1
|
Han SM, Byun MS, Yi D, Jung JH, Kong N, Chang YY, Keum M, Jung GJ, Lee JY, Lee YS, Kim YK, Kang KM, Sohn CH, Lee DY. Modulatory Effect of Blood LDL Cholesterol on the Association between Cerebral Aβ and Tau Deposition in Older Adults. J Prev Alzheimers Dis 2024; 11:1767-1774. [PMID: 39559888 PMCID: PMC11573824 DOI: 10.14283/jpad.2024.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND This study investigates the synergistic relationship between blood low-density lipoprotein cholesterol (LDL-C) and cerebral beta-amyloid (Aβ) in relation to tau deposition, a key factor in the pathology of Alzheimer's disease (AD), in older adults across a diverse cognitive spectrum. OBJECTIVES To examine whether higher levels of LDL-C in the blood moderate the association of cerebral Aβ with tau deposition in older adults, including those with normal cognition, mild cognitive impairment, and Alzheimer's disease dementia. DESIGN Cross-sectional design. SETTING The study was conducted as a part of a prospective cohort study. All assessments were done at the Seoul National University Hospital, Seoul, South Korea. PARTICIPANTS A total of 136 older adults (aged 60-85 years) with normal cognition, mild cognitive impairment or Alzheimer's disease (AD) dementia were included. MEASUREMENTS Serum lipid measurements, [11C] Pittsburgh Compound B-positron emission tomography (PET), [18F] AV-1451 PET, and magnetic resonance imaging were performed on all participants. RESULTS There was a significant Aβ x LDL-C interaction effect on tau deposition indicating a synergistic moderation effect of LDL-C on the relationship between Aβ and tau deposition. Subsequent subgroup analysis showed that the positive association between Aβ and tau deposition was stronger in higher LDL-C group than in lower LDL-C group. In contrast, other lipids, such as total cholesterol, high-density lipoprotein cholesterol, and triglycerides, did not show a similar moderation effect on the relationship between Aβ deposition and tau deposition. CONCLUSION Our findings suggest that blood LDL-C synergistically enhances the influence of Aβ deposition on tau pathology, emphasizing the need for greater attention to the role of LDL-C in AD progression.
Collapse
Affiliation(s)
- S M Han
- Dong Young Lee, Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Telephone: +82-2-2072-2205, Fax: +82-2-744-2471,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Tarawneh R. Microvascular Contributions to Alzheimer Disease Pathogenesis: Is Alzheimer Disease Primarily an Endotheliopathy? Biomolecules 2023; 13:830. [PMID: 37238700 PMCID: PMC10216678 DOI: 10.3390/biom13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer disease (AD) models are based on the notion that abnormal protein aggregation is the primary event in AD, which begins a decade or longer prior to symptom onset, and culminates in neurodegeneration; however, emerging evidence from animal and clinical studies suggests that reduced blood flow due to capillary loss and endothelial dysfunction are early and primary events in AD pathogenesis, which may precede amyloid and tau aggregation, and contribute to neuronal and synaptic injury via direct and indirect mechanisms. Recent data from clinical studies suggests that endothelial dysfunction is closely associated with cognitive outcomes in AD and that therapeutic strategies which promote endothelial repair in early AD may offer a potential opportunity to prevent or slow disease progression. This review examines evidence from clinical, imaging, neuropathological, and animal studies supporting vascular contributions to the onset and progression of AD pathology. Together, these observations support the notion that the onset of AD may be primarily influenced by vascular, rather than neurodegenerative, mechanisms and emphasize the importance of further investigations into the vascular hypothesis of AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
3
|
Chasovskikh NY, Chizhik EE. Bioinformatic analysis of biological pathways in coronary heart disease and Alzheimer’s disease. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-193-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aim. Using bioinformatic tools, to perform a pathway enrichment analysis in Alzheimer’s disease and coronary heart disease (CHD).Materials and methods. Genes contributing to susceptibility to CHD and Alzheimer’s disease were obtained from the public database DisGeNET (Database of Gene – Disease Associations). A pathway enrichment analysis was performed in the ClueGO Cytoscape plug-in (version 3.6.0) using hypergeometric distribution and the KEGG and Reactome databases.Results. The identified genes contributing to susceptibility to Alzheimer’s disease and CHD are included in 69 common signaling pathways, grouped into the following subgroups: cell death signaling pathways (1); signaling pathways regulating immune responses (2); signaling pathways responsible for fatty acid metabolism (3); signaling pathways involved in the functioning of the nervous system (4), cardiovascular system (5), and endocrine system (6).Conclusion. Following the performed analysis, we identified possible associations between processes involving genetic factors and their products in CHD and Alzheimer’s disease. In particular, we assumed that susceptibility genes involved in the implementation of these pathways regulate apoptosis, production of inflammatory cytokines and chemokines, lipid metabolism, β-amyloid formation, and angiogenesis.
Collapse
|
4
|
Yin W, Wan K, Zhu W, Zhou X, Tang Y, Zheng W, Cao J, Song Y, Zhao H, Zhu X, Sun Z. Bilateral Hippocampal Volume Mediated the Relationship Between Plasma BACE1 Concentration and Memory Function in the Early Stage of Alzheimer's Disease: A Cross-Sectional Study. J Alzheimers Dis 2023; 92:1001-1013. [PMID: 36847009 DOI: 10.3233/jad-221174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a key enzyme in the formation of amyloid-β (Aβ) protein. Increasing evidence suggests that BACE1 concentration is a potential biomarker for Alzheimer's disease (AD). OBJECTIVE To evaluate the correlations between plasma BACE1 concentration, cognition, and hippocampal volume at different stages of the AD continuum. METHODS Plasma BACE1 concentrations were measured in 32 patients with probable dementia due to AD (ADD), 48 patients with mild cognitive impairment (MCI) due to AD, and 40 cognitively unimpaired (CU) individuals. Memory function was evaluated using the auditory verbal learning test (AVLT), and voxel-based morphometry was used to analyze bilateral hippocampal volumes. Correlation and mediation analyses were performed to investigate the associations between plasma BACE1 concentration, cognition, and hippocampal atrophy. RESULTS The MCI and ADD groups exhibited elevated BACE1 concentrations compared with the CU group after adjusting for age, sex, and apolipoprotein E (APOE) genotype. Increased BACE1 concentration was found in AD continuum patients who were APOE ɛ4 carriers (p < 0.05). BACE1 concentration was negatively associated with the scores of the subitems of the AVLT and hippocampal volume (p < 0.05, false discovery rate correction) in the MCI group. Moreover, bilateral hippocampal volume mediated the relationship between BACE1 concentration and recognition in the MCI group. CONCLUSION BACE1 expression increased in the AD continuum, and bilateral hippocampal volume mediated the effect of BACE1 concentration on memory function in patients with MCI. Research has indicated that the plasma BACE1 concentration might be a biomarker at the early stage of AD.
Collapse
Affiliation(s)
- Wenwen Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenhao Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yating Tang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenhui Zheng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jing Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
5
|
Demetci P, Cheng W, Darnell G, Zhou X, Ramachandran S, Crawford L. Multi-scale inference of genetic trait architecture using biologically annotated neural networks. PLoS Genet 2021; 17:e1009754. [PMID: 34411094 PMCID: PMC8407593 DOI: 10.1371/journal.pgen.1009754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/31/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
In this article, we present Biologically Annotated Neural Networks (BANNs), a nonlinear probabilistic framework for association mapping in genome-wide association (GWA) studies. BANNs are feedforward models with partially connected architectures that are based on biological annotations. This setup yields a fully interpretable neural network where the input layer encodes SNP-level effects, and the hidden layer models the aggregated effects among SNP-sets. We treat the weights and connections of the network as random variables with prior distributions that reflect how genetic effects manifest at different genomic scales. The BANNs software uses variational inference to provide posterior summaries which allow researchers to simultaneously perform (i) mapping with SNPs and (ii) enrichment analyses with SNP-sets on complex traits. Through simulations, we show that our method improves upon state-of-the-art association mapping and enrichment approaches across a wide range of genetic architectures. We then further illustrate the benefits of BANNs by analyzing real GWA data assayed in approximately 2,000 heterogenous stock of mice from the Wellcome Trust Centre for Human Genetics and approximately 7,000 individuals from the Framingham Heart Study. Lastly, using a random subset of individuals of European ancestry from the UK Biobank, we show that BANNs is able to replicate known associations in high and low-density lipoprotein cholesterol content.
Collapse
Affiliation(s)
- Pinar Demetci
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Wei Cheng
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Gregory Darnell
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sohini Ramachandran
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Microsoft Research New England, Cambridge, Massachusetts, United States of America
- Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
6
|
Na S, Duan X, Wang R, Fan Y, Xue K, Tian S, Yang Z, Li K, Yue J. Chronic Neuroinflammation Induced by Lipopolysaccharide Injection into the Third Ventricle Induces Behavioral Changes. J Mol Neurosci 2021; 71:1306-1319. [PMID: 33405196 DOI: 10.1007/s12031-020-01758-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
The existence of Gram-negative bacteria in the brain, regardless of underlying immune status has been demonstrated by recent studies. The colocalization of lipopolysaccharide (LPS) with Aβ1-40/42 in amyloid plaques supports the hypothesis that brain microbes may be the cause, triggering chronic neuroinflammation, leading to Alzheimer's disease (AD). To investigate the behavioral changes induced by infectious neuroinflammation, we chose the third ventricle as the site of a single LPS injection (20 μg or 80 μg) in male Wistar rats to avoid mechanical injury to forebrain structures while inducing widespread inflammation throughout the brain. Chronic neuroinflammation induced by LPS resulted in depressive-like behaviors and the impairment of spatial learning; however, there was no evidence of the development of pathological hallmarks (e.g., the phosphorylation of tau) for 10 months following LPS injection. The acceleration of cholesterol metabolism via CYP46A1 and the retardation of cholesterol synthesis via HMGCR were observed in the hippocampus of rats treated with either low-dose or high-dose LPS. The rate-limiting enzymes of cholesterol metabolism (CYP46A1) in SH-SY5Y cells and synthesis (HMGCR) in U251 cells were altered by inflammation stimulators, including LPS, IL-1β, and TNF-α, through the TLR4/MyD88/NF-κB signaling pathway. The data suggest that chronic neuroinflammation provoked by the administration of LPS into the third ventricle may induce depressive-like symptoms and that the loss of cholesterol might be a biomarker of chronic neuroinflammation. The lack of pathological hallmarks of AD in our model indicates that Gram-negative bacteria infection might not be a single cause of AD.
Collapse
Affiliation(s)
- Shufang Na
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuejiao Duan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.,Department of Pharmacy, The First People's Hospital of Jingmen, Jingmen, 448000, Hubei, China
| | - Rongyan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yanjie Fan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Xue
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuwei Tian
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zheqiong Yang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Jiang Yue
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China. .,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430060, China.
| |
Collapse
|
7
|
Raal FJ, Chilton R, Ranjith N, Rambiritch V, Leisegang RF, Ebrahim IO, Tonder AV, Shunmoogam N, Bouharati C, Musa MG, Karamchand S, Naidoo P, Blom DJ. PCSK9 Inhibitors: From Nature’s Lessons to Clinical Utility. Endocr Metab Immune Disord Drug Targets 2020; 20:840-854. [DOI: 10.2174/1871530320666200213114138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/31/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Background:
Proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors are a novel
class of non-statin lipid lowering therapy that reduce LDL-cholesterol by 50 - 60%. PCSK9 inhibitors
decrease LDL-cholesterol by preventing intracellular degradation of LDL receptors; subsequently, a
greater number of LDL-receptors are available on the cell surface to extract circulating LDL.
Objective:
To describe the origins of PCSK9 inhibitors and their current use in clinical practice.
Methods:
We performed a narrative review of the PCSK9 inhibitor class of drugs.
Results:
Current data indicate that PCSK9 inhibitors effectively reduce LDL-cholesterol and are well
tolerated and safe. PCSK9 inhibitors have also been shown to reduce cardiovascular event rates in
patients with stable atherosclerotic cardiovascular disease and in patients with a recent (up to one year)
acute coronary syndrome. Given the costs, chronicity of the treatment and the potential budget impact,
PCSK9 inhibitors are often limited to patients with the highest absolute risk for major adverse cardiovascular
events despite optimal treatment with high-intensity statin and ezetimibe.
Conclusion:
PCSK9 inhibitors have a favorable safety, efficacy and tolerability profile. Postmarketing
safety surveillance and real-world studies are needed to further support the long-term safety
profile of this class of medicine.
Collapse
Affiliation(s)
- Frederick J. Raal
- Department of Medicine, Division of Endocrinology and Metabolism, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Robert Chilton
- Department of Medicine, Faculty of Medicine, Division of Cardiology and Interventional Cardiology, University of Texas Health Science Center at San Antonia, Texas, United States
| | - Naresh Ranjith
- Department of Cardiology, Cardiovascular Research Centre, Durban, South Africa
| | - Virendra Rambiritch
- Department of Pharmacology, Faculty of Health Sciences, Discipline of Pharmaceutical Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - Rory F. Leisegang
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Alet van Tonder
- Department of Diabetes and Cardiovascular Medicine, Medical Affairs, Sanofi, Midrand, South Africa
| | - Nelusha Shunmoogam
- Department of Diabetes and Cardiovascular Medicine, Medical Affairs, Sanofi, Midrand, South Africa
| | - Célia Bouharati
- Department of Clinical Trials, Clinical Study Unit, Sanofi, Midrand, South Africa
| | - Moji G. Musa
- Department of Diabetes and Cardiovascular Medicine, Medical Affairs, Sanofi, Midrand, South Africa
| | - Sumanth Karamchand
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Poobalan Naidoo
- Department of Diabetes and Cardiovascular Medicine, Medical Affairs, Sanofi, Midrand, South Africa
| | - Dirk J. Blom
- Department of Medicine, Division of Lipidology and Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies. Front Physiol 2020; 11:598. [PMID: 32581851 PMCID: PMC7296164 DOI: 10.3389/fphys.2020.00598] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.
Collapse
Affiliation(s)
- Hannah Chew
- Huntington Medical Research Institutes, Pasadena, CA, United States
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
9
|
Huang J, Wang X, Xie L, Wu M, Zhao W, Zhang Y, Wang Q, Yao L, Li W. Extract of Danggui-Shaoyao-San ameliorates cognition deficits by regulating DHA metabolism in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112673. [PMID: 32084555 DOI: 10.1016/j.jep.2020.112673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine formula Danggui-Shaoyao-San (DSS) has been reported to show therapeutic effect on alleviating the symptoms of Alzheimer's disease (AD). AIM OF THE STUDY The present study aims to investigate the relation between DSS treatment of AD and DHA metabolism and evaluates its neuroprotective effect on cognitive in APP/PS1 mice. MATERIAL AND METHODS DSS (1.6, 3.2, 6.4 g/kg/day) or Aricept (3 mg/kg/day) was orally administered (i.g.) to APP/PS1 mice, and saline was orally administered to Wild-type (WT) male mice as control group. Then, the Morris water maze (MWM) test, Y-maze spontaneous alternation test, open filed test and fear conditioning test were conducted for evaluation of learning and memory abilities. The DHA content was assessed by HPLC-MS/MS. Physiological indices were determined, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), ROS level, activity of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), PEG2, TXB2 and LTB4. The expressions of COX-1, COX-2, cPLA2, iPLA2, 15-LOX, and were assessed by Western blot. RESULTS APP/PS1 mice showed serious cognitive impairment in behavioral tests. However, treatment of DSS extract significantly ameliorated the cognitive deficits of APP/PS1 mice. Biochemical measurements showed the increases in TG, TC, LDL-c and the decrease in HDL-c in APP/PS1 mice compared with WT mice, and DSS extract significantly retarded these changes. Low content of DHA, low expression of iPLA2 and 15-LOX were observed both in hippocampus and cortex of APP/PS1 mice, while DSS extract significantly restored these changes. Additionally, the abnormal activity of SOD and ROS level, the decreased levels of MDA and GSH were observed in APP/PS1 mice, while DSS extract prominently lessened these changes. Moreover, DSS extract decreased the level of PEG2, TXB2 and LTB4 and also attenuated the expression of cPLA2, COX-1 and COX-2 in hippocampus as well as cortex of APP/PS1 mice. CONCLUSIONS Based on these results, we suggest that DSS play a positive effective role in increasing DHA content by up-regulating iPLA2 and 15-LOX, resulting in ameliorating oxidative stress and inflammation and finally ameliorating cognition deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Jiawen Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Xiangyu Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Liyuan Xie
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Mingan Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Yongbin Zhang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Limei Yao
- School of Traditional Chinese Medicine Healthcare, Guangdong Food and Drug Vocational College, 321 Longdong North Road, Tianhe District, Guangzhou, 510520, China
| | - Weirong Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| |
Collapse
|
10
|
Afghah Z, Chen X, Geiger JD. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 2020; 134:104670. [PMID: 31707116 PMCID: PMC7184921 DOI: 10.1016/j.nbd.2019.104670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and functional interactions between endolysosomes with other intracellular organelles including endoplasmic reticulum, mitochondria, plasma membranes, and peroxisomes. Indeed, evidence clearly indicates that endolysosome dysfunction and inter-organellar signaling occurs in different neurodegenerative diseases including Alzheimer's disease (AD), HIV-1 associated neurocognitive disease (HAND), Parkinson's disease (PD) as well as various forms of brain cancer such as glioblastoma multiforme (GBM). These findings open new areas of cell biology research focusing on understanding the physiological actions and pathophysiological consequences of inter-organellar communication. Here, we will review findings of others and us that endolysosome de-acidification and dysfunction coupled with impaired inter-organellar signaling is involved in the pathogenesis of AD, HAND, PD, and GBM. A more comprehensive appreciation of cell biology and inter-organellar signaling could lead to the development of new drugs to prevent or cure these diseases.
Collapse
Affiliation(s)
- Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America.
| |
Collapse
|
11
|
Leijenaar JF, Groot C, Sudre CH, Bergeron D, Leeuwis AE, Cardoso MJ, Carrasco FP, Laforce R, Barkhof F, van der Flier WM, Scheltens P, Prins ND, Ossenkoppele R. Comorbid amyloid-β pathology affects clinical and imaging features in VCD. Alzheimers Dement 2019; 16:354-364. [PMID: 31786129 DOI: 10.1016/j.jalz.2019.08.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION To date, the clinical relevance of comorbid amyloid-β (Aβ) pathology in patients with vascular cognitive disorders (VCD) is largely unknown. METHODS We included 218 VCD patients with available cerebrospinal fluid Aβ42 levels. Patients were divided into Aβ+ mild-VCD (n = 84), Aβ- mild-VCD (n = 68), Aβ+ major-VCD (n = 31), and Aβ- major-VCD (n = 35). We measured depression with the Geriatric Depression Scale, cognition with a neuropsychological test battery and derived white matter hyperintensities (WMH) and gray matter atrophy from MRI. RESULTS Aβ- patients showed more depressive symptoms than Aβ+. In the major-VCD group, Aβ- patients performed worse on attention (P = .02) and executive functioning (P = .008) than Aβ+. We found no cognitive differences in patients with mild VCD. In the mild-VCD group, Aβ- patients had more WMH than Aβ+ patients, whereas conversely, in the major-VCD group, Aβ+ patients had more WMH. Atrophy patterns did not differ between Aβ+ and Aβ- VCD group. DISCUSSION Comorbid Aβ pathology affects the manifestation of VCD, but effects differ by severity of VCD.
Collapse
Affiliation(s)
- Jolien F Leijenaar
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carole H Sudre
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Dementia Research Centre, Institute of Neurology University College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David Bergeron
- Clinique Interdisciplinaire de Mémoire (CIME), CHU de Québec, Québec, Canada
| | - Anna E Leeuwis
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - M Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Dementia Research Centre, Institute of Neurology University College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ferran Prados Carrasco
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire (CIME), CHU de Québec, Québec, Canada
| | - Frederik Barkhof
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Niels D Prins
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Hussain G, Anwar H, Rasul A, Imran A, Qasim M, Zafar S, Imran M, Kamran SKS, Aziz N, Razzaq A, Ahmad W, Shabbir A, Iqbal J, Baig SM, Ali M, Gonzalez de Aguilar JL, Sun T, Muhammad A, Muhammad Umair A. Lipids as biomarkers of brain disorders. Crit Rev Food Sci Nutr 2019; 60:351-374. [DOI: 10.1080/10408398.2018.1529653] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ghulam Hussain
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, Strasbourg, France
- Mécanismes Centraux et Péripheriques de la Neurodégénérescence, INSERM, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, China
| | - Atif Muhammad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
13
|
Inflammation as a Possible Link Between Dyslipidemia and Alzheimer’s Disease. Neuroscience 2018; 376:127-141. [PMID: 29454102 DOI: 10.1016/j.neuroscience.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 01/08/2023]
|
14
|
Yamchuen P, Jeenapongsa R, Nudmamud-Thanoi S, Limpeanchob N. Low density lipoprotein increases amyloid precursor protein processing to amyloidogenic pathway in differentiated SH-SY5Y cells. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Colacurcio DJ, Nixon RA. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 2016; 32:75-88. [PMID: 27197071 DOI: 10.1016/j.arr.2016.05.004] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson disease and Alzheimer disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal hydrolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum.
Collapse
|
16
|
Hsu YM, Yin MC. EPA or DHA enhanced oxidative stress and aging protein expression in brain of d-galactose treated mice. Biomedicine (Taipei) 2016; 6:17. [PMID: 27514534 PMCID: PMC4980825 DOI: 10.7603/s40681-016-0017-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Effects of eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) upon fatty acid composition, oxidative and inflammatory factors and aging proteins in brain of d-galactose (DG) treated aging mice were examined. METHODS Each fatty acid at 7 mg/kg BW/week was supplied for 8 weeks. Brain aging was induced by DG treatment (100 mg/kg body weight) via daily subcutaneous injection for 8 weeks. RESULTS DG, EPA and DHA treatments changed brain fatty acid composition. DG down-regulated brain Bcl-2 expression and up-regulated Bax expression. Compared with DG groups, EPA and DHA further enhanced Bax expression. DG decreased glutathione content, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production, the intake of EPA or DHA caused greater ROS and GSSG formation. DG treatments up-regulated the protein expression of p47(phox) and gp91(phox), and the intake of EPA or DHA led to greater p47(phox) and gp91(phox) expression. DG increased brain prostaglandin E2 (PGE2) levels, and cyclooxygenase (COX)-2 expression and activity, the intake of EPA or DHA reduced brain COX-2 activity and PGE2 formation. DG enhanced brain p53, p16 and p21 expression. EPA and DHA intake led to greater p21 expression, and EPA only caused greater p53 and p16 expression. CONCLUSION These findings suggest that these two PUFAs have toxic effects toward aging brain.
Collapse
Affiliation(s)
- Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, 404, Taichung, Taiwan
| | - Mei-Chin Yin
- Department of Nutrition, China Medical University, 91, Hsueh-shih Rd., 404, Taichung, Taiwan.
| |
Collapse
|