1
|
Mandal P, Kanthlal SK. Vascular targeting of constituents of commonly used spices and its molecular interactions in endothelial dysfunction: A review. PHYTOCHEMISTRY REVIEWS 2024; 23:1805-1834. [DOI: 10.1007/s11101-024-09939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/23/2024] [Indexed: 05/12/2025]
|
2
|
Li C, Li Y, Huang X, Li S, Sangji K, Gu R. Traditional Tibetan medicine: therapeutic potential in lung diseases. Front Pharmacol 2024; 15:1365911. [PMID: 38567353 PMCID: PMC10986185 DOI: 10.3389/fphar.2024.1365911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Lung diseases have become a major threat to human health worldwide. Despite advances in treatment and intervention in recent years, effective drugs are still lacking for many lung diseases. As a traditional natural medicine, Tibetan medicine has had a long history of medicinal use in ethnic minority areas, and from ancient times to the present, it has a good effect on the treatment of lung diseases and has attracted more and more attention. In this review, a total of 586 Tibetan medicines were compiled through literature research of 25 classical works on Tibetan medicine, drug standards, and some Chinese and English databases. Among them, 33 Tibetan medicines have been studied to show their effectiveness in treating lung diseases. To investigate the uses of these Tibetan medicines in greater depth, we have reviewed the ethnomedicinal, phytochemical and pharmacological properties of the four commonly used Tibetan medicines for lung diseases (rhodiola, gentian, sea buckthorn, liexiang dujuan) and the five most frequently used Tibetan medicines (safflower, licorice, sandalwood, costus, myrobalan). It is expected to provide some reference for the development of new drugs of lung diseases in the future.
Collapse
Affiliation(s)
- Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kangzhuo Sangji
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Kolba N, Tako E. Effective alternatives for dietary interventions for necrotizing enterocolitis: a systematic review of in vivo studies. Crit Rev Food Sci Nutr 2023; 65:811-831. [PMID: 37971890 DOI: 10.1080/10408398.2023.2281623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality among neonates and low birth weight children in the United States. Current treatment options, such as antibiotics and intestinal resections, often result in complications related to pediatric nutrition and development. This systematic review aimed to identify alternative dietary bioactive compounds that have shown promising outcomes in ameliorating NEC in vivo studies conducted within the past six years. Following PRISMA guidelines and registering in PROSPERO (CRD42023330617), we conducted a comprehensive search of PubMed, Scopus, and Web of Science. Our analysis included 19 studies, predominantly involving in vivo models of rats (Rattus norvegicus) and mice (Mus musculus). The findings revealed that various types of compounds have demonstrated successful amelioration of NEC symptoms. Specifically, six studies employed plant phenolics, seven utilized plant metabolites/cytotoxic chemicals, three explored the efficacy of vitamins, and three investigated the potential of whole food extracts. Importantly, all administered compounds exhibited positive effects in mitigating the disease. These results highlight the potential of natural cytotoxic chemicals derived from medicinal plants in identifying and implementing powerful alternative drugs and therapies for NEC. Such approaches have the capacity to impact multiple pathways involved in the development and progression of NEC symptoms.
Collapse
Affiliation(s)
- Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Siriyong T, Ontong JC, Khochitmet L, Naunklab P, Phungtammasan S, Chanwanitsakul S, Terbtothakun P, Voravuthikunchai SP. Successful treatment of refractory erythrodermic psoriasis with traditional Thai herbal medicine. Explore (NY) 2022; 19:396-404. [PMID: 35810121 DOI: 10.1016/j.explore.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Thai herbal formulations have been used traditionally in Thailand for the treatment of psoriasis. However, there is still a lack of scientific data supporting the effects of Thai herbal formulations in psoriasis treatment. OBJECTIVES This study aimed to demonstrate the therapeutic effects of Thai herbal formulations for the treatment of erythrodermic psoriasis. MATERIALS AND METHODS All Thai herbal formulations (haematic tonic, lymphatic treatment, skin treatment) were obtained from a traditional Thai medicine doctor, Mr. Somporn Chanwanitsakul. The effects of Thai herbal formulations in a patient with erythrodermic psoriasis were assessed for four weeks. Primary outcome, psoriasis area and severity index (PASI) and secondary outcome, safety data and dermatology life quality index (DLQI) measurements were evaluated at baseline and four weeks. Then, in vitro biological activities (antioxidant, anti-microbial, cytotoxic effects, and anti-inflammatory) of Thai herbal formulations were determined to promote the therapeutic effects. RESULTS Thai herbal formulations were safe and effective in the treatment of erythrodermic psoriasis and had a modest positive impact on the DQLI of the patient. In addition, in vitro studies have shown that all Thai herbal formulations revealed remarkable anti-oxidant and anti-inflammatory potential to support their therapeutic activities. However, the Thai herbal formulations possessed weak intrinsic antibacterial activities against all tested bacterial strains (MIC and MBC E. coli, S. aureus, S. pyogenes, P. aeruginosa: > 256 µg/ml). CONCLUSION The findings indicated that successful treatment of erythrodermic psoriasis with Thai herbal formulations was involved in their anti-oxidant and anti-inflammatory activities. They could be considered as an alternative treatment for refractory erythrodermic psoriasis.
Collapse
|
5
|
Islam MA, Haque MA, Rahman MA, Hossen F, Reza M, Barua A, Marzan AA, Das T, Kumar Baral S, He C, Ahmed F, Bhattacharya P, Jakariya M. A Review on Measures to Rejuvenate Immune System: Natural Mode of Protection Against Coronavirus Infection. Front Immunol 2022; 13:837290. [PMID: 35371007 PMCID: PMC8965011 DOI: 10.3389/fimmu.2022.837290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2, a novel Corona virus strain, was first detected in Wuhan, China, in December 2019. As of December 16, 2021, almost 4,822,472 people had died and over 236,132,082 were infected with this lethal viral infection. It is believed that the human immune system is thought to play a critical role in the initial phase of infection when the viruses invade the host cells. Although some effective vaccines have already been on the market, researchers and many bio-pharmaceuticals are still working hard to develop a fully functional vaccine or more effective therapeutic agent against the COVID-19. Other efforts, in addition to functional vaccines, can help strengthen the immune system to defeat the corona virus infection. Herein, we have reviewed some of those proven measures, following which a more efficient immune system can be better prepared to fight viral infection. Among these, dietary supplements like- fresh vegetables and fruits offer a plentiful of vitamins and antioxidants, enabling to build of a healthy immune system. While the pharmacologically active components of medicinal plants directly aid in fighting against viral infection, supplementary supplements combined with a healthy diet will assist to regulate the immune system and will prevent viral infection. In addition, some personal habits, like- regular physical exercise, intermittent fasting, and adequate sleep, had also been proven to aid the immune system in becoming an efficient one. Maintaining each of these will strengthen the immune system, allowing innate immunity to become a more defensive and active antagonistic mechanism against corona-virus infection. However, because dietary treatments take longer to produce beneficial effects in adaptive maturation, personalized nutrition cannot be expected to have an immediate impact on the global outbreak.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Microbiology President Abdul Hamid Medical College, Karimganj, Bangladesh
| | - Md. Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md. Arifur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mahin Reza
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abanti Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | | | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Md. Jakariya
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Nasimi Doost Azgomi R, Jazani A, Habibzadeh S, Nasimi Doost Azgomi H, Nasimi Doost Azgomi A, Aghabalaii M. Dose kelofan syrup effective for clinical symptoms and biochemical factorsin COVID-19 patients? A double-blind clinical trials. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Kumar Verma A, Kumar V, Singh S, Goswami BC, Camps I, Sekar A, Yoon S, Lee KW. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomed Pharmacother 2021; 137:111356. [PMID: 33561649 PMCID: PMC7857054 DOI: 10.1016/j.biopha.2021.111356] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
All the plants and their secondary metabolites used in the present study were obtained from Ayurveda, with historical roots in the Indian subcontinent. The selected secondary metabolites have been experimentally validated and reported as potent antiviral agents against genetically-close human viruses. The plants have also been used as a folk medicine to treat cold, cough, asthma, bronchitis, and severe acute respiratory syndrome in India and across the globe since time immemorial. The present study aimed to assess the repurposing possibility of potent antiviral compounds with SARS-CoV-2 target proteins and also with host-specific receptor and activator protease that facilitates the viral entry into the host body. Molecular docking (MDc) was performed to study molecular affinities of antiviral compounds with aforesaid target proteins. The top-scoring conformations identified through docking analysis were further validated by 100 ns molecular dynamic (MD) simulation run. The stability of the conformation was studied in detail by investigating the binding free energy using MM-PBSA method. Finally, the binding affinities of all the compounds were also compared with a reference ligand, remdesivir, against the target protein RdRp. Additionally, pharmacophore features, 3D structure alignment of potent compounds and Bayesian machine learning model were also used to support the MDc and MD simulation. Overall, the study emphasized that curcumin possesses a strong binding ability with host-specific receptors, furin and ACE2. In contrast, gingerol has shown strong interactions with spike protein, and RdRp and quercetin with main protease (Mpro) of SARS-CoV-2. In fact, all these target proteins play an essential role in mediating viral replication, and therefore, compounds targeting aforesaid target proteins are expected to block the viral replication and transcription. Overall, gingerol, curcumin and quercetin own multitarget binding ability that can be used alone or in combination to enhance therapeutic efficacy against COVID-19. The obtained results encourage further in vitro and in vivo investigations and also support the traditional use of antiviral plants preventively.
Collapse
Affiliation(s)
- Akalesh Kumar Verma
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati 781001, Assam, India.
| | - Vikas Kumar
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Sweta Singh
- District Malaria Office, Amingaon, Guwahati, Assam 786031, India
| | | | - Ihosvany Camps
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Minas Gerais 37133-840, Brazil
| | - Aishwarya Sekar
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, Tamil Nadu 600086, India
| | - Sanghwa Yoon
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| |
Collapse
|
8
|
Siriyong T, Phungtammasan S, Jansorn S, Chonsongkram N, Chanwanitsakul S, Subhadhirasakul S, Voravuthikunchai SP. Traditional Thai herbal medicine as an alternative treatment for refractory chronic eczema. Explore (NY) 2020; 16:242-249. [DOI: 10.1016/j.explore.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022]
|
9
|
Yakut HI, Koyuncu E, Cakir U, Tayman C, Koyuncu İ, Taskin Turkmenoglu T, Cakir E, Ozyazici A, Aydogan S, Zenciroglu A. Preventative and therapeutic effects of fennel (Foeniculum vulgare) seed extracts against necrotizing enterocolitis. J Food Biochem 2020; 44:e13284. [PMID: 32510653 DOI: 10.1111/jfbc.13284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
We aimed to understand the efficacy of fennel (Foeniculum vulgare: FV) extract in an experimental necrotizing enterocolitis (NEC) model. Forty-two rat pups were divided into three groups as NEC, NEC treated with fennel extract, and control. At the end of the experiment, tissue samples were taken from the proximal colon and ileum for biochemical and immuno-histological studies including hematoxylin-eosin and Caspase-3-8-9 immunohistochemical staining. Bowel damage and apoptosis were found to be less in the NEC + FV group. Oxidant stress, caspase 3, TNF-α, and IL-6 levels were considerably decreased in the NEC + FV group. Antioxidants were significantly higher in the NEC + FV group more than in the NEC group. Moreover, protein, DNA damage, and lipid peroxidation were found to be decreased in the NEC + FV group compared to the NEC group. PRACTICAL APPLICATIONS: Intense inflammation, oxidant stress, apoptosis, and infection are important in the development of NEC. Fennel has anti-oxidant, anti-inflammatory, antibacterial, antifungal, antiviral, immunomodulatory effects. Fennel extract might be a novel option in the treatment of NEC through its anti-oxidant, anti-inflammatory, anti-apoptotic, and cytoprotective features.
Collapse
Affiliation(s)
- Halil Ibrahim Yakut
- Department of Pediatrics, Ankara Hematology Oncology Children Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Ece Koyuncu
- Department of Neonatology, Dr. Sami Ulus Maternity and Children Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Ufuk Cakir
- Department of Neonatology, Zekai Tahir Burak Maternity Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Cuneyt Tayman
- Department of Neonatology, Zekai Tahir Burak Maternity Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - İsmail Koyuncu
- Faculty of Medicine, Department of Biochemistry, Harran University, Sanlıurfa, Turkey
| | - Tugba Taskin Turkmenoglu
- Department of Pathology, Ankara Yıldırım Beyazıt Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Esra Cakir
- Anesthesiology and Clinical of Critical Care, Ankara Numune Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Ahmet Ozyazici
- Department of Neonatology, Dr. Sami Ulus Maternity and Children Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Seda Aydogan
- Department of Neonatology, Dr. Sami Ulus Maternity and Children Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Aysegul Zenciroglu
- Department of Neonatology, Dr. Sami Ulus Maternity and Children Education and Research Hospital, Health Sciences University, Ankara, Turkey
| |
Collapse
|
10
|
Belabdelli F, Piras A, Bekhti N, Falconieri D, Belmokhtar Z, Merad Y. Chemical Composition and Antifungal Activity of Foeniculum vulgare Mill. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00130-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Wang X, He P, Yi S, Wang C. Thearubigin regulates the production of Nrf2 and alleviates LPS-induced acute lung injury in neonatal rats. 3 Biotech 2019; 9:451. [PMID: 31832298 DOI: 10.1007/s13205-019-1986-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
This study was undertaken to investigate the effect of natural bioactive compound thearubigin on neonatal acute lung injury (ALI) using LPS-induced ALI as a model. We also attempted to understand the possible underlying mechanism. The effect of thearubigin on lung wet-to-dry weight ratio, the activity of LDH, lung histopathology, BALF protein levels, the activity of MPO, production and extravasation of cytokines and oxidative stress were studied. The results showed that thearubigin caused a significant reduction in lung inflammation as evident from lung wet-to-dry weight ratio, BALF protein levels and MPO activity and histopathological analysis. It was further observed that the attenuation in inflammation happened due to a significant reduction in cytokine levels in alveolar cavities. Thearubigin also showed strong antioxidant properties as evidenced by reduced levels of oxygen species such as H2O2, MDA and OH ion. Additionally, the antioxidant response element nuclear factor erythroid-2-related factor 2 (Nrf2) pathway was found to be activated in thearubigin-treated group. These results provided a possible mechanism of antioxidant activity of thearubigin in neonatal ALI. Overall, this study showed that thearubigin can be a natural alternative for the treatment of neonatal ALI. However, further studies are required to understand its mechanism antioxidant and anti-inflammatory action.
Collapse
Affiliation(s)
- Xiang Wang
- 1Department of Emergency, Hainan Provincial People's Hospital, No.8 of Longhua Road, Haikou, 570100 Hainan Province China
| | - Ping He
- 1Department of Emergency, Hainan Provincial People's Hospital, No.8 of Longhua Road, Haikou, 570100 Hainan Province China
| | - Shengyang Yi
- 1Department of Emergency, Hainan Provincial People's Hospital, No.8 of Longhua Road, Haikou, 570100 Hainan Province China
| | - Chundie Wang
- 2Health Center, Hainan Provincial People's Hospital, Haikou, 570100 Hainan Province China
| |
Collapse
|
12
|
Ju M, He H, Chen S, Liu Y, Liu Y, Pan S, Zheng Y, Xuan L, Zhu D, Luo Z. Ulinastatin ameliorates LPS‑induced pulmonary inflammation and injury by blocking the MAPK/NF‑κB signaling pathways in rats. Mol Med Rep 2019; 20:3347-3354. [PMID: 31432172 DOI: 10.3892/mmr.2019.10561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 04/17/2019] [Indexed: 11/05/2022] Open
Abstract
Ulinastatin, a urinary trypsin inhibitor (UTI) is commonly used to treat patients with acute inflammatory disease. However, the underlying mechanisms of its anti‑inflammatory effect in acute lung injury (ALI) are not fully understood. The present study aimed to investigate the protective effect of UTI and explore its potential mechanisms by using a rat model of lipopolysaccharide (LPS)‑induced ALI. Rats were treated with 5 mg/kg LPS by intratracheal instillation. The histological changes in LPS‑induced ALI was evaluated using hematoxylin and eosin staining and the myeloperoxidase (MPO) activity was determined using ELISA. The wet/dry ratio (W/D ratio) of the lungs was used to assess the severity of pulmonary edema and Evans blue dye was used to evaluate the severity of lung vascular leakage. The results demonstrated that LPS administration induced histological changes and significantly increased the lung W/D ratio, MPO activity and Evans blue dye extravasation compared with the control group. However, treatment with UTI attenuated LPS‑induced ALI in rats by modifying histological changes and reducing the lung W/D ratio, MPO activity and Evans blue dye extravasation. In addition, LPS induced the secretion of numerous pro‑inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor‑α, interleukin (IL)‑6, IL‑1β and interferon‑γ; however, these cytokines were strongly reduced following treatment with UTI. In addition, UTI was able to reduce cellular counts in BALF, including neutrophils and leukocytes. Western blotting demonstrated that UTI significantly blocked the LPS‑stimulated MAPK and NF‑κB signaling pathways. The results of the present study indicated that UTI could exert an anti‑inflammatory effect on LPS‑induced ALI by inhibiting the MAPK and NF‑κB signaling pathways, which suggested that UTI may be considered as an effective drug in the treatment of ALI.
Collapse
Affiliation(s)
- Minjie Ju
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Hongyu He
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Song Chen
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yimei Liu
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yujing Liu
- Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Simeng Pan
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yijun Zheng
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lizhen Xuan
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Duming Zhu
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhe Luo
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
Hirsutanol A Attenuates Lipopolysaccharide-Mediated Matrix Metalloproteinase 9 Expression and Cytokines Production and Improves Endotoxemia-Induced Acute Sickness Behavior and Acute Lung Injury. Mar Drugs 2019; 17:md17060360. [PMID: 31213027 PMCID: PMC6627105 DOI: 10.3390/md17060360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
Activated human monocytes/macrophages, which increase the levels of matrix metalloproteinases (MMPs) and pro-inflammatory cytokines, are the essential mechanisms for the progression of sepsis. In the present study, we determined the functions and mechanisms of hirsutanolA (HA), which is isolated from the red alga-derived marine fungus Chondrostereum sp. NTOU4196, on the production of pro-inflammatory mediators produced from lipopolysaccharide (LPS)-treated THP-1 cells. Our results showed that HA suppressed LPS-triggered MMP-9-mediated gelatinolysis and expression of protein and mRNA in a concentration-dependent manner without effects on TIMP-1 activity. Also, HA significantly attenuated the levels of TNF-α, IL-6, and IL-1β from LPS-treated THP-1 cells. Moreover, HA significantly inhibited LPS-mediated STAT3 (Tyr705) phosphorylation, IκBα degradation and ERK1/2 activation in THP-1 cells. In an LPS-induced endotoxemia mouse model, studies indicated that HA pretreatment improved endotoxemia-induced acute sickness behavior, including acute motor deficits and anxiety-like behavior. HA also attenuated LPS-induced phospho-STAT3 and pro-MMP-9 activity in the hippocampus. Notably, HA reduced pathologic lung injury features, including interstitial tissue edema, infiltration of inflammatory cells and alveolar collapse. Likewise, HA suppressed the induction of phospho-STAT3 and pro-MMP-9 in lung tissues. In conclusion, our results provide pharmacological evidence that HA could be a useful agent for treating inflammatory diseases, including sepsis.
Collapse
|
14
|
Ren DL, Wang XB, Hu B. Circadian gene period1b regulates proinflammatory cytokine expression through NF-κB signalling in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 80:528-533. [PMID: 29958979 DOI: 10.1016/j.fsi.2018.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock plays a critical role in regulating the immune system. Our previous publication revealed that a mutation in the circadian gene period1b (per1b) in zebrafish significantly decreased proinflammatory gene expression, particularly under constant darkness (DD) conditions; however, the underlying mechanisms remain unclear. In this study, using per1b-null mutant zebrafish and a larval tail fin injury model, we observed that the loss of per1b resulted in the downregulation expression of proinflammatory cytokines, such as IL-6 and TNF-α, at protein level. Furthermore, the loss of per1b downregulated ERK phosphorylation and inhibited p65 phosphorylation, leading to reduced NF-κB activation, which could downregulate the expression of proinflammatory cytokines, such as IL-6 and TNF-α, in zebrafish. These results provided insight into the communication between the circadian clock and immune functions.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| | - Xiao-Bo Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| |
Collapse
|
15
|
Rezayat SM, Dehpour AR, Motamed SM, Yazdanparast M, Chamanara M, Sahebgharani M, Rashidian A. Foeniculum vulgare essential oil ameliorates acetic acid-induced colitis in rats through the inhibition of NF-kB pathway. Inflammopharmacology 2017; 26:851-859. [PMID: 29067571 DOI: 10.1007/s10787-017-0409-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
AIM The aim of the present study is to investigate the protective effects of Foeniculum vulgare essential oil on intestinal inflammation through the inhibition of NF-kB pathway in acetic acid-induced rat colitis. METHODS Acute colitis was induced by intra-rectal administration of 2 mL of diluted acetic acid (4%) solution. Two hours after the induction of colitis, 0.2% tween 80 in normal saline, dexamethasone (2 mg/kg) and F. vulgare essential oil (100, 200, 400 mg/kg) were administered to the animals by oral gavage and continued for 5 consecutive days. Assessment of macroscopic and microscopic lesions was done. MPO activity was evaluated by biochemical method. Furthermore, TNF-α activity was detected by immunohistochemistry (IHC) and the expression level of p-NF-kB p65 protein was measured by western blot analysis. RESULTS Dexamethasone and F. vulgare essential oil (200, 400 mg/kg) reduced the macroscopic and microscopic lesions compared to the acetic acid group (p < 0.01, p < 0.001). In addition, these agents decreased the activity of MPO (p < 0.01, p < 0.001) and the expression of TNF-α positive cells (p < 0.05, p < 0.01, p < 0.001) in the colon tissue compared to acetic acid group. Furthermore, they inhibited acetic acid-induced expression of p-NF-kB p65 protein (p < 0.05, p < 0.001). CONCLUSION It is proposed that the anti-inflammatory activity of F. vulgare essential oil on acetic acid-induced colitis in rats may involve the inhibition of NF-kB pathway.
Collapse
Affiliation(s)
- Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi Motamed
- Department of Pharmacognosy, School of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Maryam Yazdanparast
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mousa Sahebgharani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
16
|
Wu G, Dai X, Li X, Jiang H. ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF RHAMNAZIN ON LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY AND INFLAMMATION IN RATS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638883 PMCID: PMC5471467 DOI: 10.21010/ajtcam.v14i4.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Acute Lung Injury (ALI) results into severe inflammation and oxidative stress to the pulmonary tissue. Rhamnazin is a natural flavonoid and known for its antioxidant and anti-inflammatory properties. Materials and methods: The antioxidative and anti-inflammatory properties rhamnazin were tested for protection against the acute lung injury. We investigated whether rhamnazin improves the lipopolysaccharide (LPS)-induced ALI in an animal model (rat). We also studied the probable molecular mechanism of action of rhamnazin. Rhamnazin was injected intraperitoneally (i.p.) (5, 10 and 20 mg/kg) two days before intratracheal LPS challenge (5mg/kg). The changes in lung wet-to-dry weight ratio, LDH activity, pulmonary histopathology, BALF protein concentration, MPO activity, oxidative stress, cytokine production were estimated. Results: The results showed a significant attenuation of all the inflammatory parameters and a marked improvement in the pulmonary histopathology in the animal groups pretreated with rhamnazin. The rhamnazin pretreated group also showed activation of Nrf2 pathway and attenuation of ROS such as H2O2, MDA and hydroxyl ion. These results indicated that rhamnazin could attenuate the symptoms of ALI in rats due to its strong antioxidant and anti-inflammatory properties. Conclusion: The results strongly demonstrated that rhamnazin provides protection against LPS-induced ALI. The underlying mechanisms of its anti-inflammatory action may include inhibition of Nrf2 mediated antioxidative pathway.
Collapse
Affiliation(s)
- GuoRong Wu
- Department of respiratory medicine, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu 213200, China
| | - XiaoPing Dai
- Department of respiratory medicine, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu 213200, China
| | - XiangRong Li
- Department of respiratory medicine, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu 213200, China
| | - HePing Jiang
- Department of respiratory medicine, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu 213200, China
| |
Collapse
|
17
|
Shin SJ, Lee KH, Chung KS, Cheon SY, An HJ. The traditional Korean herbal medicine Ga-Gam-Nai-Go-Hyan suppresses testosterone-induced benign prostatic hyperplasia by regulating inflammatory responses and apoptosis. Exp Ther Med 2017; 13:1025-1031. [PMID: 28450936 DOI: 10.3892/etm.2017.4088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2016] [Indexed: 11/06/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a pathological condition that affects the majority of men above the age of 50 years. Pharmacological agents are typically used to treat BPH; however, there are currently no pharmacological agents that are able to completely cure BPH without causing adverse side effects. As a result of these side effects, there is a great interest in developing effective herbal medicines that are able to inhibit the progression of BPH and are safe for long-term use. Ga-Gam-Nai-Go-Hyan (GGN) is a traditional Korean herbal medicine that has been widely used to treat BPH; however, no biological studies have been performed to elucidate the efficacy of GGN. The aim of the present study was to evaluate the efficacy of GGN as a treatment for BPH. GGN administration was demonstrated to significantly decrease prostate weight (P<0.001), the relative prostate weight ratio (P<0.001) and the ratio of prostate weight to body weight (P<0.001). In addition, GGN treatment was revealed to suppress testosterone and dihydrotestosterone serum levels (P<0.001) and the growth of prostatic tissue. GGN also decreased the levels of the two inflammatory proteins (P<0.05), inducible nitric oxide synthase and cyclooxygenase-2, decreased the levels of the two apoptotic suppressors (P<0.05) B-cell lymphoma (Bcl)-2 and Bcl-xL and increased the levels of the pro-apoptotic factors (P<0.05) Bcl-2-associated X protein, caspase-3, caspase-8, Fas, Fas ligand and Fas-associated protein with death domain. The results of the present study suggested that GGN may have suppressive effects on the development of BPH and therefore have the potential to be used for treating BPH.
Collapse
Affiliation(s)
- Su-Jin Shin
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Republic of Korea
| | - Kwang-Ho Lee
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Republic of Korea
| | - Se-Yun Cheon
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Republic of Korea
| |
Collapse
|
18
|
Han AY, Lee HS, Seol GH. Foeniculum vulgare Mill. increases cytosolic Ca 2+ concentration and inhibits store-operated Ca 2+ entry in vascular endothelial cells. Biomed Pharmacother 2016; 84:800-805. [PMID: 27721178 DOI: 10.1016/j.biopha.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 02/01/2023] Open
Abstract
This study assessed the effects of essential oil of Foeniculum vulgare Mill. (fennel oil) and of trans-anethole, the main component of fennel oil, on extracellular Ca2+-induced store-operated Ca2+ entry (SOCE) into vascular endothelial (EA) cells and their mechanisms of action. Components of fennel oil were analyzed by gas chromatography-mass spectrometry. Cytosolic Ca2+ concentration ([Ca2+]c) in EA cells was determined using Fura-2 fluorescence. In the presence of extracellular Ca2+, fennel oil significantly increased [Ca2+]c in EA cells; this increase was significantly inhibited by the Ca2+ channel blockers La3+ and nifedipine. In contrast, fennel oil induced [Ca2+]c was significantly lower in Ca2+-free solution, suggesting that fennel oil increases [Ca2+]c mainly by enhancing Ca2+ influx into EA cells. [Ca2+]c mobilization by trans-anethole was similar to that of fennel oil. Moreover, SOCE was suppressed by fennel oil and trans-anethole. SOCE was also attenuated by lanthanum (La3+), a non-selective cation channel (NSC) blocker; 2-aminoethoxydiphenyl borane (2-APB), an inositol 1,4,5-triphosphate (IP3) receptor inhibitor and SOCE blocker; and U73122, an inhibitor of phospholipase C (PLC). Further, SOCE was more strongly inhibited by La3+ plus fennel oil or trans-anethole than by La3+ alone. These findings suggest that fennel oil and trans-anethole significantly inhibit SOCE-induced [Ca2+]c increase in vascular endothelial cells and that these reactions may be mediated by NSC, IP3-dependent Ca2+ mobilization, and PLC activation.
Collapse
Affiliation(s)
- A Young Han
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Hui Su Lee
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|