft) into Rag2−/− BALB/c hosts (sclGvHD), resulting in skin inflammation followed by fibrosis over 4 weeks. SclGvHD mice and controls were randomized to stretching in vivo for 10 min daily versus no stretching. Results Weekly ultrasound measurements of skin thickness and subcutaneous tissue mobility in the back (relative tissue displacement during passive trunk motion) successfully captured the different phases of the sclGvHD model. Stretching reduced skin thickness and increased subcutaneous tissue mobility compared to no stretching at week 3. Stretching also reduced the expression of CCL2 and ADAM8 in the skin at week 4, which are two genes known to be upregulated in both murine sclGvHD and the inflammatory subset of human SSc. However, there was no evidence that stretching attenuated inflammation at week 2. Conclusion Daily stretching for 10 min can improve skin thickness and mobility in the absence of any other treatment in the sclGvHD murine model. These pre-clinical results suggest that a systematic investigation of stretching as a therapeutic modality is warranted in patients with SSc.
Collapse
Affiliation(s)
- Ying Xiong
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Lisbeth Berrueta
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Katia Urso
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Sara Olenich
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Igla Muskaj
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Gary J Badger
- Department of Medical Biostatistics, University of Vermont , Burlington, VT , USA
| | - Antonios Aliprantis
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Robert Lafyatis
- University of Pittsburgh, School of Medicine , Pittsburgh, PA , USA
| | - Helene M Langevin
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
36
|
Olsen JB, Wong L, Deimling S, Miles A, Guo H, Li Y, Zhang Z, Greenblatt JF, Emili A, Tropepe V. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports 2016; 7:454-470. [PMID: 27546533 PMCID: PMC5031922 DOI: 10.1016/j.stemcr.2016.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
Proliferating progenitor cells undergo changes in competence to give rise to post-mitotic progeny of specialized function. These cell-fate transitions typically involve dynamic regulation of gene expression by histone methyltransferase (HMT) complexes. However, the composition, roles, and regulation of these assemblies in regulating cell-fate decisions in vivo are poorly understood. Using unbiased affinity purification and mass spectrometry, we identified the uncharacterized C2H2-like zinc finger protein ZNF644 as a G9a/GLP-interacting protein and co-regulator of histone methylation. In zebrafish, functional characterization of ZNF644 orthologs, znf644a and znf644b, revealed complementary roles in regulating G9a/H3K9me2-mediated gene silencing during neurogenesis. The non-overlapping requirements for znf644a and znf644b during retinal differentiation demarcate critical aspects of retinal differentiation programs regulated by differential G9a-ZNF644 associations, such as transitioning proliferating progenitor cells toward differentiation. Collectively, our data point to ZNF644 as a critical co-regulator of G9a/H3K9me2-mediated gene silencing during neuronal differentiation.
Collapse
Affiliation(s)
- Jonathan B Olsen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada
| | - Loksum Wong
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Steven Deimling
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yue Li
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada.
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
37
|
Liu T, Li WM, Wang WP, Sun Y, Ni YF, Xing H, Xia JH, Wang XJ, Zhang ZP, Li XF. Inhibiting CREPT reduces the proliferation and migration of non-small cell lung cancer cells by down-regulating cell cycle related protein. Am J Transl Res 2016; 8:2097-2113. [PMID: 27347318 PMCID: PMC4891423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 06/06/2023]
Abstract
It has been reported that CREPT acts as a highly expressed oncogene in a variety of tumors, affecting cyclin D1 signal pathways. However, the distribution and clinical significance of CREPT in NSCLC remains poorly understood. Our study focused on the role of CREPT on the regulation ofnon-small cell lung cancer (NSCLC). We found that CREPT mRNA and protein expression was significantly increased in NSCLC compared with adjacent lung tissues and was increased in various NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line. siRNA-induced knockingdown of CREPT significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in S phase. Moreover, CREPT knocking down affected the expression of cell cycle proteins including c-mycand CDC25A. Finally, we found there were obvious correlations between CREPT with c-myc expression in histological type, differentiation, and pTNM stages of NSCLC (P<0.05, rs>0.3). Immunohistofluorescence studies demonstrated a co-localization phenomenon when CREPT and c-myc were expressed. Thus, we propose that CREPT may promote NSCLC cell growth and migration through the c-myc and CDC25A signaling molecules.
Collapse
Affiliation(s)
- Tao Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Wei-Miao Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Wu-Ping Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Yun-Feng Ni
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Hao Xing
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Jing-Hua Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Xue-Jiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Zhi-Pei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Xiao-Fei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| |
Collapse
|
38
|
Popova T, Manié E, Boeva V, Battistella A, Goundiam O, Smith NK, Mueller CR, Raynal V, Mariani O, Sastre-Garau X, Stern MH. Ovarian Cancers Harboring Inactivating Mutations in CDK12 Display a Distinct Genomic Instability Pattern Characterized by Large Tandem Duplications. Cancer Res 2016; 76:1882-91. [PMID: 26787835 DOI: 10.1158/0008-5472.can-15-2128] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/08/2016] [Indexed: 11/16/2022]
Abstract
CDK12 is a recurrently mutated gene in serous ovarian carcinoma, whose downregulation is associated with impaired expression of DNA damage repair genes and subsequent hypersensitivity to DNA-damaging agents and PARP1/2 inhibitors. In this study, we investigated the genomic landscape associated with CDK12 inactivation in patients with serous ovarian carcinoma. We show that CDK12 loss was consistently associated with a particular genomic instability pattern characterized by hundreds of tandem duplications of up to 10 megabases (Mb) in size. Tandem duplications were characterized by a bimodal (∼0.3 and ∼3 Mb) size distribution and overlapping microhomology at the breakpoints. This genomic instability, denoted as the CDK12 TD-plus phenotype, is remarkably distinct from other alteration patterns described in breast and ovarian cancers. The CDK12 TD-plus phenotype was associated with a greater than 10% gain in genomic content and occurred at a 3% to 4% rate in The Cancer Genome Atlas-derived and in-house cohorts of patients with serous ovarian carcinoma. Moreover, CDK12-inactivating mutations together with the TD-plus phenotype were also observed in prostate cancers. Our finding provides new insight toward deciphering the function of CDK12 in genome maintenance and oncogenesis. Cancer Res; 76(7); 1882-91. ©2016 AACR.
Collapse
Affiliation(s)
- Tatiana Popova
- Institut Curie, Centre de Recherche, Paris, France. INSERM U830, Paris, France. PSL Research University, Paris, France.
| | - Elodie Manié
- Institut Curie, Centre de Recherche, Paris, France. INSERM U830, Paris, France. PSL Research University, Paris, France
| | - Valentina Boeva
- Institut Curie, Centre de Recherche, Paris, France. PSL Research University, Paris, France. INSERM U900, Paris, France
| | - Aude Battistella
- Institut Curie, Centre de Recherche, Paris, France. INSERM U830, Paris, France. PSL Research University, Paris, France
| | - Oumou Goundiam
- Institut Curie, Centre de Recherche, Paris, France. PSL Research University, Paris, France. EA4340-BCOH, Versailles Saint-Quentin-en-Yvelines University, Guyancourt, France. Institut Curie, Département de Biopathologie, Paris, France. Institut Curie, Département de Recherche Translationnelle, Paris, France
| | - Nicholas K Smith
- Institut Curie, Centre de Recherche, Paris, France. INSERM U830, Paris, France. PSL Research University, Paris, France
| | | | - Virginie Raynal
- Institut Curie, Centre de Recherche, Paris, France. INSERM U830, Paris, France. PSL Research University, Paris, France
| | - Odette Mariani
- PSL Research University, Paris, France. Institut Curie, Département de Biopathologie, Paris, France. Institut Curie, Centre de Ressources Biologiques, Paris, France
| | - Xavier Sastre-Garau
- PSL Research University, Paris, France. EA4340-BCOH, Versailles Saint-Quentin-en-Yvelines University, Guyancourt, France. Institut Curie, Département de Biopathologie, Paris, France
| | - Marc-Henri Stern
- Institut Curie, Centre de Recherche, Paris, France. INSERM U830, Paris, France. PSL Research University, Paris, France
| |
Collapse
|
39
|
Ichise H, Hori A, Shiozawa S, Kondo S, Kanegae Y, Saito I, Ichise T, Yoshida N. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice. Exp Anim 2016; 65:231-44. [PMID: 26923756 PMCID: PMC4976237 DOI: 10.1538/expanim.15-0126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an
important technique that allows the bypass of embryonic lethal phenotypes and access to
adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse
strain for the purpose of widespread and temporal Cre recombination. The new line, named
CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP
recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined
CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre
recombination with and without tamoxifen administration to adult mice, and found
tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In
addition, we demonstrated that conditional activation of an oncogene could be achieved in
adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40
large T antigen-expressing transgene, were viable and fertile. No overt phenotype was
found in the mice up to 3 months after birth. Although they displayed pineoblastomas
(pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6
months after birth, they developed epidermal hyperplasia when administered tamoxifen.
Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to
the assessment of adult phenotypes in mice with loxP-flanked transgenes.
Collapse
Affiliation(s)
- Hirotake Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Patidar PL, Motea EA, Fattah FJ, Zhou Y, Morales JC, Xie Y, Garner HR, Boothman DA. The Kub5-Hera/RPRD1B interactome: a novel role in preserving genetic stability by regulating DNA mismatch repair. Nucleic Acids Res 2016; 44:1718-31. [PMID: 26819409 PMCID: PMC4770225 DOI: 10.1093/nar/gkv1492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022] Open
Abstract
Ku70-binding protein 5 (Kub5)-Hera (K-H)/RPRD1B maintains genetic integrity by concomitantly minimizing persistent R-loops and promoting repair of DNA double strand breaks (DSBs). We used tandem affinity purification-mass spectrometry, co-immunoprecipitation and gel-filtration chromatography to define higher-order protein complexes containing K-H scaffolding protein to gain insight into its cellular functions. We confirmed known protein partners (Ku70, RNA Pol II, p15RS) and discovered several novel associated proteins that function in RNA metabolism (Topoisomerase 1 and RNA helicases), DNA repair/replication processes (PARP1, MSH2, Ku, DNA-PKcs, MCM proteins, PCNA and DNA Pol δ) and in protein metabolic processes, including translation. Notably, this approach directed us to investigate an unpredicted involvement of K-H in DNA mismatch repair (MMR) where K-H depletion led to concomitant MMR deficiency and compromised global microsatellite stability. Mechanistically, MMR deficiency in K-H-depleted cells was a consequence of reduced stability of the core MMR proteins (MLH1 and PMS2) caused by elevated basal caspase-dependent proteolysis. Pan-caspase inhibitor treatment restored MMR protein loss. These findings represent a novel mechanism to acquire MMR deficiency/microsatellite alterations. A significant proportion of colon, endometrial and ovarian cancers exhibit k-h expression/copy number loss and may have severe mutator phenotypes with enhanced malignancies that are currently overlooked based on sporadic MSI+ screening.
Collapse
Affiliation(s)
- Praveen L Patidar
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farjana J Fattah
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yunyun Zhou
- Quantitative Biomedical Center, Department of Clinical Science, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA
| | - Julio C Morales
- Department of Neurosurgery, University of Oklahoma Heath Science Center, Oklahoma City, OK, USA
| | - Yang Xie
- Quantitative Biomedical Center, Department of Clinical Science, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine and the MITTE Office, Virginia Tech, Blacksburg, VA, USA
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
41
|
Liu C, Zhang Y, Li J, Wang Y, Ren F, Zhou Y, Wu Y, Feng Y, Zhou Y, Su F, Jia B, Wang D, Chang Z. p15RS/RPRD1A (p15INK4b-related sequence/regulation of nuclear pre-mRNA domain-containing protein 1A) interacts with HDAC2 in inhibition of the Wnt/β-catenin signaling pathway. J Biol Chem 2015; 290:9701-13. [PMID: 25697359 PMCID: PMC4392270 DOI: 10.1074/jbc.m114.620872] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 02/05/2023] Open
Abstract
We previously reported that p15RS (p15INK4b-related sequence), a regulation of nuclear pre-mRNA domain containing protein, inhibited Wnt signaling by interrupting the formation of the β-catenin·TCF4 complex. However, how p15RS functions as an intrinsic repressor to repress transcription remains unclear. In this study, we show that p15RS, through a specific interaction with HDAC2 (histone deacetylase 2), a deacetylase that regulates gene transcription, maintains histone H3 in a deacetylated state in the promoter region of Wnt-targeted genes where β-catenin·TCF4 is bound. We observed that histone deacetylase inhibitors impair the ability of p15RS in inhibiting Wnt/β-catenin signaling. Depletion of HDAC2 markedly disabled p15RS inhibition of Wnt/β-catenin-mediated transcription. Interestingly, overexpression of p15RS decreases the level of acetylated histone H3 in the c-MYC promoter. Finally, we demonstrate that p15RS significantly enhances the association of HDAC2 and TCF4 and enhances the occupancy of HDAC2 to DNA, resulting in the deacetylation of histone H3 and the failure of β-catenin interaction. We propose that p15RS acts as an intrinsic transcriptional repressor for Wnt/β-catenin-mediated gene transcription at least partially through recruiting HDAC2 to occupy the promoter and maintaining deacetylated histone H3.
Collapse
Affiliation(s)
- Chunxiao Liu
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China, the State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Yanquan Zhang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China, the State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Jun Li
- the Department of Immunology, Third Military Medical School, Chongqing 610041, China
| | - Yinyin Wang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China, the State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Fangli Ren
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China, the State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Yifan Zhou
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yinyuan Wu
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China, the F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Yarui Feng
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China, the State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Yu Zhou
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Fuqin Su
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Baoqing Jia
- the Departments of Surgical Oncology and Pathology, Chinese PLA General Hospital, Beijing 100853, China, and
| | - Dong Wang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China, the State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China, the Bioinformatics Division and Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhijie Chang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China, the State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China,
| |
Collapse
|
42
|
Smith-Kinnaman WR, Berna MJ, Hunter GO, True JD, Hsu P, Cabello GI, Fox MJ, Varani G, Mosley AL. The interactome of the atypical phosphatase Rtr1 in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2015; 10:1730-41. [PMID: 24671508 DOI: 10.1039/c4mb00109e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phosphatase Rtr1 has been implicated in dephosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) during transcription elongation and in regulation of nuclear import of RNAPII. Although it has been shown that Rtr1 interacts with RNAPII in yeast and humans, the specific mechanisms that underlie Rtr1 recruitment to RNAPII have not been elucidated. To address this, we have performed an in-depth proteomic analysis of Rtr1 interacting proteins in yeast. Our studies revealed that hyperphosphorylated RNAPII is the primary interacting partner for Rtr1. To extend these findings, we performed quantitative proteomic analyses of Rtr1 interactions in yeast strains deleted for CTK1, the gene encoding the catalytic subunit of the CTD kinase I (CTDK-I) complex. Interestingly, we found that the interaction between Rtr1 and RNAPII is decreased in ctk1Δ strains. We hypothesize that serine-2 CTD phosphorylation is required for Rtr1 recruitment to RNAPII during transcription elongation.
Collapse
Affiliation(s)
- Whitney R Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ni Z, Xu C, Guo X, Hunter GO, Kuznetsova OV, Tempel W, Marcon E, Zhong G, Guo H, Kuo WHW, Li J, Young P, Olsen JB, Wan C, Loppnau P, El Bakkouri M, Senisterra GA, He H, Huang H, Sidhu SS, Emili A, Murphy S, Mosley AL, Arrowsmith CH, Min J, Greenblatt JF. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation. Nat Struct Mol Biol 2014; 21:686-695. [PMID: 24997600 PMCID: PMC4124035 DOI: 10.1038/nsmb.2853] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/02/2014] [Indexed: 01/16/2023]
Abstract
The RNA polymerase II (RNAPII) C-terminal domain (CTD) heptapeptide repeats (1-YSPTSPS-7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD-interaction domains (CIDs) with RNAPII CTD repeats phosphorylated at S2 and S7. Crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with RNAPII CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.
Collapse
Affiliation(s)
- Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Xinghua Guo
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gerald O Hunter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Olga V Kuznetsova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Guoqing Zhong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hongbo Guo
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Wei-Hung William Kuo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Joyce Li
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter Young
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan B Olsen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cuihong Wan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Hao He
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Haiming Huang
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation. Cell Rep 2014; 8:297-310. [DOI: 10.1016/j.celrep.2014.05.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/24/2014] [Accepted: 05/27/2014] [Indexed: 01/14/2023] Open
|
45
|
Zhang Y, Liu C, Duan X, Ren F, Li S, Jin Z, Wang Y, Feng Y, Liu Z, Chang Z. CREPT/RPRD1B, a recently identified novel protein highly expressed in tumors, enhances the β-catenin·TCF4 transcriptional activity in response to Wnt signaling. J Biol Chem 2014; 289:22589-22599. [PMID: 24982424 DOI: 10.1074/jbc.m114.560979] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CREPT (cell cycle-related and expression elevated protein in tumor)/RPRD1B (regulation of nuclear pre-mRNA domain-containing protein 1B), highly expressed during tumorigenesis, was shown to enhance transcription of CCND1 and to promote cell proliferation by interacting with RNA polymerase II. However, which signaling pathway is involved in CREPT-mediated activation of gene transcription remains unclear. In this study, we reveal that CREPT participates in transcription of the Wnt/β-catenin signaling activated genes through the β-catenin and the TCF4 complex. Our results demonstrate that CREPT interacts with both β-catenin and TCF4, and enhances the association of β-catenin with TCF4, in response to Wnt stimulation. Furthermore, CREPT was shown to occupy at TCF4 binding sites (TBS) of the promoters of Wnt-targeted genes under Wnt stimulation. Interestingly, depletion of CREPT resulted in decreased occupancy of β-catenin on TBS, and over-expression of CREPT enhances the activity of the β-catenin·TCF4 complex to initiate transcription of Wnt target genes, which results in up-regulated cell proliferation and invasion. Our study suggests that CREPT acts as an activator to promote transcriptional activity of the β-catenin·TCF4 complex in response to Wnt signaling.
Collapse
Affiliation(s)
- Yanquan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Chunxiao Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Xiaolin Duan
- The Second People's Hospital of Zhuhai, Guangdong 519000, China
| | - Fangli Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Shan Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084
| | - Zhe Jin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Yinyin Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Yarui Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Zewen Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| |
Collapse
|
46
|
Morales JC, Richard P, Rommel A, Fattah FJ, Motea EA, Patidar PL, Xiao L, Leskov K, Wu SY, Hittelman WN, Chiang CM, Manley JL, Boothman DA. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair. Nucleic Acids Res 2014; 42:4996-5006. [PMID: 24589584 PMCID: PMC4005673 DOI: 10.1093/nar/gku160] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.
Collapse
Affiliation(s)
- Julio C Morales
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8807, USA, Department of Biological Sciences, Columbia University, New York, NY 10027, USA, Laboratory of Genetics, Salk Institute of Biological Studies, La Jolla, CA 92037, USA, Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang Y, Qiu H, Hu W, Li S, Yu J. RPRD1B promotes tumor growth by accelerating the cell cycle in endometrial cancer. Oncol Rep 2014; 31:1389-95. [PMID: 24452636 DOI: 10.3892/or.2014.2990] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
RPRD1B, the regulation of nuclear pre-mRNA domain containing 1B gene, functions as a cell cycle manipulator and has been found overexpressed in a small panel of endometrial cancer types. In the present study, we investigated the roles of RPRD1B in endometrial cancer using various in vitro and in vivo experiments. According to our results, RPRD1B mRNA was significantly upregulated in endometrial cancer tissues (P=0.0012). RPRD1B overexpression was correlated with tumor stage (P=0.0004), histology type (P=0.0146) and depth of myometrial invasion (P=0.024). In vitro, RPRD1B promoted cellular proliferation (P=0.032 for MTT assay and P=0.018 for colony formation assay), and accelerated the cell cycle (P=0.007) by upregulating cyclin D1, CDK4 and CDK6, while knockdown of RPRD1B suppressed cellular proliferation (P=0.02 for MTT assay and P=0.031 for colony formation assay), and led to G1 phase arrest (P=0.025) through downregulating cyclin D1, CDK4 and CDK6. Consistently, in the nude mice model, RPRD1B overexpression significantly accelerated the tumor xenograft growth (P=0.0012), accompanied by elevated Ki-67 and cyclin D1. In addition, we demonstrated that downregulating RPRD1B could sensitize Ishikawa cells to Raloxifene (P=0.01). In summary, we demonstrated that RPRD1B was frequently overexpressed in human endometrial cancer. Both in vitro and in vivo, over-abundant RPRD1B could promote tumor growth and accelerate cellular cell cycle. In addition, knockdown of RPRD1B also increased cell sensitivity to Raloxifene, making RPRD1B a potent therapeutic target for endometrial cancer, particularly in patients with resistance to the selective ER modulators.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi, Wuxi, Jiangsu 214062, P.R. China
| | - Haifeng Qiu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of the China Welfare Institute Affiliated to Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Weixu Hu
- Department of Radiation Oncology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Shaoru Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi, Wuxi, Jiangsu 214062, P.R. China
| |
Collapse
|
48
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
49
|
Li X, Li J, Yang Y, Hou R, Liu R, Zhao X, Yan X, Yin G, An P, Wang Y, Zhang K. Differential gene expression in peripheral blood T cells from patients with psoriasis, lichen planus, and atopic dermatitis. J Am Acad Dermatol 2013; 69:e235-e243. [DOI: 10.1016/j.jaad.2013.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 11/25/2022]
|
50
|
Gwynn EJ, Smith AJ, Guy CP, Savery NJ, McGlynn P, Dillingham MS. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLoS One 2013; 8:e78141. [PMID: 24147116 PMCID: PMC3797733 DOI: 10.1371/journal.pone.0078141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/13/2013] [Indexed: 12/31/2022] Open
Abstract
UvrD-like helicases play diverse roles in DNA replication, repair and recombination pathways. An emerging body of evidence suggests that their different cellular functions are directed by interactions with partner proteins that target unwinding activity to appropriate substrates. Recent studies in E. coli have shown that UvrD can act as an accessory replicative helicase that resolves conflicts between the replisome and transcription complexes, but the mechanism is not understood. Here we show that the UvrD homologue PcrA interacts physically with B. subtilis RNA polymerase, and that an equivalent interaction is conserved in E. coli where UvrD, but not the closely related helicase Rep, also interacts with RNA polymerase. The PcrA-RNAP interaction is direct and independent of nucleic acids or additional mediator proteins. A disordered but highly conserved C-terminal region of PcrA, which distinguishes PcrA/UvrD from otherwise related enzymes such as Rep, is both necessary and sufficient for interaction with RNA polymerase.
Collapse
Affiliation(s)
- Emma J. Gwynn
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Abigail J. Smith
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Colin P. Guy
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nigel J. Savery
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Peter McGlynn
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Mark S. Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|