1
|
Oh HR, Park YH, Hong HR, Kim HJ, Park J, Han Y, Ko SG, Shin EC, Kim TG, Cho HT, Pan JH, Shin HR, Shim YY, Reaney MJT, Cho TJ, Hong JY, Kim YJ, Han BK, Lee GJ, Lee K, Do SG, Kim JK. Tetragonia tetragonioides extract prevented high-fat-diet-induced obesity and changed hepatic and adipose transcriptomic signatures in C57BL/6J male mice. Biosci Biotechnol Biochem 2025; 89:599-611. [PMID: 39799382 DOI: 10.1093/bbb/zbaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Obesity, often driven by high-fat diets (HFDs), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of T. tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT). Over 8 weeks, TTE supplementation led to significant reductions in obesity-related phenotypes and modulated gene expression altered by HFD. Key genes like Cd180 and MUPs, linked to immune responses and lipid metabolism, were notably influenced by TTE. The study highlighted TTE's effects on lipid metabolism pathways in the liver and immune processes in WAT, underscoring its potential as an anti-obesity agent, while advocating for further research into its bioactive components.
Collapse
Affiliation(s)
- Hea Ry Oh
- Department of Regulatory Science, Korea University, Sejong, Republic of Korea
- Naturetech, Jincheon, Republic of Korea
| | - Yong Hyun Park
- Department of Regulatory Science, Korea University, Sejong, Republic of Korea
- Naturetech, Jincheon, Republic of Korea
| | | | - Hyun Jin Kim
- Department of Regulatory Science, Korea University, Sejong, Republic of Korea
- Naturetech, Jincheon, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yohan Han
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eui Cheol Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae Gyun Kim
- The Bioinformatix, Gwangmyeong, Republic of Korea
| | | | - Jeong Hoon Pan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, Republic of Korea
| | - Hyo Ri Shin
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Youn Young Shim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Martin J T Reaney
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tae Jin Cho
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Ji Youn Hong
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | | | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| |
Collapse
|
2
|
Liput KP, Lepczyński A, Poławska E, Ogłuszka M, Starzyński R, Urbański P, Nawrocka A, Jończy A, Pierzchała D, Pareek CS, Gołyński M, Woźniakowski G, Czarnik U, Pierzchała M. Murine hepatic proteome adaptation to high-fat diets with different contents of saturated fatty acids and linoleic acid : α-linolenic acid polyunsaturated fatty acid ratios. J Vet Res 2024; 68:427-441. [PMID: 39318514 PMCID: PMC11418388 DOI: 10.2478/jvetres-2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Some health disorders, such as obesity and type 2 diabetes, are associated with a poor diet and low quality of the fat in it. The type and duration of the diet have an impact on the liver. This investigation uses the proteomic approach to identify changes in the mouse liver protein profile in adaptation to high-fat diets with different saturated fatty acid contents and linoleic acid (18:2n-6) to α-linolenic acid (18:3n-3) fatty acid ratios. Material and Methods Four groups of male mice were fed different diets: one standard diet and three high-fat diets were investigated. After six months on these diets, the animals were sacrificed for liver dissection. Two-dimensional electrophoresis was used to separate the complex liver protein mixture, which enabled the separation of proteins against a wide, 3-10 range of pH and molecular weights of 15-250 kDa. Protein profiles were analysed in the PDQuest Advanced 8.0.1 program. Differentially expressed spots were identified using matrix-assisted laser desorption/ionisation-time-of-flight tandem mass spectrometry and peptide mass fingerprinting. The levels of identified proteins were validated using Western blotting. Transcript levels were evaluated using a real-time quantitative PCR. Results The analysis of mouse liver protein profiles enabled the identification of 32 protein spots differing between nutritional groups. Conclusion A diet high in polyunsaturated fatty acids modulated the levels of liver proteins involved in critical metabolic pathways, including amino acid metabolism, carbohydrate metabolism and cellular response to oxidative stress.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106Warsaw, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, 71-270Szczecin, Poland
| | - Ewa Poławska
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Magdalena Ogłuszka
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Rafał Starzyński
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Paweł Urbański
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Agata Nawrocka
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Aneta Jończy
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Dorota Pierzchała
- Maria Skłodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland
| | - Chandra S. Pareek
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Marcin Gołyński
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Grzegorz Woźniakowski
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Mariusz Pierzchała
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| |
Collapse
|
3
|
Liu W, Li M, Guo H, Wei S, Xu W, Yan Y, Shi Y, Xu Z, Chang K, Wei G, Zhao S. Single-cell transcriptome analysis of liver immune microenvironment changes induced by microplastics in mice with non-alcoholic fatty liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168308. [PMID: 37977403 DOI: 10.1016/j.scitotenv.2023.168308] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Recent studies have discovered that tiny particles of microplastics (MPs) at the nano-scale level can enter the body of organisms from the environment, potentially causing metabolic ailments. However, further investigation is required to understand the alterations in the immune microenvironment associated with non-alcoholic fatty liver disease (NAFLD) occurrence following exposure to MPs. Experiments were performed using mice, which were given a normal chow or high-fat diet (NCD or HFD, respectively) plus free drinking of sterile water with or without MPs, respectively. Employing an impartial technique known as unbiased single-cell RNA-sequencing (scRNA-seq), the cellular (single-cell) pathology landscape of NAFLD and related changes in the identified immune cell populations induced following MPs plus HFD treatment were assessed. The results showed that mice in the HFD groups had remarkably greater NAFLD activity scores than those from the NCD groups. Moreover, administration of MPs plus HFD further worsened the histopathological changes in the mice's liver, leading to hepatic steatosis, inflammatory cell infiltrations and ballooning degeneration. Following the construction of a sing-cell resolution transcriptomic atlas of 43,480 cells in the mice's livers of the indicated groups, clear cellular heterogeneity and potential cell-to-cell cross-talk could be observed. Specifically, we observed that MPs exacerbated the pro-inflammatory response and influenced the stemness of hepatocytes during HFD feeding. Importantly, treatment with MPs significantly increase the infiltration of the infiltrating liver-protecting Vsig4+ macrophages in the liver of the NAFLD mouse model while remarkably decreasing the angiogenic S100A6+ macrophage subpopulation. Furthermore, mice treated with MPs plus HFD exhibited significantly increased recruitment of CD4+ cells and heightened exhaustion of CD8+ T cells than those from the control group, characteristics typically associated with the dysregulation of immune homeostasis and severe inflammatory damage. Overall, this study offers valuable perspectives into comprehending the potential underlying cellular mechanisms and regulatory aspects of the microenvironment regarding MPs in the development of NAFLD.
Collapse
Affiliation(s)
- Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huaqi Guo
- Department of Pulmonary and Critical Care Medicine, The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yaoping Shi
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Kun Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Shuai Zhao
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Unraveling the therapeutic potential of carbamoyl phosphate synthetase 1 (CPS1) in human disease. Bioorg Chem 2022; 130:106253. [DOI: 10.1016/j.bioorg.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
5
|
Yanran W, Jung S, Ko KS. Saturated Fatty Acid-Induced Impairment of Hepatic Lipid Metabolism Is Worsened by Prohibitin 1 Deficiency in Hepatocytes. J Med Food 2022; 25:845-852. [PMID: 35980329 DOI: 10.1089/jmf.2022.k.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Obesity-associated nonalcoholic fatty liver disease (NAFLD) is characterized by excessive intrahepatic lipid accumulation. Despite the increasing prevalence of NAFLD and obesity, the pathogenesis of NAFLD has not yet been clearly elucidated. Prohibitin 1 (PHB1) is mainly expressed in the inner membrane of mitochondria and is known to play an important role in hepatocyte proliferation and lipid metabolism. In this study, we investigated how PHB1 affects lipid metabolism in murine hepatocytes. To reduce the expression of PHB1, Phb1 small interfering RNA was transfected into normal murine hepatocytes (AML12), and the cells were treated with the saturated fatty acid (SFA), palmitic acid (PA), for 24 h. When PHB1 was inhibited, the cell viability decreased by ∼20%, and it was found that it diminished further after PA treatment in both control and peroxisome proliferator-activated receptor gamma (Ppar-γ) knockdown cell groups. Examination of the mRNA expression levels of key enzymes involved in lipid metabolism revealed that PHB1 led to increased stearoyl-coenzyme A desaturase-1 (Scd1) mRNA levels, which leads to an increase in the synthesis of triglycerides (TGs). It also activates the endoplasmic reticulum (ER) stress response through upregulating C/EBP homologous protein (Chop) mRNA levels. PPAR-γ, which has been reported to be upregulated in NAFLD patients, also showed elevated expression. The expression of carnitine palmitoyltransferase 1A, which is involved in the conversion of excess intracellular SFA to fatty acid by catabolism, was downregulated in the PHB1-deficient group. Furthermore, TG synthesis was further promoted by a marked increase in SCD1 mRNA levels, which was further exacerbated by elevated Chop mRNA levels and Ppar-γ disruption. Taken together, PHB1 deficiency led to altered lipid metabolism, resulting in the increased intracellular lipid accumulation and ER stress. These cytotoxic effects were shown to be further exacerbated by excessive PA treatment.
Collapse
Affiliation(s)
- Wen Yanran
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Soohan Jung
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Korea
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| |
Collapse
|
6
|
Peral-Sanchez I, Hojeij B, Ojeda DA, Steegers-Theunissen RPM, Willaime-Morawek S. Epigenetics in the Uterine Environment: How Maternal Diet and ART May Influence the Epigenome in the Offspring with Long-Term Health Consequences. Genes (Basel) 2021; 13:31. [PMID: 35052371 PMCID: PMC8774448 DOI: 10.3390/genes13010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The societal burden of non-communicable disease is closely linked with environmental exposures and lifestyle behaviours, including the adherence to a poor maternal diet from the earliest preimplantation period of the life course onwards. Epigenetic variations caused by a compromised maternal nutritional status can affect embryonic development. This review summarises the main epigenetic modifications in mammals, especially DNA methylation, histone modifications, and ncRNA. These epigenetic changes can compromise the health of the offspring later in life. We discuss different types of nutritional stressors in human and animal models, such as maternal undernutrition, seasonal diets, low-protein diet, high-fat diet, and synthetic folic acid supplement use, and how these nutritional exposures epigenetically affect target genes and their outcomes. In addition, we review the concept of thrifty genes during the preimplantation period, and some examples that relate to epigenetic change and diet. Finally, we discuss different examples of maternal diets, their effect on outcomes, and their relationship with assisted reproductive technology (ART), including their implications on epigenetic modifications.
Collapse
Affiliation(s)
- Irene Peral-Sanchez
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Batoul Hojeij
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | - Diego A. Ojeda
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Régine P. M. Steegers-Theunissen
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | | |
Collapse
|
7
|
López-Pastor AR, Infante-Menéndez J, González-Illanes T, González-López P, González-Rodríguez Á, García-Monzón C, Vega de Céniga M, Esparza L, Gómez-Hernández A, Escribano Ó. Concerted regulation of non-alcoholic fatty liver disease progression by microRNAs in apolipoprotein E-deficient mice. Dis Model Mech 2021; 14:273592. [PMID: 34850865 PMCID: PMC8713993 DOI: 10.1242/dmm.049173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is constantly increasing, and altered expression of microRNAs (miRNAs) fosters the development and progression of many pathologies, including NAFLD. Therefore, we explored the role of new miRNAs involved in the molecular mechanisms that trigger NAFLD progression and evaluated them as biomarkers for diagnosis. As a NAFLD model, we used apolipoprotein E-deficient mice administered a high-fat diet for 8 or 18 weeks. We demonstrated that insulin resistance and decreased lipogenesis and autophagy observed after 18 weeks on the diet are related to a concerted regulation carried out by miR-26b-5p, miR-34a-5p, miR-149-5p and miR-375-3p. We also propose circulating let-7d-5p and miR-146b-5p as potential biomarkers of early stages of NAFLD. Finally, we confirmed that circulating miR-34a-5p and miR-375-3p are elevated in the late stages of NAFLD and that miR-27b-3p and miR-122-5p are increased with disease progression. Our results reveal a synergistic regulation of key processes in NAFLD development and progression by miRNAs. Further investigation is needed to unravel the roles of these miRNAs for developing new strategies for NAFLD treatment. This article has an associated First Person interview with the joint first authors of the paper. Summary:Apoe−/− mice administered a high-fat diet represent a model of non-alcoholic fatty liver disease, revealing the synergistic regulation of key processes in disease progression by miRNAs and indicating some miRNAs as biomarkers for diagnosis.
Collapse
Affiliation(s)
- Andrea R López-Pastor
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Infante-Menéndez
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Tamara González-Illanes
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paula González-López
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Águeda González-Rodríguez
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain.,CIBER of Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain.,CIBER of Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Melina Vega de Céniga
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Galdakao, 48960 Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, 48903 Bizkaia, Spain
| | - Leticia Esparza
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Galdakao, 48960 Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, 48903 Bizkaia, Spain
| | - Almudena Gómez-Hernández
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Óscar Escribano
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Liput KP, Lepczyński A, Nawrocka A, Poławska E, Ogłuszka M, Jończy A, Grzybek W, Liput M, Szostak A, Urbański P, Roszczyk A, Pareek CS, Pierzchała M. Effects of Three-Month Administration of High-Saturated Fat Diet and High-Polyunsaturated Fat Diets with Different Linoleic Acid (LA, C18:2n-6) to α-Linolenic Acid (ALA, C18:3n-3) Ratio on the Mouse Liver Proteome. Nutrients 2021; 13:1678. [PMID: 34063343 PMCID: PMC8156955 DOI: 10.3390/nu13051678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to evaluate the effect of different types of high-fat diets (HFDs) on the proteomic profile of mouse liver. The analysis included four dietary groups of mice fed a standard diet (STD group), a high-fat diet rich in SFAs (SFA group), and high-fat diets dominated by PUFAs with linoleic acid (LA, C18:2n-6) to α-linolenic acid (ALA, C18:3n-3) ratios of 14:1 (14:1 group) and 5:1 (5:1 group). After three months of diets, liver proteins were resolved by two-dimensional gel electrophoresis (2DE) using 17 cm non-linear 3-10 pH gradient strips. Protein spots with different expression were identified by MALDI-TOF/TOF. The expression of 13 liver proteins was changed in the SFA group compared to the STD group (↓: ALB, APOA1, IVD, MAT1A, OAT and PHB; ↑: ALDH1L1, UniProtKB-Q91V76, GALK1, GPD1, HMGCS2, KHK and TKFC). Eleven proteins with altered expression were recorded in the 14:1 group compared to the SFA group (↓: ARG1, FTL1, GPD1, HGD, HMGCS2 and MAT1A; ↑: APOA1, CA3, GLO1, HDHD3 and IVD). The expression of 11 proteins was altered in the 5:1 group compared to the SFA group (↓: ATP5F1B, FTL1, GALK1, HGD, HSPA9, HSPD1, PC and TKFC; ↑: ACAT2, CA3 and GSTP1). High-PUFA diets significantly affected the expression of proteins involved in, e.g., carbohydrate metabolism, and had varying effects on plasma total cholesterol and glucose levels. The outcomes of this study revealed crucial liver proteins affected by different high-fat diets.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str., 71-270 Szczecin, Poland;
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Weronika Grzybek
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Michał Liput
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute of the Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agnieszka Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Paweł Urbański
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Agnieszka Roszczyk
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Chandra S. Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| |
Collapse
|
9
|
Luo M, Willis WT, Coletta DK, Langlais PR, Mengos A, Ma W, Finlayson J, Wagner GR, Shi CX, Mandarino LJ. Deletion of the Mitochondrial Protein VWA8 Induces Oxidative Stress and an HNF4α Compensatory Response in Hepatocytes. Biochemistry 2019; 58:4983-4996. [PMID: 31702900 DOI: 10.1021/acs.biochem.9b00863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
von Willebrand A domain-containing protein 8 (VWA8) is a poorly characterized, mitochondrial matrix-targeted protein with an AAA ATPase domain and ATPase activity that increases in livers of mice fed a high-fat diet. This study was undertaken to use CRISPR/Cas9 to delete VWA8 in cultured mouse hepatocytes and gain insight into its function. Unbiased omics techniques and bioinformatics were used to guide subsequent assays, including the assessment of oxidative stress and the determination of bioenergetic capacity. Metabolomics analysis showed VWA8 null cells had higher levels of oxidative stress and protein degradation; assays of hydrogen peroxide production revealed higher levels of production of reactive oxygen species (ROS). Proteomics and transcriptomics analyses showed VWA8 null cells had higher levels of expression of mitochondrial proteins (electron transport-chain Complex I, ATP synthase), peroxisomal proteins, and lipid transport proteins. The pattern of higher protein abundance in the VWA8 null cells could be explained by a higher level of hepatocyte nuclear factor 4 α (HNF4α) expression. Bioenergetic assays showed higher rates of carbohydrate oxidation and mitochondrial and nonmitochondrial lipid oxidation in intact and permeabilized cells. Inhibitor assays localized sites of ROS production to peroxisomes and NOX1/4. The rescue of VWA8 protein restored the wild-type phenotype, and treatment with antioxidants decreased the level of HNF4α expression. Thus, loss of VWA8 produces a mitochondrial defect that may be sensed by NOX4, leading to an increase in the level of ROS that results in a higher level of HNF4α. The compensatory HNF4α response results in a higher oxidative capacity and an even higher level of ROS production. We hypothesize that VWA8 is an AAA ATPase protein that plays a role in mitochondrial protein quality.
Collapse
Affiliation(s)
- Moulun Luo
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Wayne T Willis
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Dawn K Coletta
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - April Mengos
- Mayo Clinic in Arizona , Scottsdale , Arizona 85259 , United States
| | - Wuqiong Ma
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Jean Finlayson
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Gregory R Wagner
- Metabolon, Inc. , Research Triangle Park , North Carolina 27709 , United States
| | - Chang-Xin Shi
- Mayo Clinic in Arizona , Scottsdale , Arizona 85259 , United States
| | - Lawrence J Mandarino
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| |
Collapse
|
10
|
The spatial and developmental expression of mouse Vwa8 (von Willebrand domain-containing protein 8). Gene Expr Patterns 2018; 29:39-46. [PMID: 29660410 DOI: 10.1016/j.gep.2018.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 01/07/2023]
Abstract
The Drosophila gene c12.2 was isolated in a screen examining mRNA binding proteins. Drosophila c12.2 is the mouse Vwa8 homolog. Various genome-wide associated studies have linked human Vwa8 to both neurological and oncological pathologies, which include autism, bipolar disorder, comorbid migraine, and acute myeloid leukemia, however, the function and role of the VWA8 protein remain poorly understood. To further analyze the Vwa8 gene in mouse, gene structure, protein homology modeling, and gene expression patterns were examined throughout mouse development. Our analyses indicate that the mouse Vwa8 gene produces two transcripts; the full-length Vwa8a is highly expressed relative to the truncated Vwa8b transcript across all developmental time points and tissues analyzed. Protein homology modeling indicates that VWA8a belongs to a novel protein superfamily containing both the midasin and cytoplasmic dynein 1 heavy chain 1 proteins. These data establish the development timeline and expression profile for both Vwa8a and Vwa8b, paving the way for future studies to determine the cellular role(s) of this highly conserved protein family.
Collapse
|
11
|
Ayoub HM, McDonald MR, Sullivan JA, Tsao R, Meckling KA. Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed Purple Vegetables. Nutrients 2018; 10:E456. [PMID: 29642414 PMCID: PMC5946241 DOI: 10.3390/nu10040456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic Syndrome (MetS) is a complex disorder that predisposes an individual to Cardiovascular Diseases and type 2 Diabetes Mellitus. Proteomics and bioinformatics have proven to be an effective tool to study complex diseases and mechanisms of action of nutrients. We previously showed that substitution of the majority of carbohydrate in a high fat diet by purple potatoes (PP) or purple carrots (PC) improved insulin sensitivity and hypertension in an animal model of MetS (obese Zucker rats) compared to a control sucrose-rich diet. In the current study, we used TMT 10plex mass tag combined with LC-MS/MS technique to study proteomic modulation in the liver (n = 3 samples/diet) and adipose tissue (n = 3 samples/diet) of high fat diet-fed rats with or without substituting sucrose for purple vegetables, followed by functional enrichment analysis, in an attempt to elucidate potential molecular mechanisms responsible for the phenotypic changes seen with purple vegetable feeding. Protein folding, lipid metabolism and cholesterol efflux were identified as the main modulated biological themes in adipose tissue, whereas lipid metabolism, carbohydrate metabolism and oxidative stress were the main modulated themes in liver. We propose that enhanced protein folding, increased cholesterol efflux and higher free fatty acid (FFA) re-esterification are mechanisms by which PP and PC positively modulate MetS pathologies in adipose tissue, whereas, decreased de novo lipogenesis, oxidative stress and FFA uptake, are responsible for the beneficial effects in liver. In conclusion, we provide molecular evidence for the reported metabolic health benefits of purple carrots and potatoes and validate that these vegetables are good choices to replace other simple carbohydrate sources for better metabolic health.
Collapse
Affiliation(s)
- Hala M Ayoub
- Department of Human Health and Nutrition Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Mary Ruth McDonald
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - James Alan Sullivan
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Kelly A Meckling
- Department of Human Health and Nutrition Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
12
|
Impact of high-fat diet on the proteome of mouse liver. J Nutr Biochem 2016; 31:10-9. [DOI: 10.1016/j.jnutbio.2015.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 10/06/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022]
|
13
|
Pedersen BA, Wang W, Taylor JF, Khattab OS, Chen YH, Edwards RA, Yazdi PG, Wang PH. Hepatic proteomic analysis revealed altered metabolic pathways in insulin resistant Akt1(+/-)/Akt2(-/-) mice. Metabolism 2015; 64:1694-703. [PMID: 26455965 PMCID: PMC4641788 DOI: 10.1016/j.metabol.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/19/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. METHODS Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1(+/-)/AKT2(-/-) mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway Analysis was performed for the interpretation of the biological significance of the observed proteomic changes. RESULTS 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1(+/-)/Akt2(-/-)) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. CONCLUSION Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance.
Collapse
Affiliation(s)
- Brian A Pedersen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Weiwen Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136
| | - Jared F Taylor
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Omar S Khattab
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Yu-Han Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Robert A Edwards
- Department of Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Puya G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Proteomics identifies molecular networks affected by tetradecylthioacetic acid and fish oil supplemented diets. J Proteomics 2013; 84:61-77. [PMID: 23568020 DOI: 10.1016/j.jprot.2013.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Fish oil (FO) and tetradecylthioacetic acid (TTA) - a synthetic modified fatty acid have beneficial effects in regulating lipid metabolism. In order to dissect the mechanisms underlying the molecular action of those two fatty acids we have investigated the changes in mitochondrial protein expression in a long-term study (50weeks) in male Wistar rats fed 5 different diets. The diets were as follows: low fat diet; high fat diet; and three diets that combined high fat diet with fish oil, TTA or combination of those two as food supplements. We used two different proteomics techniques: a protein centric based on 2D gel electrophoresis and mass spectrometry, and LC-MS(E) based peptide centric approach. As a result we provide evidence that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate that fatty acid metabolism; lipid oxidation, amino acid metabolism and oxidative phosphorylation pathways are involved in fish oil and TTA action. Evidence for the involvement of PPAR mediated signalling is provided. Additionally we postulate that down regulation of components of complexes I and II contributes to the strong antioxidant properties of TTA. BIOLOGICAL SIGNIFICANCE This study for the first time explores the effect of fish oil and TTA - tetradecyl-thioacetic acid and the combination of those two as diet supplements on mitochondria metabolism in a comprehensive and systematic manner. We show that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate in a large scale that fatty acid metabolism and lipid oxidation are affected by fish oil and TTA, a phenomenon already known from more directed molecular biology studies. Our approach, however, shows additionally that amino acid metabolism and oxidative phosphorylation pathways are also strongly affected by TTA and also to some extent by fish oil administration. Strong evidence for the involvement of PPAR mediated signalling is provided linking the different metabolic effects. The global and systematic viewpoint of this study compiles many of the known phenomena related to the effects of fish oil and fatty acids giving a solid foundation for further exploratory and more directed studies of the mechanisms behind the beneficial and detrimental effects of fish oil and TTA diet supplementation. This work is already a second article in a series of studies conducted using this model of dietary intervention. In the previous study (Vigerust et al., [21]) the effects of fish oil and TTA on the plasma lipids and cholesterol levels as well as key metabolic enzymes in the liver have been studied. In an ongoing study more work is being done to explore in detail for example the link between the down regulation of the components of the respiratory chain (observed in this study) and the strong antioxidant effects of TTA. The reference diet in this study has been designed to mimic an unhealthy - high fat diet that is thought to contribute to the development of metabolic syndrome - a condition that is strongly associated with diabetes, obesity and heart failure. Fish oil and TTA are known to have beneficial effects for the fatty acid metabolism and have been shown to alleviate some of the symptoms of the metabolic syndrome. To date very little is known about the molecular mechanisms behind these beneficial effects and the potential pitfalls of the consumption of those two compounds. Only studies of each compound separately and using only small scale molecular biology approaches have been carried out. The results of this work provide an excellent starting point for further studies that will help to understand the metabolic effects of fish oil and TTA and will hopefully help to design dietary programs directed towards reduction of the prevalence of metabolic syndrome and associated diseases.
Collapse
|