1
|
Foncea A, Franchini N, Tobar I, Thienel S, Retamal IN, Cancino GI, Cornejo F. Ptprd deficiency promotes tau hyperphosphorylation and impairs cognitive function in aged mice. Biol Res 2025; 58:26. [PMID: 40329347 PMCID: PMC12054186 DOI: 10.1186/s40659-025-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Tau phosphorylation is a tightly regulated process that ensures proper neuronal function. Indeed, hyperphosphorylation of tau closely contributes to neuronal dysfunction leading to neurodegenerative diseases, including tauopathies, which are characterized by excessive and aberrant tau phosphorylation and cognitive decline. Therefore, it is important to understand how to regulate its phosphorylation. In this regard, the protein tyrosine phosphatase receptor delta (PTPRD) has been genetically implicated in tau pathology in humans, but the mechanisms underlying its role in tau regulation remain unclear. This study investigates the impact of Ptprd deficiency on tau phosphorylation, cognitive function, neuroinflammation, and synaptic markers in aging mice. RESULTS Mice lacking Ptprd showed increased tau phosphorylation at multiple sites associated with its pathological aggregation. This effect was accompanied by the activation of the tau-related kinase Abl1, particularly in the hippocampus. Behavioral assessments revealed significant impairments in learning and memory, demonstrating the functional impact of these alterations. Moreover, Ptprd knockout mice showed increased microgliosis in both the entorhinal cortex and the hippocampus, suggesting a pro-inflammatory response. Furthermore, the synaptic protein PSD95 was also reduced in the cortex, indicating potential synaptic dysfunction. CONCLUSIONS The loss of Ptprd leads to increased tau phosphorylation, cognitive impairments, microgliosis, and synaptic alterations in older mice. Our findings also suggest that Ptprd plays a critical role in maintaining tau homeostasis through the Abl1 kinase. This indicates a new potential therapeutic approach for tauopathies, where PTPRD could serve a protective role against tau-related pathologies and may act as a key modulator in disease progression.
Collapse
Affiliation(s)
- Analía Foncea
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Nayhara Franchini
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Isidora Tobar
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Sebastián Thienel
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Ignacio N Retamal
- Centro de Oncología de Precisión, Escuela de Medicina, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Gonzalo I Cancino
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Francisca Cornejo
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
2
|
Chen Z, Lu Y, Wang Y, Wang Q, Yu L, Liu J. Natural Products Targeting Tau Protein Phosphorylation: A Promising Therapeutic Avenue for Alzheimer's Disease. PLANTA MEDICA 2025. [PMID: 40086889 DOI: 10.1055/a-2536-8919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by tau protein hyperphosphorylation and neurofibrillary tangle formation, which are central to its pathogenesis. This review focuses on the therapeutic potential of natural products in targeting tau phosphorylation, a key factor in Alzheimer's disease progression. It comprehensively summarizes current research on various natural compounds, including flavonoids, alkaloids, saponins, polysaccharides, phenols, phenylpropanoids, and terpenoids, highlighting their multitarget mechanisms, such as modulating kinases and phosphatases. The ability of these compounds to mitigate oxidative stress, inflammation, and tau pathology while enhancing cognitive function underscores their value as potential anti-Alzheimer's disease therapeutics. By integrating recent advances in extraction methods, pharmacological studies, and artificial intelligence-driven screening technologies, this review provides a valuable reference for future research and development of natural product-based interventions for Alzheimer's disease.
Collapse
Affiliation(s)
- Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Lu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangwen Yu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| |
Collapse
|
3
|
Carter JL, Halmai JANM, Waldo JJ, Vij PA, Anguiano M, Villegas IJ, Du YX, Nolta J, Fink KD. A de novo missense mutation in PPP2R5D alters dopamine pathways and morphology of iPSC-derived midbrain neurons. Stem Cells 2025; 43:sxae068. [PMID: 39460716 PMCID: PMC11811633 DOI: 10.1093/stmcls/sxae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/27/2024] [Indexed: 10/28/2024]
Abstract
Induced pluripotent stem cell (iPSC) models of neurodevelopmental disorders (NDDs) have promoted an understanding of commonalities and differences within or across patient populations by revealing the underlying molecular and cellular mechanisms contributing to disease pathology. Here, we focus on developing a human model for PPP2R5D-related NDD, called Jordan syndrome, which has been linked to Early-Onset Parkinson's Disease (EOPD). Here we sought to understand the underlying molecular and cellular phenotypes across multiple cell states and neuronal subtypes in order to gain insight into Jordan syndrome pathology. Our work revealed that iPSC-derived midbrain neurons from Jordan syndrome patients display significant differences in dopamine-associated pathways and neuronal architecture. We then evaluated a CRISPR-based approach for editing heterozygous dominant G-to-A mutations at the transcript level in patient-derived neural stem cells. Our findings show that site-directed RNA editing is influenced by sgRNA length and cell type. These studies support the potential for a CRISPR RNA editor system to selectively edit mutant transcripts harboring G-to-A mutations in neural stem cells while providing an alternative editing technology for those suffering from NDDs.
Collapse
Affiliation(s)
- Jasmine L Carter
- Center for Interventional Genetics, University of California, Davis, Sacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA 95817, United States
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, United States
- Department of Neurology, University of California Davis Health Systems, Sacramento, CA, United States
| | - Julian A N M Halmai
- Center for Interventional Genetics, University of California, Davis, Sacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA 95817, United States
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, United States
- Department of Neurology, University of California Davis Health Systems, Sacramento, CA, United States
| | - Jennifer J Waldo
- Center for Interventional Genetics, University of California, Davis, Sacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA 95817, United States
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, United States
- Department of Neurology, University of California Davis Health Systems, Sacramento, CA, United States
| | - Paula A Vij
- Center for Interventional Genetics, University of California, Davis, Sacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA 95817, United States
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, United States
- Department of Neurology, University of California Davis Health Systems, Sacramento, CA, United States
| | - Maribel Anguiano
- Center for Neuroscience, University of California Davis, Sacramento, CA 95817, United States
| | - Isaac J Villegas
- Center for Interventional Genetics, University of California, Davis, Sacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA 95817, United States
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, United States
- Department of Neurology, University of California Davis Health Systems, Sacramento, CA, United States
| | - Yu Xin Du
- Center for Interventional Genetics, University of California, Davis, Sacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA 95817, United States
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, United States
- Department of Neurology, University of California Davis Health Systems, Sacramento, CA, United States
| | - Jan Nolta
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA 95817, United States
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, United States
| | - Kyle D Fink
- Center for Interventional Genetics, University of California, Davis, Sacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA 95817, United States
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, United States
- Department of Neurology, University of California Davis Health Systems, Sacramento, CA, United States
| |
Collapse
|
4
|
Hook V, Podvin S, Mosier C, Boyarko B, Seyffert L, Stringer H, Rissman RA. Emerging evidence for dysregulated proteome cargoes of tau-propagating extracellular vesicles driven by familial mutations of tau and presenilin. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:588-598. [PMID: 38125374 PMCID: PMC10732590 DOI: 10.20517/evcna.2023.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Tau propagation, pathogenesis, and neurotoxicity are hallmarks of neurodegenerative diseases that result in cognitive impairment. Tau accumulates in Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), chronic traumatic encephalopathy (CTE), progressive supranuclear palsy, and related tauopathies. Knowledge of the mechanisms for tau propagation in neurodegeneration is necessary for understanding the development of dementia. Exosomes, known as extracellular vesicles (EVs), have emerged as participants in promoting tau propagation. Recent findings show that EVs generated by neurons expressing familial mutations of tauopathies of FTDP-17 (P301L and V337M) (mTau) and presenilin (A246E) (mPS1) in AD induce tau propagation and accumulation after injection into rodent brain. To gain knowledge of the proteome cargoes of the mTau and mPS1 EVs that promote tau pathogenesis, this review compares the proteomes of these EVs, which results in important new questions concerning EV mechanisms of tau pathogenesis. Proteomics data show that EVs produced by mTau- and mPS1-expressing iPSC neurons share proteins involved in exocytosis and vesicle secretion and, notably, these EVs also possess differences in protein components of vesicle-mediated transport, extracellular functions, and cell adhesion. It will be important for future studies to gain an understanding of the breadth of familial genetic mutations of tau, presenilin, and other genes in promoting EV initiation of tau propagation and pathogenesis. Furthermore, elucidation of EV cargo components that mediate tau propagation will have potential as biomarkers and therapeutic strategies to ameliorate dementia of tauopathies.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Laura Seyffert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Haley Stringer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- Veterans Affairs San Diego Health System, San Diego, CA 92093, USA
| |
Collapse
|
5
|
Nematullah M, Rashid F, Nimker S, Khan F. Protein Phosphatase 2A Regulates Phenotypic and Metabolic Alteration of Microglia Cells in HFD-Associated Vascular Dementia Mice via TNF-α/Arg-1 Axis. Mol Neurobiol 2023; 60:4049-4063. [PMID: 37017907 DOI: 10.1007/s12035-023-03324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
Protein phosphatase 2A (PP2A), the activity of which is dictated by the composition of its regulatory subunit, is strongly related to the progression of neurodegenerative disease. The potential role of PP2A on the phenotypic transition of microglial cells under obese conditions is poorly explored. An understanding of the role of PP2A and identification of regulatory subunits contributing to microglial phenotypic transitions in obese condition may serve as a therapeutic target for obesity-associated neurodegeneration. C57BL/6 mice were exposed to obese-associated vascular dementia conditions by performing unilateral common carotid artery occlusion on obese mice of microglial polarization and PP2A activity using flow cytometry, real-time PCR, western blotting, and immunoprecipitation enzymatic assay, followed identifications of PP2A regulatory subunits using LCMS and RT-PCR. Chronic HFD feeding significantly increased the populations of infiltrated macrophages, showing a high percentage of CD86+ in VaD mice, and the expression of pro-inflammatory cytokines, and we observed that PP2A modulates metabolic reprogramming of microglia by regulating OXPHOS/ECAR activity. Using Co-IP and LCMS, we identified the six specific regulatory subunits, namely PPP2R2A, PPP2R2D, PPP2R5B, PPP2R5C, PPP2R5D, and PPP2R5E, that are associated with microglial-activation during obesity-associated-VaD. Interestingly, pharmacological up-regulation of PP2A more significantly suppressed the expression of TNF-alpha than other pro-inflammatory-cytokines and increased the expression of Arginase-1, suggesting that PP2A modulates microglial-phenotypic transitions through TNF-α/Arg-1 axis. Our present findings demonstrate microglial polarization in HFD associated with VaD, and point towards a therapeutic target by providing specific PP2A regulatory-subunits implicated in microglial activation during obesity-related-vascular-dementia.
Collapse
Affiliation(s)
- Md Nematullah
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Shwetanjali Nimker
- Application Scientist, BD Biosciences India Pvt. Ltd, Jamia Hamdard, New Delhi, 110062, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Arribas RL, Viejo L, Bravo I, Martínez M, Ramos E, Romero A, García-Frutos EM, Janssens V, Montiel C, de Los Ríos C. C-glycosides analogues of the okadaic acid central fragment exert neuroprotection via restoration of PP2A-phosphatase activity: A rational design of potential drugs for Alzheimer's disease targeting tauopathies. Eur J Med Chem 2023; 251:115245. [PMID: 36905916 DOI: 10.1016/j.ejmech.2023.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Protein phosphatase 2A (PP2A) is an important Ser/Thr phosphatase that participates in the regulation of multiple cellular processes. This implies that any deficient activity of PP2A is the responsible of severe pathologies. For instance, one of the main histopathological features of Alzheimer's disease is neurofibrillary tangles, which are mainly comprised by hyperphosphorylated forms of tau protein. This altered rate of tau phosphorylation has been correlated with PP2A depression AD patients. With the goal of preventing PP2A inactivation in neurodegeneration scenarios, we have aimed to design, synthesize and evaluate new ligands of PP2A capable of preventing its inhibition. To achieve this goal, the new PP2A ligands present structural similarities with the central fragment C19-C27 of the well-established PP2A inhibitor okadaic acid (OA). Indeed, this central moiety of OA does not exert inhibitory actions. Hence, these compounds lack PP2A-inhibiting structural motifs but, in contrast, compete with PP2A inhibitors, thus recovering phosphatase activity. Proving this hypothesis, most compounds showed a good neuroprotective profile in neurodegeneration models related to PP2A impairment, highlighting derivative 10, named ITH12711, as the most promising one. This compound (1) restored in vitro and cellular PP2A catalytic activity, measured on a phospho-peptide substrate and by western-blot analyses, (2) proved good brain penetration measured by PAMPA, and (3) prevented LPS-induced memory impairment of mice in the object recognition test. Thus, the promising outcomes of the compound 10 validate our rational approach to design new PP2A-activating drugs based on OA central fragment.
Collapse
Affiliation(s)
- Raquel L Arribas
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Spain
| | - Lucía Viejo
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain
| | - Isaac Bravo
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain; Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Minerva Martínez
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Eva Ramos
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Alejandro Romero
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Eva M García-Frutos
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain; Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Ctra. Madrid-Barcelona Km.33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - Veerle Janssens
- Department of Cellular & Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, B-3000, Leuven, Belgium; LBI (KU Leuven Brain Institute), B-3000, Leuven, Belgium
| | - Carmen Montiel
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain.
| |
Collapse
|
7
|
Vaneynde P, Verbinnen I, Janssens V. The role of serine/threonine phosphatases in human development: Evidence from congenital disorders. Front Cell Dev Biol 2022; 10:1030119. [PMID: 36313552 PMCID: PMC9608770 DOI: 10.3389/fcell.2022.1030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Reversible protein phosphorylation is a fundamental regulation mechanism in eukaryotic cell and organismal physiology, and in human health and disease. Until recently, and unlike protein kinases, mutations in serine/threonine protein phosphatases (PSP) had not been commonly associated with disorders of human development. Here, we have summarized the current knowledge on congenital diseases caused by mutations, inherited or de novo, in one of 38 human PSP genes, encoding a monomeric phosphatase or a catalytic subunit of a multimeric phosphatase. In addition, we highlight similar pathogenic mutations in genes encoding a specific regulatory subunit of a multimeric PSP. Overall, we describe 19 affected genes, and find that most pathogenic variants are loss-of-function, with just a few examples of gain-of-function alterations. Moreover, despite their widespread tissue expression, the large majority of congenital PSP disorders are characterised by brain-specific abnormalities, suggesting a generalized, major role for PSPs in brain development and function. However, even if the pathogenic mechanisms are relatively well understood for a small number of PSP disorders, this knowledge is still incomplete for most of them, and the further identification of downstream targets and effectors of the affected PSPs is eagerly awaited through studies in appropriate in vitro and in vivo disease models. Such lacking studies could elucidate the exact mechanisms through which these diseases act, and possibly open up new therapeutic avenues.
Collapse
Affiliation(s)
- Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
- *Correspondence: Veerle Janssens,
| |
Collapse
|
8
|
Mahamane Salissou MT, Razak MYA, Wang X, Magaji RA. The role of protein phosphatase 2A tau axis in traumatic brain injury therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Traumatic brain injury (TBI) is a debilitating disorder due to trauma caused by an external mechanical force eventually leading to disruption in the normal function of the brain, with possible outcomes including permanent or temporary dysfunction of cognitive, physical, and psychosocial abilities. There have been several studies focusing on the search and innovation of neuroprotective agents that could have therapeutic relevance in TBI management. Due to its complexity, TBI is divided into two major components. The first initial event is known as the primary injury; it is a result of the mechanical insult itself and is known to be irreversible and resistant to a vast variety of therapeutics. The secondary event or secondary brain injury is viewed as a cellular injury that does not manifest immediately after the trauma but evolved after a delay period of hours or several days. This category of injury is known to respond favorably to different pharmacological treatment approaches.
Main body
Due to the complexity in the pathophysiology of the secondary injury, the therapeutic strategy needs to be in a multi-facets model and to have the ability to simultaneously regulate different cellular changes. Several studies have investigated in deep the possible approaches relying on natural compounds as an alternative therapeutic strategy for the management of TBI. In addition, many natural compounds have the potential to target numerous different components of the secondary injury including neuroinflammation, apoptosis, PP2A, tau, and Aβ among others. Here, we review past and current strategies in the therapeutic management of TBI, focusing on the PP2A-tau axis both in animal and human subjects. This review uncovers, in addition, a variety of compounds used in TBI therapy.
Conclusion
Despite beneficial therapeutic effects observed in animals for many compounds, studies are still needed to be conducted on human subjects to validate their therapeutic virtues. Furthermore, potential therapeutic virtues observed among studies might likely be dependent on the TBI animal model used and the type of induced injury. In addition, specificity and side effects are challenges in TBI therapy specifically which site of PP2A dysfunction to be targeted.
Collapse
|
9
|
Madaan P, Kaur A, Saini L, Paria P, Vyas S, Sharma AR, Sahu JK. PPP2R5D-Related Neurodevelopmental Disorder or Developmental and Epileptic Encephalopathy?: A Novel Phenotypic Description and Review of Published Cases. Neuropediatrics 2022; 53:20-25. [PMID: 34448180 DOI: 10.1055/s-0041-1733984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Protein phosphatase 2 regulatory subunit B' delta (PPP2R5D)-related neurodevelopmental disorder is caused by pathogenic variations in the PPP2R5D gene, product of which is involved in dephosphorylation. This is a rare disorder with description limited to case reports. Its phenotypic spectrum has expanded over the last decade. METHODS We report a child with a developmental and epileptic encephalopathy phenotype with a pathogenic PPP2R5D variant. This phenotype has not been previously reported. We also reviewed the previously published reports of patients with this disorder. RESULTS Including the index child, 28 cases (15 girls) were identified from nine relevant research items for analysis. All patients had developmental delay. History of seizures was observed in seven patients while macrocephaly was seen in nearly 80% of patients. Nonneurological manifestations were observed in 13 patients with the most common one being ophthalmological manifestations. The most common genetic variation was c.G592A (p.E198K). The common phenotypic associations of this variation were developmental delay, macrocephaly (11/15), and epilepsy (6/15). CONCLUSION PPP2R5D gene variations should be suspected in children with developmental delay, autistic features, macrocephaly with or without epilepsy in the absence of any clear etiology. Dysmorphic features might provide a diagnostic clue. DEE phenotype may also be the presenting feature and might be an underreported entity.
Collapse
Affiliation(s)
- Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amrit Kaur
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Lokesh Saini
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Pradip Paria
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sameer Vyas
- Department of Radiodiagnosis and Imaging (Section of Neuroimaging and Interventional Radiology), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit R Sharma
- Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitendra K Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
10
|
Tan YJ, Wong BYX, Vaidyanathan R, Sreejith S, Chia SY, Kandiah N, Ng ASL, Zeng L. Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-Onset Alzheimer's Disease and Frontotemporal Dementia. J Alzheimers Dis Rep 2021; 5:805-813. [PMID: 34870106 PMCID: PMC8609483 DOI: 10.3233/adr-210311] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: micro-RNAs (miRNAs) are stable, small, non-coding RNAs enriched in exosomes. Their variation in levels according to different disease etiologies have made them a promising diagnostic biomarker for neurodegenerative diseases such as Alzheimer’s disease (AD). Altered expression of miR-320a, miR-328-3p, and miR-204-5p have been reported in AD and frontotemporal dementia (FTD). Objective: To determine their reliability, we aimed to examine the expression of three exosomal miRNAs isolated from cerebrospinal fluid (CSF) of patients with young-onset AD and FTD (< 65 years), correlating with core AD biomarkers and cognitive scores. Methods: Exosomes were first isolated from CSF samples of 48 subjects (8 controls, 28 AD, and 12 FTD), followed by RNA extraction and quantitative PCR to measure the expression of miR-320a, miR-328-3p, and miR-204-5p. Results: Expression of all three markers (miR-320a (p = 0.005), miR-328-3p (p = 0.049), and miR-204-5p (p = 0.036)) were significantly lower in AD versus controls. miR-320a was reduced in FTD versus controls (p = 0.049) and miR-328-3p was lower in AD versus FTD (p = 0.054). Notably, lower miR-328-3p levels could differentiate AD from FTD and controls with an AUC of 0.702, 95% CI: 0.534– 0.870, and showed significant correlation with lower CSF Aβ42 levels (r = 0.359, p = 0.029). Pathway enrichment analysis identified potential targets of miR-328-3p implicated in the AMPK signaling pathway linked to amyloid-β and tau metabolism in AD. Conclusion: Overall, we demonstrated miR-320a and miR-204-5p as reliable biomarkers for AD and FTD and report miR-328-3p as a novel AD biomarker.
Collapse
Affiliation(s)
- Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Benjamin Y X Wong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | | | - Sivaramapanicker Sreejith
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, Singapore
| | - Sook Yoong Chia
- Neural Stem Cell Research Lab, Department of Research, National Neuroscience Institute, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Department of Research, National Neuroscience Institute, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| |
Collapse
|
11
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
12
|
Stojakovic A, Chang SY, Nesbitt J, Pichurin NP, Ostroot MA, Aikawa T, Kanekiyo T, Trushina E. Partial Inhibition of Mitochondrial Complex I Reduces Tau Pathology and Improves Energy Homeostasis and Synaptic Function in 3xTg-AD Mice. J Alzheimers Dis 2021; 79:335-353. [PMID: 33285637 PMCID: PMC7902954 DOI: 10.3233/jad-201015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Accumulation of hyperphosphorylated tau (pTau) protein is associated with synaptic dysfunction in Alzheimer’s disease (AD). We previously demonstrated that neuroprotection in familial mouse models of AD could be achieved by targeting mitochondria complex I (MCI) and activating the adaptive stress response. Efficacy of this strategy on pTau-related pathology remained unknown. Objective: To investigate the effect of specific MCI inhibitor tricyclic pyrone compound CP2 on levels of human pTau, memory function, long term potentiation (LTP), and energy homeostasis in 18-month-old 3xTg-AD mice and explore the potential mechanisms. Methods: CP2 was administered to male and female 3xTg-AD mice from 3.5–18 months of age. Cognitive function was assessed using the Morris water maze. Glucose metabolism was measured in periphery using a glucose tolerance test and in the brain using fluorodeoxyglucose F18 positron-emission tomography (FDG-PET). LTP was evaluated using electrophysiology in the hippocampus. The expression of key proteins associated with neuroprotective mechanisms were assessed by western blotting. Results: Chronic CP2 treatment restored synaptic activity in female 3xTg-AD mice; cognitive function, levels of synaptic proteins, glucose metabolism, and energy homeostasis were improved in male and female 3xTg-AD mice. Significant reduction of human pTau in the brain was associated with increased activity of protein phosphatase of type 2A (PP2A), and reduced activity of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β). Conclusion: CP2 treatment protected against synaptic dysfunction and memory impairment in symptomatic 3xTg-AD mice, and reduced levels of human pTau, indicating that targeting mitochondria with small molecule specific MCI inhibitors represents a promising strategy for treating AD.
Collapse
Affiliation(s)
| | - Su-Youne Chang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Mark A Ostroot
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Cáceres A, González JR. Female-specific risk of Alzheimer's disease is associated with tau phosphorylation processes: A transcriptome-wide interaction analysis. Neurobiol Aging 2020; 96:104-108. [PMID: 32977080 DOI: 10.1016/j.neurobiolaging.2020.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023]
Abstract
The levels of tau phosphorylation differ between sexes in Alzheimer's disease (AD). Transcriptome-wide associations of sex by disease interaction could indicate whether specific genes underlie sex differences in tau pathology; however, no such study has been reported yet. We report the first analysis of the effect of the interaction between disease status and sex on differential gene expression, meta-analyzing transcriptomic data from the 3 largest publicly available case-control studies (N = 785) in the brain to date. A total of 128 genes, significantly associated with sex-AD interactions, were enriched in phosphoproteins (false discovery rate (FDR) = 0.001). High and consistent associations were found for the overexpressions of NCL (FDR = 0.002), whose phosphorylated protein generates an epitope against neurofibrillary tangles and KIF2A (FDR = 0.005), a microtubule-associated motor protein gene. Transcriptome-wide interaction analyses suggest sex-modulated tau phosphorylation, at sites like Thr231, Ser199, or Ser202 that could increase the risk of women to AD and indicate sex-specific strategies for intervention and prevention.
Collapse
Affiliation(s)
- Alejandro Cáceres
- Division of Noncommunicable Diseases, Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain; Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Juan R González
- Division of Noncommunicable Diseases, Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain; Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Mathematics, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Su H, Xiaohui X, He X, Liu C, Wang G, Zhou C. The miR-455-5p/ERα36 axis regulates mammalian neuronal viability and axonal regeneration. Neurosci Lett 2020; 735:135159. [DOI: 10.1016/j.neulet.2020.135159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022]
|
15
|
Kim CY, Wirth T, Hubsch C, Németh AH, Okur V, Anheim M, Drouot N, Tranchant C, Rudolf G, Chelly J, Tatton-Brown K, Blauwendraat C, Vonsattel JPG, Cortes E, Alcalay RN, Chung WK. Early-Onset Parkinsonism Is a Manifestation of the PPP2R5D p.E200K Mutation. Ann Neurol 2020; 88:1028-1033. [PMID: 32743835 DOI: 10.1002/ana.25863] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
PPP2R5D-related neurodevelopmental disorder is characterized by a range of neurodevelopmental and behavioral manifestations. We report the association of early-onset parkinsonism with the PPP2R5D p.E200K mutation. Clinical characterization and exome sequencing were performed on three patients, with postmortem neuropathologic examination for one patient. All patients had mild developmental delay and developed levodopa-responsive parkinsonism between the ages of 25 and 40 years. The PPP2R5D c.598G>A (p.E200K) mutation was identified in all patients. Neuropathologic examination demonstrated uneven, focally severe neuronal loss and gliosis in the substantia nigra pars compacta, without Lewy bodies. Our findings suggest the PPP2R5D p.E200K mutation to be a possible new cause of early-onset parkinsonism. ANN NEUROL 2020;88:1028-1033.
Collapse
Affiliation(s)
- Christine Y Kim
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA.,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Thomas Wirth
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospital, London, UK.,Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Cécile Hubsch
- Fondation Ophtalmologique A. de Rothschild, Paris, France
| | - Andrea H Németh
- Oxford University Hospitals NHS Trust and University of Oxford, Oxford, UK
| | - Volkan Okur
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Gabrielle Rudolf
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Jamel Chelly
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Laboratoire de diagnostic génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jean Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Etty Cortes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Xie F, Li F, Li R, Liu Z, Shi J, Zhang C, Dong N. Inhibition of PP2A enhances the osteogenic differentiation of human aortic valvular interstitial cells via ERK and p38 MAPK pathways. Life Sci 2020; 257:118086. [PMID: 32679147 DOI: 10.1016/j.lfs.2020.118086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
Abstract
AIMS To investigate the role of PP2A in calcified aortic valve disease (CAVD). MATERIALS AND METHODS The expressions of PP2A subunits were detected by real-time polymerase chain reaction (RT-PCR) and western blot in aortic valves from patients with CAVD and normal controls, the activities of PP2A were analyzed by commercial assay kit at the same time. Aortic valve calcification of mice was evaluated through histological and echocardiographic analysis. ApoE-/- mice and ApoE-/- mice injected intraperitoneally with PP2A inhibitor LB100 were fed a high-cholesterol diet for 24 weeks. Immunofluorescent staining was used to locate the cell-type in which PP2A activity was decreased, the PP2A activity of valvular interstitial cells (VICs) treated with osteogenic induction medium was assessed by western blot and commercial assay kit. After changing the activity of VICs through pharmacologic and genetic intervention, the osteoblast differentiation and mineralization were assessed by western blot and Alizarin Red staining. Finally, the mechanism was clarified by using several specific inhibitors. KEY FINDINGS PP2A activity was decreased both in calcified aortic valves and human VICs under osteogenic induction. The PP2A inhibitor LB100 aggravated the aortic valve calcification of mice. Furthermore, PPP2CA overexpression inhibited osteogenic differentiation of VICs, whereas PPP2CA knockdown promoted the process. Further study revealed that the ERK/p38 MAPKs signaling pathways mediated the osteogenic differentiation of VICs induced by PP2A inactivation. SIGNIFICANCE This study demonstrated that PP2A plays an important role in CAVD pathophysiology, PP2A activation may provide a novel strategy for the pharmacological treatment of CAVD.
Collapse
Affiliation(s)
- Fei Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Biswas D, Cary W, Nolta JA. PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. Int J Mol Sci 2020; 21:ijms21041286. [PMID: 32074998 PMCID: PMC7072873 DOI: 10.3390/ijms21041286] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein Phosphatase 2 Regulatory Subunit B′ Delta (PPP2R5D)-related intellectual disability (ID) and neurodevelopmental delay results from germline de novo mutations in the PPP2R5D gene. This gene encodes the protein PPP2R5D (also known as the B56 delta subunit), which is an isoform of the subunit family B56 of the enzyme serine/threonine-protein phosphatase 2A (PP2A). Clinical signs include intellectual disability (ID); autism spectrum disorder (ASD); epilepsy; speech problems; behavioral challenges; and ophthalmologic, skeletal, endocrine, cardiac, and genital malformations. The association of defective PP2A activity in the brain with a wide range of severity of ID, along with its role in ASD, Alzheimer’s disease, and Parkinson’s-like symptoms, have recently generated the impetus for further research into mutations within this gene. PP2A, together with protein phosphatase 1 (PP1), accounts for more than 90% of all phospho-serine/threonine dephosphorylations in different tissues. The specificity for a wide variety of substrates is determined through nearly 100 different PP2A holoenzymes that are formed by at least 23 types of regulatory B subunits, and two isoforms each of the catalytic subunit C and the structural subunit A. In the mammalian brain, PP2A-mediated protein dephosphorylation plays an important role in learning and memory. The PPP2R5D subunit is highly expressed in the brain and the PPP2A–PPP2R5D holoenzyme plays an important role in maintaining neurons and regulating neuronal signaling. From 2015 to 2017, 25 individuals with PPP2R5D-related developmental disorder were diagnosed. Since then, Whole-Exome Sequencing (WES) has helped to identify more unrelated individuals clinically diagnosed with a neurodevelopmental disorder with pathological variants of PPP2R5D. In this review, we discuss the current understanding of the clinical and genetic aspects of the disorder in the context of the known functions of the PP2A–PPP2R5D holoenzyme in the brain, as well as the pathogenic mutations in PPP2R5D that lead to deficient PP2A–PPP2R5D dephosphorylation and their implications during development and in the etiology of autism, Parkinson’s disease, Alzheimer’s disease, and so forth. In the future, tools such as transgenic animals carrying pathogenic PPP2R5D mutations, and patient-derived induced pluripotent stem cell lines need to be developed in order to fully understand the effects of these mutations on different neural cell types.
Collapse
Affiliation(s)
- Dayita Biswas
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
| | - Whitney Cary
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| | - Jan A. Nolta
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| |
Collapse
|
18
|
Li J, An R, Lai S, Li L, Liu S, Xu H. Dysregulation of PP2A-Akt interaction contributes to Sucrose non-fermenting related kinase (SNRK) deficiency induced insulin resistance in adipose tissue. Mol Metab 2019; 28:26-35. [PMID: 31420304 PMCID: PMC6822176 DOI: 10.1016/j.molmet.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Objective We previously identified Sucrose non-fermenting related kinase (SNRK) as a regulator of adipose inflammation and energy homeostasis. In this study, we aimed to investigate the role of SNRK in insulin signaling in white (WAT) and brown adipose tissue (BAT). Methods Adipose tissue specific (SNRK deficiency in both WAT and BAT) and BAT specific knockout mouse models were employed. Phosphoproteomic studies were conducted to identify the novel SNRK pathway regulating insulin signaling in adipose tissue. Results SNRK ablation is sufficient to inhibit insulin-stimulated AKT phosphorylation and glucose uptake in both WAT and BAT. Phosphoproteomic study using SNRK deficient versus wild type BAT samples revealed 99% reduction of phosphorylation on Serine 80 of PPP2R5D, the regulatory subunit of Protein phosphatase 2A (PP2A). Drastic (142.5-fold) induction of phosphorylation on Serine 80 of PPP2R5D was observed in SNRK-deficient primary brown adipocytes overexpressing SNRK compared to control protein. In vitro phosphorylation reaction followed by targeted phosphoproteomic detection further confirms that human recombinant SNRK is able to phosphorylate human recombinant PPP2R5D. Dephosphorylated PPP2R5D promotes constitutive assembly of PP2A-AKT complex, therefore inhibits insulin-induced AKT phosphorylation and subsequent glucose uptake in both BAT and WAT. Knockdown of PPP2R5D in adipocytes can improve insulin sensitivity in adipocytes without SNRK expression. Conclusions Our findings demonstrate that SNRK regulates insulin signaling through controlling PPP2R5D phosphorylation, which subsequently impacts PP2A activity and then AKT phosphorylation in both WAT and BAT. SNRK may represent a promising potential target for treating insulin resistance-related metabolic disorders. SNRK is essential for insulin-stimulated AKT phosphorylation in adipose tissue. SNRK ablation causes insulin resistance in both white and brown adipose tissue. Phosphoproteomic studies identify PPP2R5D as a novel substrate of SNRK. SNRK regulates PP2A-AKT interaction through PPP2R5D phosphorylation. Enhanced PP2A activity by SNRK ablation inhibits AKT phosphorylation.
Collapse
Affiliation(s)
- Jie Li
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA; National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Ran An
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Linlin Li
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA; Department of Epidemiology & Biostatistics, School of Public Health, Zhengzhou University, China
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Haiyan Xu
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA.
| |
Collapse
|
19
|
UBE3A-mediated PTPA ubiquitination and degradation regulate PP2A activity and dendritic spine morphology. Proc Natl Acad Sci U S A 2019; 116:12500-12505. [PMID: 31160454 DOI: 10.1073/pnas.1820131116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deficiency in the E3 ubiquitin ligase UBE3A leads to the neurodevelopmental disorder Angelman syndrome (AS), while additional dosage of UBE3A is linked to autism spectrum disorder. The mechanisms underlying the downstream effects of UBE3A gain or loss of function in these neurodevelopmental disorders are still not well understood, and effective treatments are lacking. Here, using stable-isotope labeling of amino acids in mammals and ubiquitination assays, we identify PTPA, an activator of protein phosphatase 2A (PP2A), as a bona fide ubiquitin ligase substrate of UBE3A. Maternal loss of Ube3a (Ube3a m-/p+) increased PTPA level, promoted PP2A holoenzyme assembly, and elevated PP2A activity, while maternal 15q11-13 duplication containing Ube3a down-regulated PTPA level and lowered PP2A activity. Reducing PTPA level in vivo restored the defects in dendritic spine maturation in Ube3a m-/p+ mice. Moreover, pharmacological inhibition of PP2A activity with the small molecule LB-100 alleviated both reduction in excitatory synaptic transmission and motor impairment in Ube3a m-/p+ mice. Together, our results implicate a critical role of UBE3A-PTPA-PP2A signaling in the pathogenesis of UBE3A-related disorders and suggest that PP2A-based drugs could be potential therapeutic candidates for treatment of UBE3A-related disorders.
Collapse
|
20
|
Javadpour P, Dargahi L, Ahmadiani A, Ghasemi R. To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling. Cell Mol Life Sci 2019; 76:2277-2297. [PMID: 30874837 PMCID: PMC11105459 DOI: 10.1007/s00018-019-03063-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has reached the consensus that the balance of phosphorylation state of signaling molecules is a pivotal point in the regulation of cell signaling. Therefore, characterizing elements (kinases-phosphatases) in the phosphorylation balance are at great importance. However, the role of phosphatase enzymes is less investigated than kinase enzymes. PP2A is a member of serine/threonine protein phosphatase that its imbalance has been reported in neurodegenerative diseases. Therefore, we reviewed the superfamily of phosphatases and more specifically PP2A, its regulation, and physiological functions participate in CNS. Thereafter, we discussed the latest findings about PP2A dysregulation in Alzheimer and Parkinson diseases and possible interplay between this phosphatase and insulin signaling pathways. Finally, activating/inhibitory modulators for PP2A activity as well as experimental methods for PP2A study have been reviewed.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
22
|
Wang HB, Li T, Ma DZ, Zhi H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells. FASEB J 2018; 32:fj201701386. [PMID: 29932870 DOI: 10.1096/fj.201701386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuroblastoma is the most common cancer in infants and the third most common cancer in children after leukemia and brain cancer. The purpose of our study was to investigate the effects of estrogen receptor (ER)-α36 gene silencing on tau protein phosphorylation, cell proliferation, and cell apoptosis in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with estrogen or left untreated, to investigate the effects of estrogen stimulation on ERα36 and the ERK/protein B kinase (AKT) signaling pathway. ERα36 mRNA expressions were detected by quantitative RT-PCR. A phosphatase kit was used to test protein phosphatase (PP)-2A activity before and after treatment. Western blot analysis was conducted to detect protein expression of ERα36; tau protein; phosphorylated- tau (p-tau) at site Thr231 [p-tau (Thr231)]; glycogen synthase kinase (GSK)3β and its specificity sites (Tyr216 and Ser9); Cyclin Dl; proliferating cell nuclear antigen (PCNA); B-cell lymphoma (Bcl)-2; and Bcl-2-associated X protein (Bax). A cell-counting kit (CCK)-8 assay was used to determine cell viability. Cell apoptosis and rate of tumor growth and volume were determined by Annexin V-FITC/PI staining and a xenotransplanted tumor model in nude mice. Results show that without estrogen stimulation, ERα36 was inactivated. When stimulated by estrogen, expression of ERα36, PP2A, p-GSK3β (Ser9)/total protein ( t)-GSK3β, Cyclin Dl, PCNA, and Bcl-2 were up-regulated, and p-GSK3β (Tyr216)/ t-GSK3β expression was down-regulated, as was p-tau (Thr231) and Bax expression. The expression of p-ERK/ERK, p-AKT/AKT, p-methyl ethyl ketone (MEK)/MEK, and p-mammalian target of rapamycin (mTOR)/mTOR expression was up-regulated, suggesting that the ERK/AKT signaling pathway is activated. Cell proliferation was also accelerated, whereas apoptosis was inhibited with stimulation by estrogen. However, we found that the effects of silencing ERα36 on the expression of related intracellular factors had no association with estrogen. Our study demonstrates that ERα36 gene silencing can inhibit the activation of the ERK/AKT signaling pathway, increase tau protein phosphorylation, decrease cell vitality and tumorigenicity, and promote apoptosis of human neuroblastoma SH-SY5Y cells.-Wang, H.-B., Li, T., Ma, D.-Z., Zhi, H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Hong-Bin Wang
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Tao Li
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Dong-Zhou Ma
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Hua Zhi
- Department of Cardiology, Affiliated Hospital, Hebei University of Engineering, Handan, China
| |
Collapse
|
23
|
Taleski G, Sontag E. Protein phosphatase 2A and tau: an orchestrated 'Pas de Deux'. FEBS Lett 2017; 592:1079-1095. [PMID: 29121398 DOI: 10.1002/1873-3468.12907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
The neuronal microtubule-associated protein tau serves a critical role in regulating axonal microtubule dynamics to support neuronal and synaptic functions. Furthermore, it contributes to glutamatergic regulation and synaptic plasticity. Emerging evidence also suggests that tau serves as a signaling scaffold. Tau function and subcellular localization are tightly regulated, in part, by the orchestrated interplay between phosphorylation and dephosphorylation events. Significantly, protein phosphatase type 2A (PP2A), encompassing the regulatory PPP2R2A (or Bα) subunit, is a major brain heterotrimeric enzyme and the primary tau Ser/Thr phosphatase in vivo. Herein, we closely examine how the intimate and compartmentalized interactions between PP2A and tau regulate tau phosphorylation and function, and play an essential role in neuronal homeostasis. We also review evidence supporting a strong link between deregulation of tau-PP2A functional interactions and the molecular underpinnings of various neurodegenerative diseases collectively called tauopathies. Lastly, we discuss the opportunities and associated challenges in more specifically targeting PP2A-tau interactions for drug development for tauopathies.
Collapse
Affiliation(s)
- Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
24
|
Oliveira JM, da Cruz e Silva CB, Müller T, Martins TS, Cova M, da Cruz e Silva OAB, Henriques AG. Toward Neuroproteomics in Biological Psychiatry: A Systems Approach Unravels Okadaic Acid-Induced Alterations in the Neuronal Phosphoproteome. ACTA ACUST UNITED AC 2017; 21:550-563. [DOI: 10.1089/omi.2017.0108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Joana Machado Oliveira
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | | | - Thorsten Müller
- Cell Signaling, Biochemistry II—Molecular Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Tânia Soares Martins
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Marta Cova
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Odete A. B. da Cruz e Silva
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
25
|
Hoffman A, Taleski G, Sontag E. The protein serine/threonine phosphatases PP2A, PP1 and calcineurin: A triple threat in the regulation of the neuronal cytoskeleton. Mol Cell Neurosci 2017; 84:119-131. [PMID: 28126489 DOI: 10.1016/j.mcn.2017.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/08/2023] Open
Abstract
The microtubule, F-actin and neurofilament networks play a critical role in neuronal cell morphogenesis, polarity and synaptic plasticity. Significantly, the assembly/disassembly and stability of these cytoskeletal networks is crucially modulated by protein phosphorylation and dephosphorylation events. Herein, we aim to more closely examine the role played by three major neuronal Ser/Thr protein phosphatases, PP2A, PP1 and calcineurin, in the homeostasis of the neuronal cytoskeleton. There is strong evidence that these enzymes interact with and dephosphorylate a variety of cytoskeletal proteins, resulting in major regulation of neuronal cytoskeletal dynamics. Conversely, we also discuss how multi-protein cytoskeletal scaffolds can also influence the regulation of these phosphatases, with important implications for neuronal signalling and homeostasis. Not surprisingly, deregulation of these cytoskeletal scaffolds and phosphatase dysfunction are associated with many neurological diseases.
Collapse
Affiliation(s)
- Alexander Hoffman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
26
|
Dongsheng H, Zhuo Z, Jiamin L, Hailan M, Lijuan H, Fan C, Dan Y, He Z, Yun X. Proteomic Analysis of the Peri-Infarct Area after Human Umbilical Cord Mesenchymal Stem Cell Transplantation in Experimental Stroke. Aging Dis 2016; 7:623-634. [PMID: 27699085 PMCID: PMC5036957 DOI: 10.14336/ad.2016.0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022] Open
Abstract
Among various therapeutic approaches for stroke, treatment with human umbilical cord mesenchymal stem cells (hUC-MSCs) has acquired some promising results. However, the underlying mechanisms remain unclear. We analyzed the protein expression spectrum of the cortical peri-infarction region after ischemic stroke followed by treatment with hUC-MSCs, and found 16 proteins expressed differentially between groups treated with or without hUC-MSCs. These proteins were further determined by Gene Ontology term analysis and network with CD200-CD200R1, CCL21-CXCR3 and transcription factors. Three of them: Abca13, Grb2 and Ptgds were verified by qPCR and ELISA. We found the protein level of Abca13 and the mRNA level of Grb2 consistent with results from the proteomic analysis. Finally, the function of these proteins was described and the potential proteins that deserve to be further studied was also highlighted. Our data may provide possible underlying mechanisms for the treatment of stroke using hUC-MSCs.
Collapse
Affiliation(s)
- He Dongsheng
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhang Zhuo
- 4Department of Gastroenterology, Children's Hospital of Nanjing, Nanjing Medical University, Nanjing 210008, China
| | - Lao Jiamin
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Meng Hailan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Han Lijuan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Chen Fan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Ye Dan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhang He
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Xu Yun
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| |
Collapse
|
27
|
Sung HY, Choi BO, Jeong JH, Kong KA, Hwang J, Ahn JH. Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer's Disease. PLoS One 2016; 11:e0153156. [PMID: 27058954 PMCID: PMC4825942 DOI: 10.1371/journal.pone.0153156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 03/24/2016] [Indexed: 01/02/2023] Open
Abstract
To identify epigenetically regulated genes involved in the pathogenesis of Alzheimer’s disease (AD) we analyzed global mRNA expression and methylation profiles in amyloid precursor protein (APP)-Swedish mutant-expressing AD model cells, H4-sw and selected heme oxygenase-1 (HMOX1), which is associated with pathological features of AD such as neurofibrillary tangles and senile plaques. We examined the epigenetic regulatory mechanism of HMOX1 and its application as a diagnostic and prognostic biomarker for AD. Our results show that HMOX1 mRNA and protein expression was approximately 12.2-fold and 7.9-fold increased in H4-sw cells, respectively. Increased HMOX1 expression was also detected in the brain, particularly the hippocampus, of AD model transgenic mice. However, the methylation of specific CpG sites within its promoter, particularly at CpG located −374 was significantly decreased in H4-sw cells. Treatment of neuroglioma cells with the demethylating agent 5-aza-2′-deoxycytidine resulted in reduced methylation of HMOX1 promoter accompanied by enhanced HMOX1 expression strongly supporting DNA methylation-dependent transcriptional regulation of HMOX1. Toxic Aβ-induced aberrant hypomethylation of HMOX1 at −374 promoter CpG site was correlated with increased HMOX1expression. In addition to neuroglioma cells, we also found Aβ-induced epigenetic regulation of HMOX1 in human T lymphocyte Jurkat cells. We evaluated DNA methylation status of HMOX1 at −374 promoter CpG site in blood samples from AD patients, patients with mild cognitive impairment (MCI), and control individuals using quantitative methylation-specific polymerase chain reaction. We observed lower methylation of HMOX1 at the −374 promoter CpG site in AD patients compared to MCI and control individuals, and a correlation between Mini-Mental State Examination score and demethylation level. Receiver operating characteristics analysis revealed good discrimination of AD patients from MCI patients and control individuals. Our findings suggest that the methylation status of HMOX1 at a specific promoter CpG site is related to AD progression.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Kyoung Ae Kong
- Clinical Trial Center, Ewha Womans University Medical Center, Seoul, Republic of Korea
| | - Jinha Hwang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Biochemistry, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Zha GB, Shen M, Gu XS, Yi S. Changes in microtubule-associated protein tau during peripheral nerve injury and regeneration. Neural Regen Res 2016; 11:1506-1511. [PMID: 27857758 PMCID: PMC5090857 DOI: 10.4103/1673-5374.191227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, whether tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in peripheral nerve repair and regeneration.
Collapse
Affiliation(s)
- Guang-Bin Zha
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mi Shen
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Song Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
29
|
Shang L, Henderson LB, Cho MT, Petrey DS, Fong CT, Haude KM, Shur N, Lundberg J, Hauser N, Carmichael J, Innis J, Schuette J, Wu YW, Asaikar S, Pearson M, Folk L, Retterer K, Monaghan KG, Chung WK. De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism. Neurogenetics 2015; 17:43-9. [PMID: 26576547 DOI: 10.1007/s10048-015-0466-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase and is involved in a broad range of cellular processes. PPP2R5D is a regulatory B subunit of PP2A and plays an important role in regulating key neuronal and developmental regulation processes such as PI3K/AKT and glycogen synthase kinase 3 beta (GSK3β)-mediated cell growth, chromatin remodeling, and gene transcriptional regulation. Using whole-exome sequencing (WES), we identified four de novo variants in PPP2R5D in a total of seven unrelated individuals with intellectual disability (ID) and other shared clinical characteristics, including autism spectrum disorder, macrocephaly, hypotonia, seizures, and dysmorphic features. Among the four variants, two have been previously reported and two are novel. All four amino acids are highly conserved among the PP2A subunit family, and all change a negatively charged acidic glutamic acid (E) to a positively charged basic lysine (K) and are predicted to disrupt the PP2A subunit binding and impair the dephosphorylation capacity. Our data provides further support for PPP2R5D as a genetic cause of ID.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | | | | | - Donald S Petrey
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Chin-To Fong
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | - Jeffrey Innis
- Division of Pediatric Genetics, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jane Schuette
- Division of Pediatric Genetics, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yvonne W Wu
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
30
|
Shim U, Kim HN, Lee H, Oh JY, Sung YA, Kim HL. Pathway Analysis Based on a Genome-Wide Association Study of Polycystic Ovary Syndrome. PLoS One 2015; 10:e0136609. [PMID: 26308735 PMCID: PMC4550465 DOI: 10.1371/journal.pone.0136609] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, and it is affected by both environmental and genetic factors. Although the genetic component of PCOS is evident, studies aiming to identify susceptibility genes have shown controversial results. This study conducted a pathway-based analysis using a dataset obtained through a genome-wide association study (GWAS) to elucidate the biological pathways that contribute to PCOS susceptibility and the associated genes. Methods We used GWAS data on 636,797 autosomal single nucleotide polymorphisms (SNPs) from 1,221 individuals (432 PCOS patients and 789 controls) for analysis. A pathway analysis was conducted using meta-analysis gene-set enrichment of variant associations (MAGENTA). Top-ranking pathways or gene sets associated with PCOS were identified, and significant genes within the pathways were analyzed. Results The pathway analysis of the GWAS dataset identified significant pathways related to oocyte meiosis and the regulation of insulin secretion by acetylcholine and free fatty acids (all nominal gene-set enrichment analysis (GSEA) P-values < 0.05). In addition, INS, GNAQ, STXBP1, PLCB3, PLCB2, SMC3 and PLCZ1 were significant genes observed within the biological pathways (all gene P-values < 0.05). Conclusions By applying MAGENTA pathway analysis to PCOS GWAS data, we identified significant pathways and candidate genes involved in PCOS. Our findings may provide new leads for understanding the mechanisms underlying the development of PCOS.
Collapse
Affiliation(s)
- Unjin Shim
- Department of Internal Medicine, Seoul Seonam Hospital, Ewha Womans University Medical Center, Seoul, Korea
| | - Han-Na Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyejin Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jee-Young Oh
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Yeon-Ah Sung
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
- * E-mail: (YAS); (HLK)
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
- * E-mail: (YAS); (HLK)
| |
Collapse
|