1
|
Wei F, Xu X, Wang J, Mei SW, Zhao FQ, Huang F, Xiao TX, Wang GJ, Wei B, Huang S, Cui W. Intratumoural CD8 + CXCR5 + follicular cytotoxic T cells have prognostic value and are associated with CD19 + CD38 + B cells and tertiary lymphoid structures in colorectal cancer. Cancer Immunol Immunother 2024; 74:36. [PMID: 39739032 PMCID: PMC11685358 DOI: 10.1007/s00262-024-03887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common digestive cancer in the world. Microsatellite stability (MSS) and microsatellite instability (MSI-high) are important molecular subtypes of CRC closely related to tumor occurrence and progression and immunotherapy efficacy. The presence of CD8+ CXCR5+ follicular cytotoxic T (TFC) cells is strongly associated with autoimmune disease and CD8+ effector function. However, the roles of TFC cells in MSI-high CRC and MSS CRC are unclear. Here, we aimed to explore the characteristics of TFC cells in CRC and compare their biological functions between MSI-high and MSS CRC. METHODS We explored the expression of TFC cell in tumor tissues and peripheral blood in our clinical cohort and public datasets. By combining single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing, we explored the potential function of TFC cells and developed a prediction model for CRC. We also compared the biological functions of these cells between MSS and MSI-high CRC and used flow cytometry and coculture experiments to explore their potential regulatory functions. RESULTS TFC cell markers are downregulated in tumor tissues and patient peripheral blood vs. controls. The prediction model for CRC performed well in the training and validation cohorts (KM plot p < 0.001). MSS CRC patients exhibit enrichment of genes related to the cell cycle (MKI67) and T cell activation (CD38 and HLA-DR) and decreased enrichment of immune checkpoint markers (PD1, TIM3, and LAG3). The expression of TFC cell-related genes is positively correlated with that of CD8+IFN-γ+-related genes and closely related to that of TLS-related genes in MSS CRC. The proportion of TFC cells is positively correlated with that of CD19+CD38+ B cells in MSS CRC. CONCLUSIONS The prognostic prediction model has good predictive value. In MSS CRC, TFC cells function mostly in T cell activation and the cell cycle and have low expression of immune checkpoint molecules, which may influence the effectiveness of ICB therapy. TFC cells may regulate antitumor function by regulating CD19+ CD38+ B cells and TLSs.
Collapse
Affiliation(s)
- Fangze Wei
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaotian Xu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi Wen Mei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fu Qiang Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Huang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ti Xian Xiao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo Jing Wang
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baojun Wei
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengkai Huang
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cui
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Gu X, Li D, Wu P, Zhang C, Cui X, Shang D, Ma R, Liu J, Sun N, He J. Revisiting the CXCL13/CXCR5 axis in the tumor microenvironment in the era of single-cell omics: Implications for immunotherapy. Cancer Lett 2024; 605:217278. [PMID: 39332588 DOI: 10.1016/j.canlet.2024.217278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
As one of the important members of the family of chemokines and their receptors, the CXCL13/CXCR5 axis is involved in follicle formation in normal lymphoid tissues and the establishment of somatic cavity immunity under physiological conditions, as well as being associated with a wide range of infectious, autoimmune, and tumoral diseases. Here in this review, we focus on its role in tumors. Traditional studies have found the axis to be both pro- and anti-tumorigenic, involving a variety of immune cells, including the tumor cells themselves and those in the tumor microenvironment (TME), and the prognostic significance of this axis is clinical context-dependent. With the development of techniques at the single-cell level, we were able to explain in detail the status of the CXCL13/CXCR5 axis in the TME based on real clinical samples and found that it involves a range of crucial intrinsic anti-tumor immune processes in the TME and is therefore important in tumor immunotherapy. We summarize the cellular subsets, physiological functions, and prognostic significance associated with this axis in the most promising immune checkpoint inhibitor (ICI) therapies of the day and summarize possible therapeutic ideas based on this axis. As with any TME study, the most important takeaway is that the complexity of the CXCL13/CXCR5 axis in TME suggests the importance of personalized therapy in tumor therapy.
Collapse
Affiliation(s)
- Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dexin Shang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruijie Ma
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Tojo S, Nakashiro K, Kuribayashi N, Uchida D. Serum CXCL13 as a Novel Biomarker in Oral Squamous Cell Carcinoma. Cancer Med 2024; 13:e70263. [PMID: 39344390 PMCID: PMC11440027 DOI: 10.1002/cam4.70263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Despite its low sensitivity (approximately 30%), squamous cell carcinoma (SCC) antigen is commonly utilized as a serum tumor marker for oral SCC (OSCC) in clinical settings. The objective of this research was to identify novel biomarkers for OSCC. METHODS Initially, we performed microarray analysis to evaluate the gene expression signatures of primary OSCC and normal oral mucosal tissues. Our findings showed the C-X-C motif chemokine ligand 13 (CXCL13) to be a promising novel biomarker as it was consistently overexpressed in primary OSCC tissues, a conclusion corroborated by polymerase chain reaction results. Subsequently, we measured serum CXCL13 levels in 125 patients with OSCC using a sandwich enzyme-linked immunosorbent assay and compared the results with those of 29 healthy individuals. RESULTS Remarkably, the levels of serum CXCL13 were consistently elevated in patients with OSCC, and the high expression of serum CXCL13 was notably associated with tumor size and neck lymph node metastasis. Patients with advanced OSCC with high-serum CXCL13 levels exhibited poor prognosis regarding both overall and disease-free survival. Finally, spatial transcriptome analysis revealed CXCL13 and CD8 expressions within tumor area clusters but not in adjacent normal areas, suggesting specific overexpression of CXCL13 in primary OSCC tissues. CONCLUSION These findings imply that serum CXCL13 holds diagnostic and prognostic value, showing promise as a novel biomarker for OSCC.
Collapse
Affiliation(s)
- Shin Tojo
- Department of Oral and Maxillofacial SurgeryEhime University Graduate School of MedicineToonJapan
| | - Koh‐ichi Nakashiro
- Department of Oral and Maxillofacial SurgeryEhime University Graduate School of MedicineToonJapan
| | - Nobuyuki Kuribayashi
- Department of Oral and Maxillofacial SurgeryEhime University Graduate School of MedicineToonJapan
| | - Daisuke Uchida
- Department of Oral and Maxillofacial SurgeryEhime University Graduate School of MedicineToonJapan
| |
Collapse
|
4
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Jia Y, Yao P, Li J, Wei X, Liu X, Wu H, Wang W, Feng C, Li C, Zhang Y, Cai Y, Zhang S, Ma X. Causal associations of Sjögren's syndrome with cancers: a two-sample Mendelian randomization study. Arthritis Res Ther 2023; 25:171. [PMID: 37715206 PMCID: PMC10503000 DOI: 10.1186/s13075-023-03157-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Several observational studies have explored the associations between Sjögren's syndrome (SS) and certain cancers. Nevertheless, the causal relationships remain unclear. Mendelian randomization (MR) method was used to investigate the causality between SS and different types of cancers. METHODS We conducted the two-sample Mendelian randomization with the public genome-wide association studies (GWASs) summary statistics in European population to evaluate the causality between SS and nine types of cancers. The sample size varies from 1080 to 372,373. The inverse variance weighted (IVW) method was used to estimate the causal effects. A Bonferroni-corrected threshold of P < 0.0031 was considered significant, and P value between 0.0031 and 0.05 was considered to be suggestive of an association. Sensitivity analysis was performed to validate the causality. Moreover, additional analysis was used to assess the associations between SS and well-accepted risk factors of cancers. RESULTS After correcting the heterogeneity and horizontal pleiotropy, the results indicated that patients with SS were significantly associated with an increased risk of lymphomas (odds ratio [OR] = 1.0010, 95% confidence interval [CI]: 1.0005-1.0015, P = 0.0002) and reduced risks of prostate cancer (OR = 0.9972, 95% CI: 0.9960-0.9985, P = 2.45 × 10-5) and endometrial cancer (OR = 0.9414, 95% CI: 0.9158-0.9676, P = 1.65 × 10-5). Suggestive associations were found in liver and bile duct cancer (OR = 0.9999, 95% CI: 0.9997-1.0000, P = 0.0291) and cancer of urinary tract (OR = 0.9996, 95% CI: 0.9992-1.0000, P = 0.0281). No causal effect of SS on other cancer types was detected. Additional MR analysis indicated that causal effects between SS and cancers were not mediated by the well-accepted risk factors of cancers. No evidence of the causal relationship was observed for cancers on SS. CONCLUSIONS SS had significant causal relationships with lymphomas, prostate cancer, and endometrial cancer, and suggestive evidence of association was found in liver and bile duct cancer and cancer of urinary tract, indicating that SS may play a vital role in the incidence of these malignancies.
Collapse
Affiliation(s)
- Yiwei Jia
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Peizhuo Yao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jia Li
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Xinyu Wei
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Xuanyu Liu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Huizi Wu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Weiwei Wang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Cong Feng
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Chaofan Li
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yu Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yifan Cai
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China.
| | - Xingcong Ma
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|
6
|
Ji L, Xu S, Luo H, Zeng F. Insights from DOCK2 in cell function and pathophysiology. Front Mol Biosci 2022; 9:997659. [PMID: 36250020 PMCID: PMC9559381 DOI: 10.3389/fmolb.2022.997659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 2 (DOCK2) can activate the downstream small G protein Rac and regulate cytoskeletal reorganization. DOCK2 is essential for critical physiological processes such as migration, activation, proliferation, and effects of immune cells, including lymphocytes, neutrophils, macrophages, and dendritic cells. For example, DOCK2 is involved in the development and activation of T and B lymphocytes by affecting synapse formation and inhibiting the development of the Th2 lineage by downregulating IL-4Rα surface expression. Not only that, DOCK2 may be a molecular target for controlling cardiac transplant rejection and Alzheimer’s disease (AD). Patients with defects in the DOCK2 gene also exhibit a variety of impaired cellular functions, such as chemotactic responses of lymphocytes and reactive oxygen species (ROS) production by neutrophils. To date, DOCK2 has been shown to be involved in the development of various diseases, including AD, pneumonia, myocarditis, colitis, tumors, etc. DOCK2 plays different roles in these diseases and the degree of inflammatory response has a different impact on the progression of disease. In this paper, we present a review of recent advances in the function of DOCK2 in various immune cells and its role in various diseases.
Collapse
Affiliation(s)
- Lulin Ji
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Shuquan Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Haiqing Luo
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Fanwei Zeng
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| |
Collapse
|
7
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Bioinformatics Analysis of Prognostic Significance and Immune Characteristics of CXC Chemokine Family in Patients with Lung Adenocarcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3918926. [PMID: 35844446 PMCID: PMC9279080 DOI: 10.1155/2022/3918926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Objective To screen CXC chemokines related to the risk of lung adenocarcinoma (LUAD) using bioinformatics and construct a CXC-based prognostic risk model to improve the diagnosis and treatment of LUAD patients. Methods The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database were searched to obtain mRNA expression data and clinicopathological information of LUAD patients. CXC genes differentially expressed in LUAD were screened using the R packages. Further, risk factors significantly associated with the survival of LUAD patients were obtained by the univariate Cox proportional hazard regression, LASSO regression, and multivariate Cox proportional hazard regression analysis, following which a risk prediction model was constructed. The performance of the CXCL13-based model in predicting the prognosis of low-risk and high-risk effect LUAD patients was verified, and the association between the model and the degree of tumor immune cell infiltration was investigated. Results CXCL13 was significantly highly expressed in the cancer tissues of LUAD patients. The risk of death in patients with highly expressed CXCL13 was about 1.5 times higher than in those with lowly expressed CXCL13 (HR = 1.5153357). CXCL13-based risk scoring showed that the high-risk score of LUAD patients was significantly correlated with poor prognosis, but no relation between the two was found in the GEO validation sets, suggesting that this risk model may not be accurate enough. In addition, activated B cells, CD4+ T cells, CD8+ T cells, and dendritic cells were significantly positively correlated with the high risk of LUAD. Conclusions Although we found that a high expression of CXCL13 was associated with a high risk of death and immune cell infiltration and activation in LUAD patients, the CXCL13-based risk model was not accurate enough for predicting the prognosis of LUAD patients.
Collapse
|
9
|
Chen Y, Luo L, Zheng Y, Zheng Q, Zhang N, Gan D, Yirga SK, Lin Z, Shi Q, Fu L, Hu J, Chen Y. Association of Platelet Desialylation and Circulating Follicular Helper T Cells in Patients With Thrombocytopenia. Front Immunol 2022; 13:810620. [PMID: 35450072 PMCID: PMC9016750 DOI: 10.3389/fimmu.2022.810620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Thrombocytopenia is a multifactorial condition that frequently involves concomitant defects in platelet production and clearance. The physiopathology of low platelet count in thrombocytopenia remains unclear. Sialylation on platelet membrane glycoprotein and follicular helper T cells (TFHs) are thought to be the novel platelet clearance pathways. The aim of this study was to clarify the roles of platelet desialylation and circulating TFHs in patients with immune thrombocytopenia (ITP) and non-ITP thrombocytopenia. We enrolled 190 patients with ITP and 94 patients with non-ITP related thrombocytopenia including case of aplastic anemia (AA) and myelodysplastic syndromes (MDS). One hundred and ten healthy volunteers were included as controls. We found significantly increased desialylated platelets in patients with ITP or thrombocytopenia in the context of AA and MDS. Platelet desialylation was negatively correlated with platelet count. Meanwhile, the circulating TFH levels in patients with thrombocytopenia were significantly higher than those of normal controls, and were positively correlated with desialylated platelet levels. Moreover, TFHs-related chemokine CXCL13 and apoptotic platelet levels were abnormally high in ITP patients. The upregulation of pro-apoptotic proteins and the activation of the MAPK/mTOR pathway were observed in the same cohort. These findings suggested that platelet desialylation and circulating TFHs may become the potential biomarkers for evaluating the disease process associated with thrombocytopenia in patients with ITP and non-ITP.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liping Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yongzhi Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Na Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Donghui Gan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shimuye Kalayu Yirga
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenxing Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Yingyu Chen, ; Jianda Hu,
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Yingyu Chen, ; Jianda Hu,
| |
Collapse
|
10
|
Potential Role of CXCL13/CXCR5 Signaling in Immune Checkpoint Inhibitor Treatment in Cancer. Cancers (Basel) 2022; 14:cancers14020294. [PMID: 35053457 PMCID: PMC8774093 DOI: 10.3390/cancers14020294] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy is currently the backbone of new drug treatments for many cancer patients. CXC chemokine ligand 13 (CXCL13) is an important factor involved in recruiting immune cells that express CXC chemokine receptor type 5 (CXCR5) in the tumor microenvironment and serves as a key molecular determinant of tertiary lymphoid structure (TLS) formation. An increasing number of studies have identified the influence of CXCL13 on prognosis in patients with cancer, regardless of the use of immunotherapy treatment. However, no comprehensive reviews of the role of CXCL13 in cancer immunotherapy have been published to date. This review aims to provide an overview of the CXCL13/CXCR5 signaling axis to summarize its mechanisms of action in cancer cells and lymphocytes, in addition to effects on immunity and cancer pathobiology, and its potential as a biomarker for the response to cancer immunotherapy. Abstract Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.
Collapse
|
11
|
CXCL13 in Cancer and Other Diseases: Biological Functions, Clinical Significance, and Therapeutic Opportunities. Life (Basel) 2021; 11:life11121282. [PMID: 34947813 PMCID: PMC8708574 DOI: 10.3390/life11121282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
The development of cancer is a multistep and complex process involving interactions between tumor cells and the tumor microenvironment (TME). C-X-C chemokine ligand 13 (CXCL13) and its receptor, CXCR5, make crucial contributions to this process by triggering intracellular signaling cascades in malignant cells and modulating the sophisticated TME in an autocrine or paracrine fashion. The CXCL13/CXCR5 axis has a dominant role in B cell recruitment and tertiary lymphoid structure formation, which activate immune responses against some tumors. In most cancer types, the CXCL13/CXCR5 axis mediates pro-neoplastic immune reactions by recruiting suppressive immune cells into tumor tissues. Tobacco smoke and haze (smohaze) and the carcinogen benzo(a)pyrene induce the secretion of CXCL13 by lung epithelial cells, which contributes to environmental lung carcinogenesis. Interestingly, the knockout of CXCL13 inhibits benzo(a)pyrene-induced lung cancer and azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice. Thus, a better understanding of the context-dependent functions of the CXCL13/CXCR5 axis in tumor tissue and the TME is required to design an efficient immune-based therapy. In this review, we summarize the molecular events and TME alterations caused by CXCL13/CXCR5 and briefly discuss the potentials of agents targeting this axis in different malignant tumors.
Collapse
|
12
|
Chao C, Lee W, Wang S, Chen P, Yamamoto A, Chang T, Weng S, Liu J. CXC chemokine ligand-13 promotes metastasis via CXCR5-dependent signaling pathway in non-small cell lung cancer. J Cell Mol Med 2021; 25:9128-9140. [PMID: 34427969 PMCID: PMC8500967 DOI: 10.1111/jcmm.16743] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 01/06/2023] Open
Abstract
The CXC chemokine ligand-13 (CXCL13) is a chemoattractant of B cells and has been implicated in the progression of many cancers. So far, CXCL13 and its related receptor CXCR5 have been proved to regulate cancer cell migration as well as tumour metastasis. However, the role of CXCL13-CXCR5 axis in metastasis of lung cancer is still poorly understood. In this study, we found that CXCL13 and CXCR5 were commonly up-regulated in lung cancer specimens compared with normal tissues among different cohorts. Our evidence showed that CXCL13 obviously promoted migration of lung cancer cells, and this effect was mediated by vascular cell adhesion molecule-1 (VCAM-1) expression. We also confirmed that CXCR5, the major receptor responsible for CXCL13 function, was required for CXCL13-promoted cell migration. We also test the candidate components which are activated after CXCL13 treatment and found that phospholipase C-β (PLCβ), protein kinase C-α (PKCα) and c-Src signalling pathways were involved in CXCL13-promoted cell migration and VCAM-1 expression in lung cancer cells. Finally, CXCL13 stimulated NF-κB transcription factor in lung cancer cells, contributing to VCAM-1 expression in translational level. These evidences propose a novel insight into lung cancer metastasis which is regulated by CXCL13.
Collapse
Affiliation(s)
- Chia‐Chia Chao
- Department of Respiratory TherapyFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Wei‐Fang Lee
- School of Dental TechnologyCollege of Oral MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Shih‐Wei Wang
- Institute of Biomedical SciencesMacKay Medical CollegeNew Taipei CityTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
- Graduate Institute of Natural ProductsCollege of PharmacyKaohsiung Medical UniversityKaohsiungTaiwan
| | - Po‐Chun Chen
- Translational Medicine CenterShin‐Kong Wu Ho‐Su Memorial HospitalTaipei CityTaiwan
- Department of BiotechnologyCollege of Medical and Health ScienceAsia UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichungTaiwan
| | - Ayaho Yamamoto
- Child Health Research CentreThe University of QueenslandSouth BrisbaneQldAustralia
| | - Tsung‐Ming Chang
- Institute of PhysiologySchool of MedicineNational Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Shun‐Long Weng
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
- Department of Obstetrics and GynecologyHsinchu MacKay Memorial HospitalHsinchu CityTaiwan
| | - Ju‐Fang Liu
- Translational Medicine CenterShin‐Kong Wu Ho‐Su Memorial HospitalTaipei CityTaiwan
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichungTaiwan
- School of Oral HygieneCollege of Oral MedicineTaipei Medical UniversityTaipei CityTaiwan
| |
Collapse
|
13
|
CXCL13 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:71-90. [PMID: 34286442 DOI: 10.1007/978-3-030-62658-7_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemokines have emerged as important players in tumorigenic process. An extensive body of literature generated over the last two or three decades strongly implicate abnormally activated or functionally disrupted chemokine signaling in liaising most-if not all-hallmark processes of cancer. It is well-known that chemokine signaling networks within the tumor microenvironment are highly versatile and context-dependent: exert both pro-tumoral and antitumoral activities. The C-X-C motif chemokine ligand 13 (CXCL13), and its cognate receptor CXCR5, represents an emerging example of chemokine signaling axes, which express the ability to modulate tumor growth and progression in either way. Collateral evidence indicate that CXCL13-CXCR5 axis may directly modulate tumor growth by inducing proliferation of cancer cells, as well as promoting invasive phenotypes and preventing their apoptosis. In addition, CXCL13-CXCR5 axis may also indirectly modulate tumor growth by regulating noncancerous cells, particularly the immune cells, within the tumor microenvironment. Here, we review the role of CXCL13, together with CXCR5, in the human tumor microenvironment. We first elaborate their patterns of expression, regulation, and biological functions in normal physiology. We then consider how their aberrant activity, as a result of differential overexpression or co-expression, may directly or indirectly modulate the growth of tumors through effects on both cancerous and noncancerous cells.
Collapse
|
14
|
Griffen TL, Dammer EB, Dill CD, Carey KM, Young CD, Nunez SK, Ohandjo AQ, Kornblau SM, Lillard JW. Multivariate transcriptome analysis identifies networks and key drivers of chronic lymphocytic leukemia relapse risk and patient survival. BMC Med Genomics 2021; 14:171. [PMID: 34187466 PMCID: PMC8243588 DOI: 10.1186/s12920-021-01012-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/10/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is an indolent heme malignancy characterized by the accumulation of CD5+ CD19+ B cells and episodes of relapse. The biological signaling that influence episodes of relapse in CLL are not fully described. Here, we identify gene networks associated with CLL relapse and survival risk. METHODS Networks were investigated by using a novel weighted gene network co-expression analysis method and examining overrepresentation of upstream regulators and signaling pathways within co-expressed transcriptome modules across clinically annotated transcriptomes from CLL patients (N = 203). Gene Ontology analysis was used to identify biological functions overrepresented in each module. Differential Expression of modules and individual genes was assessed using an ANOVA (Binet Stage A and B relapsed patients) or T-test (SF3B1 mutations). The clinical relevance of biomarker candidates was evaluated using log-rank Kaplan Meier (survival and relapse interval) and ROC tests. RESULTS Eight distinct modules (M2, M3, M4, M7, M9, M10, M11, M13) were significantly correlated with relapse and differentially expressed between relapsed and non-relapsed Binet Stage A CLL patients. The biological functions of modules positively correlated with relapse were carbohydrate and mRNA metabolism, whereas negatively correlated modules to relapse were protein translation associated. Additionally, M1, M3, M7, and M13 modules negatively correlated with overall survival. CLL biomarkers BTK, BCL2, and TP53 were co-expressed, while unmutated IGHV biomarker ZAP70 and cell survival-associated NOTCH1 were co-expressed in modules positively correlated with relapse and negatively correlated with survival days. CONCLUSIONS This study provides novel insights into CLL relapse biology and pathways associated with known and novel biomarkers for relapse and overall survival. The modules associated with relapse and overall survival represented both known and novel pathways associated with CLL pathogenesis and can be a resource for the CLL research community. The hub genes of these modules, e.g., ARHGAP27P2, C1S, CASC2, CLEC3B, CRY1, CXCR5, FUT5, MID1IP1, and URAHP, can be studied further as new therapeutic targets or clinical markers to predict CLL patient outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Gene Expression Profiling
- Gene Regulatory Networks
- Male
- Female
- Recurrence
- Multivariate Analysis
- Biomarkers, Tumor/genetics
- Middle Aged
- Transcriptome
- Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Prognosis
Collapse
Affiliation(s)
- Ti'ara L Griffen
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Courtney D Dill
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Kaylin M Carey
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Corey D Young
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Sha'Kayla K Nunez
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Adaugo Q Ohandjo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA.
| |
Collapse
|
15
|
Determination of Potential Therapeutic Targets and Prognostic Markers of Ovarian Cancer by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8883800. [PMID: 33829065 PMCID: PMC8004373 DOI: 10.1155/2021/8883800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
This study is to study the expression of CXCRs in ovarian cancer tissues and their value in prognosis. The expressions of CXCR1-CXCR7 mRNA between ovarian tumor tissues and normal tissues and in different pathological types of ovarian tumor tissues were compared by ONCOMINE online tool. The relationship between the expression of CXCRs and clinical pathological staging was studied by GEPIA. Kaplan-Meier plotter online tool was used to analyze prognosis. Finally, GO and KEGG analyses and protein interaction network analysis were performed for CXCRs by the DAVID software to predict their function, and cBioPortal was used to identify the key functional genes. The expression of CXCR3/4/7 mRNA in ovarian cancer tissues was higher than that in normal ovarian tissues, and the expression of CXCR4 was the highest (fold change = 306.413, P < 0.05). The expression of CXCR1/2/3/4/7 mRNA in different pathological types of ovarian tumors was significantly different (P < 0.05). Only CXCR5 expression level was associated with tumor staging. Survival analysis showed that high CXCR7 mRNA expression and low CXCR5/6 expression were associated with the shortening of overall survival. High CXCR4/7 expression and low CXCR5/6 expression were associated with the shortening of progression-free survival. High CXCR2/4 expression and low CXCR5/6 expression were closely related to the shortening of postprogressing survival. Protein interaction network analysis showed that GNB1, PTK2, MAPK1, PIK3CA, GNB4, GNA11, KNG1, and ARNT proteins were closely related to the CXC receptor family. CXCR3/4/7 are potential therapeutic targets, and CXCR2/4/5/6/7 are new markers for the prognosis of ovarian cancer.
Collapse
|
16
|
The significance of metalloproteinase 3 (MMP-3), chemokine CXC ligand 13 (CXCL-13) and complement component C5a in different stages of ANCA associated vasculitis. Sci Rep 2021; 11:5132. [PMID: 33664330 PMCID: PMC7933137 DOI: 10.1038/s41598-021-84662-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of the study was to evaluate the significance of metalloproteinase 3 (MMP-3), chemokine CXC ligand 13 (CXCL-13) and complement component 5a (C5a) in different stages of ANCA associated vasculitis (AAV). 89 adults were included into the study. 28 patients with active AAV (Birmingham Vasculitis Activity Score, BVAS > 3) formed the Active Group. 24 individuals who were in remission after 6 months of induction therapy formed the Short R Group, while 34 patients with longitudinal remission formed the Long R Group. 28 patients without autoimmune diseases similar in terms of age, gender and stage of kidney disease formed the Control Group. Receiver operating characteristic curve analysis (ROC) was used to evaluate MMP-3, CXCL-13 and C5a as markers of the different phases of vasculitis. In ROC analysis, MMP-3, CXCL-13 and C5a presented a good ability in distinguishing active vasculitis (Active Group) from the Control Group (AUC > 0.8), whereas only CXCL-13 displayed potential ability in distinguishing active vasculitis (Active Group) from long term remission (Long R Group, AUC = 0.683). MMP-3 significantly and positively correlated with serum creatinine concentration (r = 0.51, p = 0.011; r = 0.44, p = 0.009; r = −0.66, p < 0.001) and negatively with eGFR (r = −0.5, p = 0.012; r = −0.35, p = 0.039; r = −0.63, p < 0.001) in the Short R, Long R and Control Groups. MMP-3, CXCL-13, C5a can be potential markers in differentiating an active phase of vasculitis from other pathologies. However they can be treated as complementary to the well-known markers. CXCL-13 seems to be a potential marker in distinguishing active vasculitis from long term remission. MMP-3 level can be related to kidney function expressed by eGFR, therefore its elevation should be interpreted with caution in patients with kidney failure.
Collapse
|
17
|
Mo M, Tong S, Li T, Zu X, Hu X. Serum CXCL13 Level is Associated with Tumor Progression and Unfavorable Prognosis in Penile Cancer. Onco Targets Ther 2020; 13:8757-8769. [PMID: 32943882 PMCID: PMC7473990 DOI: 10.2147/ott.s263980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Background Chemokine (C-X-C motif) ligands (CXCLs) are important regulators of tumor progression in many cancers and could serve as potential cancer biomarkers. However, the expression patterns as well as functions of CXCLs remain unclear in penile cancer (PC). The aim of this study was to evaluate the usefulness of serum CXCL13 as a potential cancer biomarker for PC. Patients and Methods This retrospective study enrolled 76 patients diagnosed with PC between 2016 and 2018. Serum CXCL13 level was detected by enzyme-linked immunosorbent assay. Univariable and multivariable Cox regression analyses were conducted to identify the prognostic factors that influence disease-free survival. Human penile cancer cell lines Penl1, Penl2, 149RCa and LM156 were used as in vitro models. The expression of CXCL13 protein in PC cell lines was analyzed by Western blotting. Results Our initial analysis on GSE57955 dataset identified CXCL13 as a top CXCL gene enriched in PC. Higher preoperative serum CXCL13 level was detected in PC cohorts than in healthy male controls (P<0.001). The area under the curve was 0.911 with the sensitivity of 84.2% and specificity of 87.0% to distinguish PC. Preoperative serum CXCL13 level was associated with pathological grade (P=0.048), T stage (P=0.009), nodal status (P<0.001) and pelvic lymph node metastasis (P=0.005) in PC. Serum CXCL13 level could serve as an independent prognostic factor for disease-free survival with a HR of 3.818 (95%CI: 1.126–12.946). Furthermore, autocrine expression of CXCL13 was detected in PC tissues and cell lines. Knockdown of CXCL13 expression suppressed malignant phenotypes (cell proliferation, clonogenesis, apoptosis escape, migration and invasion), attenuated STAT3 and ERK1/2 signaling and reduced MMP2/9 secretion in PC cell lines. Conclusion Serum CXCL13 could serve as a novel diagnostic and prognostic biomarker for PC. CXCL13 signaling might activate oncogenic signaling pathways to promote malignant progression of PC.
Collapse
Affiliation(s)
- Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shiyu Tong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Tao Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
18
|
Jiang Z, Zhang Y, Chen X, Wu P, Chen D. Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int 2019; 19:271. [PMID: 31649488 PMCID: PMC6805653 DOI: 10.1186/s12935-019-0977-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer (PCa) is a common disease that often occurs among older men and a frequent cause of malignancy associated death in this group. microRNA (miR)-129-5p has been identified as an essential regulator with a significant role in the prognosis of PC. Therefore, this study aimed to investigate roles of miR-129-5p in PCa. Methods Microarray analysis was conducted to identify PCa-related genes. The expression of miR-129-5p and ZIC2 in PCa tissues was investigated. To understand the role of miR-129-5p and ZIC2 in PCa, DU145 cells were transfected with mimic or inhibitor of miR-129-5p, or si-ZIC2 and the expression of Wnt, β-catenin, E-cadherin, vimentin, N-cadherin, vascular endothelial growth factor (VEGF), and CD31, as well as the extent of β-catenin phosphorylation was determined. In addition, cell proliferation, migration, invasion, angiogenesis, apoptosis and tumorigenesis were detected. Results miR-129-5p was poorly expressed and ZIC2 was highly expressed in PCa tissues. Down-regulation of ZIC2 or overexpression of miR-129-5p reduced the expression of ZIC2, Wnt, β-catenin, N-cadherin, vimentin, and β-catenin phosphorylation but increased the expression of E-cadherin. Importantly, miR-129-5p overexpression significantly reduced cell migration, invasion, angiogenesis and tumorigenesis while increasing cell apoptosis. Conclusions The findings of the present study indicated that overexpression of miR-129-5p or silencing of ZIC2 could inhibit epithelial–mesenchymal transition (EMT) and angiogenesis in PCa through blockage of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhenming Jiang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Yuxi Zhang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Department of Urology, People's Hospital of Datong Hui and Tu Autonomous County, No. 1, Wenhua Road, Qiaotou Town, Datong Hui and Tu Autonomous County, Xining, 810100 Qinghai People's Republic of China
| | - Xi Chen
- 3Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| | - Pingeng Wu
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Dong Chen
- 4Central Lab, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| |
Collapse
|
19
|
Ohandjo AQ, Liu Z, Dammer EB, Dill CD, Griffen TL, Carey KM, Hinton DE, Meller R, Lillard JW. Transcriptome Network Analysis Identifies CXCL13-CXCR5 Signaling Modules in the Prostate Tumor Immune Microenvironment. Sci Rep 2019; 9:14963. [PMID: 31628349 PMCID: PMC6802083 DOI: 10.1038/s41598-019-46491-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The tumor immune microenvironment (TIME) consists of multiple cell types that contribute to the heterogeneity and complexity of prostate cancer (PCa). In this study, we sought to understand the gene-expression signature of patients with primary prostate tumors by investigating the co-expression profiles of patient samples and their corresponding clinical outcomes, in particular “disease-free months” and “disease reoccurrence”. We tested the hypothesis that the CXCL13-CXCR5 axis is co-expressed with factors supporting TIME and PCa progression. Gene expression counts, with clinical attributes from PCa patients, were acquired from TCGA. Profiles of PCa patients were used to identify key drivers that influence or regulate CXCL13-CXCR5 signaling. Weighted gene co-expression network analysis (WGCNA) was applied to identify co-expression patterns among CXCL13-CXCR5, associated genes, and key genetic drivers within the CXCL13-CXCR5 signaling pathway. The processing of downloaded data files began with quality checks using NOISeq, followed by WGCNA. Our results confirmed the quality of the TCGA transcriptome data, identified 12 co-expression networks, and demonstrated that CXCL13, CXCR5 and associated genes are members of signaling networks (modules) associated with G protein coupled receptor (GPCR) responsiveness, invasion/migration, immune checkpoint, and innate immunity. We also identified top canonical pathways and upstream regulators associated with CXCL13-CXCR5 expression and function.
Collapse
Affiliation(s)
- Adaugo Q Ohandjo
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Zongzhi Liu
- R & D Bioinformatics, Sema4, Stamford, CT, 06902, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Courtney D Dill
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Tiara L Griffen
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Kaylin M Carey
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Denise E Hinton
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Robert Meller
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
20
|
Abstract
Castration-resistant prostate cancer (CRPC) remains incurable despite the approval of several new treatments. Identification of new biomarkers and therapeutic targets to enable personalization of CRPC therapy, with the aim of maximizing therapeutic responses and minimizing toxicity in patients, is urgently needed. Prostate cancer progression and therapeutic resistance are frequently driven by aberrantly activated kinase signalling pathways that are amenable to pharmacological inhibition. Personalized phosphoproteomics, which enables the analysis of signalling networks in individual tumours, is a promising approach to advance personalized therapy by discovering biomarkers of pathway activity and clinically actionable targets. Several technologies for global and targeted phosphoproteomic analysis exist, each with its own strengths and shortcomings. Global discovery phosphoproteomics is predominantly conducted using liquid chromatography-tandem mass spectrometry coupled with data-dependent or data-independent acquisition technologies. Multiplexed targeted phosphoproteomics can be divided into platforms based on mass spectrometry or antibodies, including selected or parallel reaction monitoring and triggered by offset, multiplexed, accurate mass, high-resolution, absolute quantification (known as TOMAHAQ) or forward-phase or reverse-phase protein arrays, respectively. Several obstacles still need to be overcome before the full potential of phosphoproteomics can be realized in routine clinical practice, but a future phosphoproteomics-centric trans-omic profiling approach should enable optimized personalized CRPC management through improved biomarkers and targeted treatments.
Collapse
|
21
|
Schiffer L, Wiehler F, Bräsen JH, Gwinner W, Greite R, Kreimann K, Thorenz A, Derlin K, Teng B, Rong S, von Vietinghoff S, Haller H, Mengel M, Pape L, Lerch C, Schiffer M, Gueler F. Chemokine CXCL13 as a New Systemic Biomarker for B-Cell Involvement in Acute T Cell-Mediated Kidney Allograft Rejection. Int J Mol Sci 2019; 20:ijms20102552. [PMID: 31137652 PMCID: PMC6567305 DOI: 10.3390/ijms20102552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 12/31/2022] Open
Abstract
The presence of B-cell clusters in allogenic T cell-mediated rejection (TCMR) of kidney allografts is linked to more severe disease entities. In this study we characterized B-cell infiltrates in patients with TCMR and examined the role of serum CXCL-13 in these patients and experimentally. CXCL-13 serum levels were analyzed in 73 kidney allograft recipients at the time of allograft biopsy. In addition, four patients were evaluated for CXCL13 levels during the first week after transplantation. ELISA was done to measure CXCL-13 serum levels. For further mechanistic understanding, a translational allogenic kidney transplant (ktx) mouse model for TCMR was studied in BalbC recipients of fully mismatched transplants with C57BL/6 donor kidneys. CXCL-13 serum levels were measured longitudinally, CD20 and CD3 composition and CXCL13 mRNA in tissue were examined by flow cytometry and kidneys were examined by histology and immunohistochemistry. We found significantly higher serum levels of the B-cell chemoattractant CXCL13 in patients with TCMR compared to controls and patients with borderline TCMR. Moreover, in patients with acute rejection within the first week after ktx, a >5-fold CXCL13 increase was measured and correlated with B-cell infiltrates in the biopsies. In line with the clinical findings, TCMR in mice correlated with increased systemic serum-CXCL13 levels. Moreover, renal allografts had significantly higher CXCL13 mRNA expression than isogenic controls and showed interstitial CD20+ B-cell clusters and CD3+ cell infiltrates accumulating in the vicinity of renal vessels. CXCL13 blood levels correlate with B-cell involvement in TCMR and might help to identify patients at risk of a more severe clinical course of rejection.
Collapse
Affiliation(s)
- Lena Schiffer
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
- Pediatric Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Flavia Wiehler
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | - Robert Greite
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Kirill Kreimann
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Anja Thorenz
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Katja Derlin
- Radiology, Hannover Medical School, 30625 Hannover, Germany.
| | - Beina Teng
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Song Rong
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | | | - Hermann Haller
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Michael Mengel
- Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Lars Pape
- Pediatric Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Christian Lerch
- Pediatric Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Mario Schiffer
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
- Nephrology and Hypertension, University Hospital Erlangen, 91054 Erlangen, Gerrmany.
| | - Faikah Gueler
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
22
|
Hussain M, Adah D, Tariq M, Lu Y, Zhang J, Liu J. CXCL13/CXCR5 signaling axis in cancer. Life Sci 2019; 227:175-186. [PMID: 31026453 DOI: 10.1016/j.lfs.2019.04.053] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment comprises stromal and tumor cells which interact with each other through complex cross-talks that are mediated by a variety of growth factors, cytokines, and chemokines. The chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) are among the key chemotactic factors which play crucial roles in deriving cancer cell biology. CXCL13/CXCR5 signaling axis makes pivotal contributions to the development and progression of several human cancers. In this review, we discuss how CXCL13/CXCR5 signaling modulates cancer cell ability to grow, proliferate, invade, and metastasize. Furthermore, we also discuss the preliminary evidence on context-dependent functioning of this axis within the tumor-immune microenvironment, thus, highlighting its potential dichotomy with respect to anticancer immunity and cancer immune-evasion mechanisms. At the end, we briefly shed light on the therapeutic potential or implications of targeting CXCL13/CXCR5 axis within the tumor microenvironment.
Collapse
Affiliation(s)
- Muzammal Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dickson Adah
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China
| | - Muqddas Tariq
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongzhi Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China
| | - Jiancun Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China.
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China.
| |
Collapse
|
23
|
Meng X, Yu X, Dong Q, Xu X, Li J, Xu Q, Ma J, Zhou C. Distribution of circulating follicular helper T cells and expression of interleukin-21 and chemokine C-X-C ligand 13 in gastric cancer. Oncol Lett 2018; 16:3917-3922. [PMID: 30128008 PMCID: PMC6096128 DOI: 10.3892/ol.2018.9112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/09/2018] [Indexed: 02/07/2023] Open
Abstract
Circulating follicular helper T (cTfh) cells are a novel subset of cluster of differentiation (CD)4+ helper T cells. Interleukin (IL)-21 and C-X-C motif chemokine ligand (CXCL)13 are the principal effectors and chemotactic regulatory factors of Tfh. However, the roles of IL-21 and CXCL13 in gastric cancer have not yet been completely elucidated. The aim of the present study was to investigate the distribution of cTfh cells, and the expression of IL-21 and CXCL13 in patients with gastric cancer was evaluated in order to ascertain the significance and potential mechanisms of these effectors in gastric cancer. A total of 50 patients with gastric cancer were enrolled as the study subjects, with 30 healthy individuals selected as controls. The percentage of cTfh cells (cTfh%) in the peripheral blood was calculated using flow cytometry. They are identified in the present study as CD4+ chemokine C-X-C receptor (CXCR)5+ inducible T cell co-stimulator (ICOS)+ cells. The serum levels of IL-21 and CXCL13 were determined by ELISA. The cTfh% in the peripheral blood and the concentration of IL-21 and CXCL13 in the serum were significantly higher in patients with gastric cancer compared with the control group. cTfh% was significantly higher in patients with lymph node metastasis, Tumor-Node-Metastasis (TNM) stage III-IV and low differentiation. The concentrations of IL-21 and CXCL13 in patients with lymph node metastasis and/or TNM III-IV were significantly higher than in those without lymph node metastasis or with TNM I-II. There was a positive correlation between cTfh%/CXCL13 and IL-21/CXCL13, while there was no correlation between cTfh%/IL-21. cTfh cells and associated factors (IL-21/CXCL13) may be involved in the development and progression of gastric cancer. There may be mutual regulation among cTfh cells, IL-21 and CXCL13.
Collapse
Affiliation(s)
- Xinying Meng
- Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xinjuan Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Quanjiang Dong
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xiaona Xu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Jinghua Li
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Qianqian Xu
- Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Jian Ma
- Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Changhong Zhou
- Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
24
|
Wu D, Shi Z, Xu H, Chen R, Xue S, Sun X. Knockdown of Cripto-1 inhibits the proliferation, migration, invasion, and angiogenesis in prostate carcinoma cells. J Biosci 2018; 42:405-416. [PMID: 29358554 DOI: 10.1007/s12038-017-9700-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cripto-1 (CR-1) is a member of the epidermal growth factor-Cripto-1/FRL1/Cryptic gene family that plays a key role in the various malignant cancers. However, the role of CR-1 in prostate carcinoma (PCa) remains limited. The expression of CR-1 was down-regulated by small interfering RNA (siRNA). Western blot measured the expression levels of CR-1 and some related proteins. We performed Cell Counting Kit-8, 5-ethynyl-2-deoxyuridine (EdU) incorporation assay and flow cytometry to detect the cellular proliferation and cycle. The transwell assay was used to observe cellular migration and invasion. The ability of angiogenesis was evaluated by tube formation assay. Our results showed that CR-1 knockdown markedly inhibited cell proliferation and induced cycle arrest in G1 phase, as p21 and p27 were up-regulated, whereas cyclin D1 and cyclin E1 were diminished. Moreover, silencing of CR-1 dramatically inhibited cell migration and invasion, repressed matrix metalloproteinases, and disturbed epithelial-mesenchymal transition. CR-1 siRNA suppressed the secreted level of vascular endothelial growth factor, and reduced protein level of Vascular endothelial growth factor receptor 2. We further found that decreased CR-1 expression inhibited FAK/Src/PI3K and Wnt/b-catenin signalling in PCa cells. These results suggested CR-1 might be served as an effective therapeutic target in PCa.
Collapse
Affiliation(s)
- Ding Wu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
CXCL13 inhibits microRNA-23a through PI3K/AKT signaling pathway in adipose tissue derived-mesenchymal stem cells. Biomed Pharmacother 2016; 83:876-880. [DOI: 10.1016/j.biopha.2016.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023] Open
|
26
|
Sarwar M, Semenas J, Miftakhova R, Simoulis A, Robinson B, Wingren AG, Mongan NP, Heery DM, Johnsson H, Abrahamsson PA, Dizeyi N, Luo J, Persson JL. Targeted suppression of AR-V7 using PIP5K1α inhibitor overcomes enzalutamide resistance in prostate cancer cells. Oncotarget 2016; 7:63065-63081. [PMID: 27588408 PMCID: PMC5325347 DOI: 10.18632/oncotarget.11757] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/20/2016] [Indexed: 01/05/2023] Open
Abstract
One mechanism of resistance of prostate cancer (PCa) to enzalutamide (MDV3100) treatment is the increased expression of AR variants lacking the ligand binding-domain, the best characterized of which is AR-V7. We have previously reported that Phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), is a lipid kinase that links to CDK1 and AR pathways. The discovery of PIP5Kα inhibitor highlight the potential of PIP5K1α as a drug target in PCa. In this study, we show that AR-V7 expression positively correlates with PIP5K1α in tumor specimens from PCa patients. Overexpression of AR-V7 increases PIP5K1α, promotes rapid growth of PCa in xenograft mice, whereas inhibition of PIP5K1α by its inhibitor ISA-2011B suppresses the growth and invasiveness of xenograft tumors overexpressing AR-V7. PIP5K1α is a key co-factor for both AR-V7 and AR, which are present as protein-protein complexes predominantly in the nucleus of PCa cells. In addition, PIP5K1α and CDK1 influence AR-V7 expression also through AKT-associated mechanism dependent on PTEN-status. ISA-2011B disrupts protein stabilization of AR-V7 which is dependent on PIP5K1α, leading to suppression of invasive growth of AR-V7-high tumors in xenograft mice. Our study suggests that combination of enzalutamide and PIP5K1α may have a significant impact on refining therapeutic strategies to circumvent resistance to antiandrogen therapies.
Collapse
Affiliation(s)
- Martuza Sarwar
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Julius Semenas
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Molecular Biology, Umeå University, Sweden
| | - Regina Miftakhova
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Genetics, Kazan Federal University, Kazan, Russia
- Department of Molecular Biology, Umeå University, Sweden
| | - Athanasios Simoulis
- Department of Clinical Pathology and Cytology, Skåne University Hospital, Malmö, Sweden
| | - Brian Robinson
- Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Anette Gjörloff Wingren
- Faculty of Health and Society, Department of Biomedical Science, Malmö University, Malmö, Sweden
| | - Nigel P. Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David M. Heery
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Heather Johnsson
- Department of Bio-Diagnosis, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Per-Anders Abrahamsson
- Division of Clinical Urology, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Nishtman Dizeyi
- Division of Clinical Urology, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Jun Luo
- Department of Urology, the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jenny L. Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Molecular Biology, Umeå University, Sweden
| |
Collapse
|
27
|
The Effect of C-X-C Motif Chemokine 13 on Hepatocellular Carcinoma Associates with Wnt Signaling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:345413. [PMID: 26161394 PMCID: PMC4486493 DOI: 10.1155/2015/345413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/04/2015] [Indexed: 12/18/2022]
Abstract
Objects. To investigate the effect of CXCL13 (C-X-C motif chemokine 13) on hepatocellular carcinoma and clarify the potential mechanisms. Methods. 32 patients with hepatocellular carcinoma and 12 healthy controls were recruited for analyzing the expression of CXCL13 by RT-PCR (reverse transcription-polymerase chain reaction). ELISA (enzyme-linked immune-sorbent assay) was used to test the concentration of serum CXCL13. The interaction between CXCL13 and Wnt signaling was analyzed by western blot. In vitro PBMCs cultured with HepG2 supernatant, the levels of IL-12, IL4, IL-6, and IL-17, and four IgG subclasses were detected by ELISA. Results. The rate of high expression CXCL13 was 63.4% in advanced HCC patients, and the serum CXCL13 was also at a high level in stage IV HCC patients. Meanwhile CXCL13 level was positively correlated with serum ALT (Alanine Transaminase) and AST (Aspartate Aminotransferase). CXCL13 and Wnt/β-catenin signaling shared a positive feedback loop. Furthermore, CXCL13 could obviously promote the expressions of IL-12 and IL-17, and induce IgG4 secreted by B cells. Conclusions. The effect of CXCL13 on promoting liver cancer is related to the activation of Wnt/β-catenin pathway and the facilitation of IL-12, IL-17 and IgG4. CXCL13 plays an important role in the progression of HCC, and it may act as a potential target for the diagnosis and treatment of HCC.
Collapse
|
28
|
CXCL13-CXCR5 axis promotes the growth and invasion of colon cancer cells via PI3K/AKT pathway. Mol Cell Biochem 2014; 400:287-95. [PMID: 25476740 DOI: 10.1007/s11010-014-2285-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/15/2014] [Indexed: 12/11/2022]
Abstract
CXCL13, an inflammatory factor in the microenvironment, plays a vital role in the progression of inflammatory diseases and tumors. CXCL13 and its receptor CXCR5 have been reported to be associated with poor prognosis of advanced colon cancer. However, the molecular mechanisms of CXCL13-CXCR5 axis in colon cancer remain elusive. The aim of this study was to investigate the role of CXCR5-CXCL13 axis in the growth and invasion of colon cancer cells. Our results showed that CXCL13 promoted the growth, migration, and matrigel invasion of colon cancer cells. Furthermore, CXCL13 increased the expression and secretion of MMP-13, and stimulated the activation of PI3K/AKT pathway. After knockdown of CXCR5 by siRNA, the biological functions of colon cancer cells regulated by CXCL13 were significantly inhibited. In addition, inhibition of PI3K/AKT pathway by specific inhibitor LY294002 suppressed the CXCL13-mediated growth, migration, and invasion of colon cancer cells. Together, our findings suggest that CXCL13-CXCR5 axis promotes the growth, migration, and invasion of colon cancer cells, probably via PI3K/AKT pathway. Thus, CXCL13 may be a useful biomarker for the detection and treatment of colon cancer.
Collapse
|
29
|
Worthmann K, Gueler F, von Vietinghoff S, Davalos-Mißlitz A, Wiehler F, Davidson A, Witte T, Haller H, Schiffer M, Falk CS, Schiffer L. Pathogenetic role of glomerular CXCL13 expression in lupus nephritis. Clin Exp Immunol 2014; 178:20-7. [PMID: 24827905 DOI: 10.1111/cei.12380] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2014] [Indexed: 12/28/2022] Open
Abstract
Podocytes maintain the structure and function of the glomerular filtration barrier. However, podocytes have recently been implicated in the innate immune response, and their function as non-haematopoietic antigen-presenting cells was highlighted. We have shown previously that excessive expression of the chemokine CXCL13 is a distinctive early event for nephritis in a murine model of systemic lupus erythematosus (SLE). Furthermore, we found that CXCL13 is elevated significantly in the serum of patients with SLE-nephritis. In this study, we were able to show for the first time that (i) CXCL13 is expressed locally in glomeruli in a model for SLE-nephritis in mice and that (ii) incubation of human podocytes with CXCL13 induces receptor stimulation of CXCR5 with activation of signalling pathways, resulting in (iii) secretion of proinflammatory cytokines and chemokines in culture supernatant. This cytokine/chemokine cocktail can lead to (iv) a neutrophil respiratory burst in isolated human granulocytes. Taken together, our results provide further evidence that CXCL13 is involved in the pathogenesis of glomerulonephritis and that podocytes can play an active role in local proinflammatory immune responses. Thus, CXCL13 could be a direct target for the therapy of glomerulonephritis in general and for SLE-nephritis in particular.
Collapse
Affiliation(s)
- K Worthmann
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:751392. [PMID: 25110692 PMCID: PMC4119707 DOI: 10.1155/2014/751392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jiamin Zhou
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Endoscopic Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Xiang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jian Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Surgery, Fudan University Cancer Center, Shanghai 200032, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
31
|
Kwak JW, Jeong H, Han SH, Kim Y, Son SM, Mook-Jung I, Hwang D, Park JW. Phosphokinase antibody arrays on dendron-coated surface. PLoS One 2014; 9:e96456. [PMID: 24802362 PMCID: PMC4011796 DOI: 10.1371/journal.pone.0096456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/08/2014] [Indexed: 12/04/2022] Open
Abstract
Monitoring protein phosphorylation at the cellular level is important to understand the intracellular signaling. Among the phosphoproteomics methods, phosphokinase antibody arrays have emerged as preferred tools to measure well-characterized phosphorylation in the intracellular signaling. Here, we present a dendron-coated phosphokinase antibody array (DPA) in which the antibodies are immobilized on a dendron-coated glass slide. Self-assembly of conically shaped dendrons well-controlled in size and structure resulted in precisely controlled lateral spacing between the immobilized phosphosite-specific antibodies, leading to minimized steric hindrance and improved antigen-antibody binding kinetics. These features increased sensitivity, selectivity, and reproducibility in measured amounts of protein phosphorylation. To demonstrate the utility of the DPA, we generated the phosphorylation profiles of brain tissue samples obtained from Alzheimer's disease (AD) model mice. The analysis of the profiles revealed signaling pathways deregulated during the course of AD progression.
Collapse
Affiliation(s)
- Ju-Won Kwak
- Department of Chemistry, POSTECH, Pohang, Republic of Korea
| | - Hyobin Jeong
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Republic of Korea
| | - Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Youngkyu Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Republic of Korea
| | - Sung Min Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail: (IM-J); (DH); (JWP)
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Republic of Korea
- Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu, Republic of Korea
- * E-mail: (IM-J); (DH); (JWP)
| | - Joon Won Park
- Department of Chemistry, POSTECH, Pohang, Republic of Korea
- * E-mail: (IM-J); (DH); (JWP)
| |
Collapse
|