1
|
Navia-Urrutia M, Sendoya-Corrales CA, Espindola-Barquera MC, Barrientos-Priego AF, Ochoa-Ascencio S, Crane JH, Gazis R. Searching for Laurel Wilt Resistance in Avocados of Mexican and Mexican-Guatemalan Ancestry. PLANT DISEASE 2025; 109:22-30. [PMID: 39190904 DOI: 10.1094/pdis-06-24-1299-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Laurel wilt (LW), a lethal vascular disease caused by the ambrosia fungus Harringtonia lauricola, has severely reduced avocado (Persea americana Mill.) production in Florida and decimated populations of native lauraceous trees across 12 U.S. states. All commercial avocado cultivars evaluated to date succumb to the disease, but the speed at which the tree declines varies. Cultivars with West Indian (WI) genetic background develop severe symptoms faster than those with Mexican (M) and Guatemalan (G) pedigree. Genetic resistance to LW is urgently needed, because management relies on costly cultural practices. We screened noncommercial open-pollinated progenies from 19 M and 6 M × G accessions, and 2 G × WI cultivars recognized as tolerant by growers. From the five disease response parameters evaluated, the final disease intensity index and disease severity on the last evaluation day were used to classify genotypes. A wide variability of responses was observed within and among families. Symptomatic plants were present in all families, although some individuals within the 15 families remained asymptomatic. The 'Colín V-33' (M × G) family was identified as tolerant, and the Libres 3 (M), Bladimiro M-06 (M), 'Colinmex' (M × G), 'Collinson' (G × WI), Libres 5 (M), and Rag-13 (M) families were classified as moderately tolerant. This is the first time tolerance to LW in avocado is formally reported, although the surviving material needs to be propagated for response validation and field testing. Identifying tolerant accessions can help understand the underlying mechanisms and provide breeders with genetic resources for the future incorporation of resistance genes into commercial cultivars.
Collapse
Affiliation(s)
- Monica Navia-Urrutia
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, U.S.A
| | - Carlos A Sendoya-Corrales
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, U.S.A
- Department of Agricultural Sciences, Universidad Nacional de Colombia, Palmira, Valle del Cauca 763531, Colombia
| | - Maria C Espindola-Barquera
- Department of Phytotechnics, Fundación Salvador Sánchez Colín CICTAMEX, S.C., Coatepec Harinas, Estado de México 51700, México
| | - Alejandro F Barrientos-Priego
- Institute of Horticulture, Department of Phytotechnics, Universidad Autónoma Chapingo, Texcoco, Estado de México 56230, México
| | - Salvador Ochoa-Ascencio
- Faculty of Agrobiology, Universidad Michoacana de San Nicolas de Hidalgo, Uruapan, Michoacán 60170, México
| | - Jonnathan H Crane
- Department of Horticultural Sciences, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, U.S.A
| | - Romina Gazis
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, U.S.A
| |
Collapse
|
2
|
Crout K, Mayfield A, Kerrigan J, Hartshorn J. Factors affecting Xyleborus glabratus attack and host utilization in sassafras and redbay in the Carolinas. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2518-2524. [PMID: 39302758 DOI: 10.1093/jee/toae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
The laurel wilt disease complex is a destructive combination of a non-native beetle vector [redbay ambrosia beetle (RAB), Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae)] and a symbiotic fungus (Harringtonia lauricola (Ophiostomataceae) T.C. Harr., Fraedrich & Aghayeva), which serves as a pathogen in the host trees infested by RAB. The complex originated from Asia and was first discovered in the United States near Savannah, GA in 2002, and has rapidly made its way across the southeastern US, causing mortality for redbay and other important Lauraceae species, including sassafras, giving this disease complex the potential to have far-reaching ecological effects across North America. Our goal with this study was to examine the spatial distribution of RAB attacks in redbay and sassafras trees along the leading edge of disease progression. RAB attacks were clustered in both tree species, with attacks being most concentrated on the south side of the tree in sassafras, and with RAB clustering more with other RAB attacks on redbay. When comparing bolts that produced adult RABs, the average number of RABs emerged was higher in redbay compared to sassafras. Entrance hole density, RAB emergence, and moisture content were higher near the base of the stem compared to stems sections higher on the bole of both tree species. Our results suggest that physiological differences, such as size and structure of vessels, between these tree species may drive beetle attack patterns and, therefore, affect the progression and spread of disease throughout sassafras and other Lauraceae.
Collapse
Affiliation(s)
- Katy Crout
- Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - Albert Mayfield
- Southern Research Station, USDA Forest Service, Asheville, NC, USA
| | - Julia Kerrigan
- Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Jess Hartshorn
- Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| |
Collapse
|
3
|
Nel WJ, Randolph C, Paap T, Hurley BP, Slippers B, Barnes I, Wingfield MJ. Fusarium species associated with Euwallacea xanthopus in South Africa, including two novel species. Mycologia 2024; 116:1063-1082. [PMID: 39325991 DOI: 10.1080/00275514.2024.2394758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are small wood-boring insects that live in an obligate symbiosis with fungi, which serve as their primary food source. Beetles residing in the genus Euwallacea have evolved a unique association with a clade of Fusarium that falls within the aptly named Ambrosia Fusarium Clade (AFC). The discovery of the invasive polyphagous shot hole borer, E. fornicatus, in South Africa, has heightened awareness of ambrosia beetles and their symbionts in the country. In this study, we investigated the Fusarium symbionts of three species of Euwallacea in South Africa, with a specific focus on those associated with E. xanthopus. Isolations of Fusarium strains from both living and dissected beetles yielded nearly 100 isolates. Using multigene phylogenetic analyses, these isolates were identified as six different Fusarium species. Fusarium hypothenemi and F. euwallaceae have previously been reported from South Africa. Fusarium pseudensiforme and Fusarium AF-6 are new records for the country. The remaining two species are new to science and are described here as F. rufum sp. nov. and F. floriferum sp. nov. Targeted fungal isolation from specific beetle body parts revealed that the AFC species collected were typically associated with the dissected beetle heads and helped us identify the likely nutritional symbiont of E. xanthopus. This study highlights the understudied diversity of fungal associates of ambrosia beetles present in South Africa.
Collapse
Affiliation(s)
- Wilma J Nel
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Claire Randolph
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Trudy Paap
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Brett P Hurley
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Bernard Slippers
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Irene Barnes
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
4
|
Joseph R, Bansal K, Keyhani NO. Host switching by an ambrosia beetle fungal mutualist: Mycangial colonization of indigenous beetles by the invasive laurel wilt fungal pathogen. Environ Microbiol 2023; 25:1894-1908. [PMID: 37190943 DOI: 10.1111/1462-2920.16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Ambrosia beetles require their fungal symbiotic partner as their cultivated (farmed) food source in tree galleries. While most fungal-beetle partners do not kill the host trees they inhabit, since their introduction (invasion) into the United states around ~2002, the invasive beetle Xyleborus glabratus has vectored its mutualist partner (but plant pathogenic) fungus, Harringtonia lauricola, resulting in the deaths of over 300 million trees. Concerningly, indigenous beetles have been caught bearing H. lauricola. Here, we show colonization of the mycangia of the indigenous X. affinis ambrosia beetle by H. lauricola. Mycangial colonization occurred within 1 h of feeding, with similar levels seen for H. lauricola as found for the native X. affinis-R. arxii fungal partner. Fungal mycangial occupancy was stable over time and after removal of the fungal source, but showed rapid turnover when additional fungal cells were available. Microscopic visualization revealed two pre-oral mycangial pouches of ~100-200 × 25-50 μm/each, with narrow entry channels of 25-50 × 3-10 μm. Fungi within the mycangia underwent a dimorphic transition from filamentous/blastospore growth to yeast-like budding with alterations to membrane structures. These data identify the characteristics of ambrosia beetle mycangial colonization, implicating turnover as a mechanism for host switching of H. lauricola to other ambrosia beetle species.
Collapse
Affiliation(s)
- Ross Joseph
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Kamaldeep Bansal
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Cloonan KR, Montgomery WS, Narvaez TI, Kendra PE. A New Repellent for Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae), Primary Vector of the Mycopathogen That Causes Laurel Wilt. PLANTS (BASEL, SWITZERLAND) 2023; 12:2406. [PMID: 37446966 DOI: 10.3390/plants12132406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
The redbay ambrosia beetle, Xyleborus glabratus, was detected in Georgia, USA, in 2002 and has since spread to 11 additional states. This wood-boring weevil carries a symbiotic fungus, Harringtonia lauricola, that causes laurel wilt, a lethal disease of trees in the Lauraceae family. Native ambrosia beetles that breed in infected trees can acquire H. lauricola and contribute to the spread of laurel wilt. Since 2002, laurel wilt has devastated native Persea species in coastal forests and has killed an estimated 200,000 avocado trees in Florida. Since laurel wilt is difficult to manage once it has entered a susceptible agrosystem, this study evaluated piperitone as a candidate repellent to deter attacks by X. glabratus and other ambrosia beetles. Additionally, piperitone was compared to the known repellent verbenone as a potential cost-effective alternative. The repellent efficacy was determined by comparing captures in traps baited with commercial beetle lures containing α-copaene versus captures in traps baited with lures plus a repellent. In parallel 10-week field tests, the addition of piperitone reduced the captures of X. glabratus in α-copaene-baited traps by 90%; however, there was no significant reduction in the captures of native ambrosia beetles in ethanol-baited traps. In two replicate 10-week comparative tests, piperitone and verbenone both reduced X. glabratus captures by 68-90%, with longevity over the full 10 weeks. This study identifies piperitone as a new X. glabratus repellent with potential for pest management.
Collapse
Affiliation(s)
- Kevin R Cloonan
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL 33158, USA
| | - Wayne S Montgomery
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL 33158, USA
| | - Teresa I Narvaez
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL 33158, USA
| | - Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL 33158, USA
| |
Collapse
|
6
|
Ward SF, Riggins JJ. Warm temperatures and host tree abundance explain variation in directional spread by laurel wilt. Biol Invasions 2023; 25:1-15. [PMID: 37362908 PMCID: PMC10132951 DOI: 10.1007/s10530-023-03069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
The rate at which invading organisms disperse into novel habitats is fundamental to their distribution and abundance. Forecasts of spread often assume that invasion speed is constant through time and among directions but, depending on the extent to which this assumption is violated, the efficacy of delimitation surveys and eradication programs could suffer. Knowledge of the mechanisms underlying spatiotemporal variation in spread could help refine forecasts and guide management, particularly in the early stages of invasions. We investigated rates of spread by laurel wilt, one of the most damaging non-native forest pests in North America, using three standard approaches (effective range radius, distance regression, and boundary displacement) and evaluated the strength and drivers of variation in directional spread (i.e., anisotropy). Estimates of mean annual spread varied from 24 to 40 km/yr, but spread was highly anisotropic with invasion speeds reaching approximately 100 km/yr south, 80 km/yr west, and 50 km/yr north, a pattern that we attribute to the abundance of host redbay trees and warmer temperatures fostering rapid southern and western spread. This pattern-quicker spread of laurel wilt from the point of introduction into areas forecasted as highly suitable for its persistence-suggests that establishment location might have a major influence on rates of anisotropy. Our findings underscore the utility of habitat suitability modeling-in which host availability and suitable climate are widely used to forecast establishment risk-for identifying areas into which spread will proceed most rapidly following establishment of a new invader and/or a satellite population via a long-distance dispersal event. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-023-03069-5.
Collapse
Affiliation(s)
- Samuel F. Ward
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762 USA
| | - John J. Riggins
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762 USA
| |
Collapse
|
7
|
Ward SF, Riggins JJ. Drivers of invasion by laurel wilt of redbay and sassafras in the southeastern US. LANDSCAPE ECOLOGY 2022; 38:567-581. [PMID: 36531664 PMCID: PMC9734743 DOI: 10.1007/s10980-022-01560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Timely responses to mitigate economic and environmental impacts from invading species are facilitated by knowledge of the speed and drivers of invasions. OBJECTIVE Quantify changes in invasion patterns through time and factors that governed time-to-invasion by laurel wilt, one of the most damaging, non-native disturbance agents invading forests of the United States. METHODS We analyzed county-level occurrence data (2004-2021) for laurel wilt across the southeastern United States. A Cox proportional hazards modeling framework was used to elucidate drivers of invasion. RESULTS As of 2021, laurel wilt had been detected in 275 counties and made 72 discrete jumps (averaging 164 km ± 16 SE) into counties that did not share a border with a previously invaded county. Spread decelerated from 40 km/yr to 24 km/yr after 5 years, with a marked decline in the number of counties invaded in 2021 (16) compared with 2020 (33). The Cox proportional hazards model indicated that proxies for anthropogenic movement and habitat invasibility increased invasion risk. CONCLUSION The recent decline in number of counties invaded could be due to disruptions to travel and/or surveys from the coronavirus pandemic, but exhaustion of the most suitable habitat, such as counties in the southeastern US with warm annual temperatures and high densities of host trees, could have also contributed to this trend. This work suggests that without a shift in spread driven by additional insect vectors, that rates of range expansion by laurel wilt might have peaked in 2020 and could continue decelerating. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10980-022-01560-3.
Collapse
Affiliation(s)
- Samuel F. Ward
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762 USA
| | - John J. Riggins
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762 USA
| |
Collapse
|
8
|
Ángel-Restrepo M, Parra PP, Ochoa-Ascencio S, Fernández-Pavía S, Vázquez-Marrufo G, Equihua-Martínez A, Barrientos-Priego AF, Ploetz RC, Konkol JL, Saucedo-Carabez JR, Gazis R. First Look Into the Ambrosia Beetle-Fungus Symbiosis Present in Commercial Avocado Orchards in Michoacán, Mexico. ENVIRONMENTAL ENTOMOLOGY 2022; 51:385-396. [PMID: 34935953 DOI: 10.1093/ee/nvab142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Indexed: 06/14/2023]
Abstract
Most beetle-fungus symbioses do not represent a threat to agricultural and natural ecosystems; however, a few beetles are able to inoculate healthy hosts with disease-causing fungal symbionts. Here, we report the putative nutritional symbionts associated with five native species of ambrosia beetles colonizing commercial avocado trees in four locations in Michoacán. Knowing which beetles are present in the commercial orchards and the surrounding areas, as well as their fungal associates, is imperative for developing a realistic risk assessment and an effective monitoring system that allows for timely management actions. Phylogenetic analysis revealed five potentially new, previously undescribed species of Raffaelea, and three known species (R. arxi, R. brunnea, R. fusca). The genus Raffaelea was recovered from all the beetle species and across the different locations. Raffaelea lauricola (RL), which causes a deadly vascular fungal disease known as laurel wilt (LW) in Lauraceae species, including avocado, was not recovered. This study points to the imminent danger of native ambrosia beetles spreading RL if the pathogen is introduced to Mexico's avocado orchards or natural areas given that these beetles are associated with Raffaelea species and that lateral transfer of RL among ambrosia beetles in Florida suggests that the likelihood of this phenomenon increases when partners are phylogenetically close. Therefore, this study provides important information about the potential vectors of RL in Mexico and other avocado producing regions. Confirming beetle-fungal identities in these areas is especially important given the serious threat laurel wilt disease represents to the avocado industry in Mexico.
Collapse
Affiliation(s)
- M Ángel-Restrepo
- Programa Institucional de Maestría en Ciencias Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - P P Parra
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL, USA
| | - S Ochoa-Ascencio
- Departamento de Fitopatología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - S Fernández-Pavía
- Instituto de Investigaciones Agrícolas y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - G Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México
| | - A Equihua-Martínez
- Colegio de Postgraduados-Instituto de Fitosanidad-Entomología, Texcoco, México
| | | | - R C Ploetz
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL, USA
| | - J L Konkol
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL, USA
| | - J R Saucedo-Carabez
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL, USA
| | - R Gazis
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL, USA
| |
Collapse
|
9
|
Wheeler GS, Kendra PE, David AS, Lake EC, Sigmon JW, Palacios J, Donlan EM. Community of Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) Infesting Brazilian Peppertree Treated With Herbicide and the Volatile Tree Response. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1311-1321. [PMID: 34519789 DOI: 10.1093/ee/nvab096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), is one of the most invasive weeds of natural and agricultural areas of Florida, Hawaii, and Texas (USA). Herbicides are the main tool used to manage populations of this weed. Faunal inventories of the insects associated with invasive populations of the weed have mostly listed leaf-feeding phytophagous, pollinator, or predacious species. Among these, bark and ambrosia beetles were collected only once from S. terebinthifolia in the invaded range and there are no reports from the native range. A diverse assemblage of bark and ambrosia beetles, many well-known economic pests of ornamentals, was reared from S. terebinthifolia bolts collected at a restoration site in Florida that had been treated with herbicide (triclopyr ester). A similar collection of beetles was captured on ethanol-baited sticky traps. No beetles emerged from bolts of untreated trees, almost none emerged from those wounded with a machete (3.1% of total), whereas nearly all the beetles collected emerged from bolts that had been treated with herbicide (62.3%) or the combination wounded + herbicide (34.6%). Ethanol was detected from the herbicide and wound + herbicide-treated bolts suggesting this was the attractive kairomone. Abundant amounts of other volatiles were collected from all bolts, especially from the wounded treatment, but no association was detected between volatile emissions and beetle infestation. Further studies are needed to determine whether invasive populations of S. terebinthifolia treated with herbicides constitute reservoirs for pest bark and ambrosia beetles that may spill over onto neighboring ornamental hosts.
Collapse
Affiliation(s)
- Gregory S Wheeler
- USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL, USA
| | - Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| | | | - Ellen C Lake
- USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL, USA
| | - Joseph W Sigmon
- USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL, USA
| | - Jean Palacios
- USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL, USA
| | - Ellen M Donlan
- South Florida Water Management District, West Palm Beach, FL, USA
| |
Collapse
|
10
|
Modeling the impact of temperature on the population abundance of the ambrosia beetle Xyleborus affinis (Curculionidae: Scolytinae) under laboratory-reared conditions. J Therm Biol 2021; 101:103001. [PMID: 34879907 DOI: 10.1016/j.jtherbio.2021.103001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/09/2021] [Accepted: 05/16/2021] [Indexed: 11/24/2022]
Abstract
Modeling the impact of temperature on each life stage of a beetle population represents a continuing challenge. This study evaluates the effects of five temperature treatments (20, 23, 26, 29 and 32 °C) on population abundance and timing of a colony of ambrosia beetles Xyleborus affinis reared under laboratory conditions and use this data to develop demographic and phenological models. Abundances at each life stage (eggs, larvae, pupae and adult) were examined through periodic destructive sampling; given that it was not possible to track individuals. To assess the effects of temperature on oviposition, development and survival rates we developed a novel estimation strategy based on cohorts, which does not require individual developmental data. Since oviposition was entirely unwitnessed, we assessed competing empirical ovipositional models. Rates of development were computed using a modal rate curve for each life stage, and rates were projected to cohorts in life stages assuming log-normal developmental variance. Temperature-driven survival rates were assumed to be logistic with a quadratic exponent to capture modal temperature dependence. Parameters were estimated simultaneously using minimum negative log posterior likelihood, assuming Poisson distribution of observations and using priors to inform unobserved developmental rates and enforce mechanistic constraints on oviposition models. A parabolic function best described oviposition rate. Optimal developmental temperatures were 30.5 °C, 29 °C and 27.5 °C, with maximum developmental rates of 0.26/day, 0.12/day and 0.23/day for eggs, larvae and pupae, respectively. The survival rates in the range 20-29 °C were equal to 1 in the eggs-to-larvae transition, from 0.72 to 0.35 in larvae-to-pupae transition, and from 0.2 to 0.89 in pupae-to-adults transition. This procedure effectively characterized the direct thermal effects on development and survival of each life stage in the X. affinis under laboratory conditions and would be suitable for estimating temperature dependence for other species in which individual observations are not possible.
Collapse
|
11
|
Castillo-Argaez R, Vazquez A, Konkol JL, Vargas AI, Ploetz RC, Etxeberria E, Schaffer B. Sap flow, xylem anatomy and photosynthetic variables of three Persea species in response to laurel wilt. TREE PHYSIOLOGY 2021; 41:1004-1018. [PMID: 33079164 DOI: 10.1093/treephys/tpaa137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/31/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Laurel wilt, a lethal vascular wilt disease caused by the fungus Raffaelea lauricola, affects several tree species in the Lauraceae, including three Persea species. The susceptibility to laurel wilt of two forest tree species native to the southern USA, Persea borbonia and Persea palustris, [(Raf.) Sarg.] and avocado, Persea americana (Mill.) cv Waldin, was examined and related to tree physiology and xylem anatomy. Net CO2 assimilation (A), stomatal conductance (gs), leaf chlorophyll index (LCI), leaf chlorophyll fluorescence (Fv/Fm), xylem sap flow, theoretical stem hydraulic conductivity (Kh) and xylem vessel anatomy were assessed in trees of each species that were inoculated with R. lauricola and in control trees. Laurel wilt caused a reduction in A, gs, LCI, Fv/Fm and blockage of xylem vessels by tyloses formation that negatively impacted Kh and sap flow in all Persea species. However, disease susceptibility as indicated by canopy wilting and sapwood discoloration was less pronounced in P. americana cv Waldin than in the two forest species. Xylem vessel diameter was significantly smaller in P. borbonia and P. palustris than in P. americana cv Waldin. Differences in laurel wilt susceptibility among species appear to be influenced by physiological and anatomical tree responses.
Collapse
Affiliation(s)
- Raiza Castillo-Argaez
- Tropical Research and Education Center, University of Florida, 18905 S.W. 280th Street, Homestead, FL 33031, USA
| | - Aime Vazquez
- USDA, ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - Joshua L Konkol
- Department of Plant Pathology, University of Florida, 2550 Hull Road, PO Box 110680, Gainesville, FL 32611, USA
| | - Ana I Vargas
- Tropical Research and Education Center, University of Florida, 18905 S.W. 280th Street, Homestead, FL 33031, USA
| | - Randy C Ploetz
- Tropical Research and Education Center, University of Florida, 18905 S.W. 280th Street, Homestead, FL 33031, USA
| | - Edgardo Etxeberria
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Bruce Schaffer
- Tropical Research and Education Center, University of Florida, 18905 S.W. 280th Street, Homestead, FL 33031, USA
| |
Collapse
|
12
|
Cruz LF, Menocal O, Kendra PE, Carrillo D. Phoretic and internal transport of Raffaelea lauricola by different species of ambrosia beetle associated with avocado trees. Symbiosis 2021. [DOI: 10.1007/s13199-021-00776-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Unique Attributes of the Laurel Wilt Fungal Pathogen, Raffaelea lauricola, as Revealed by Metabolic Profiling. Pathogens 2021; 10:pathogens10050528. [PMID: 33925553 PMCID: PMC8146198 DOI: 10.3390/pathogens10050528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/18/2022] Open
Abstract
Raffaelea lauricola is the causative agent of laurel wilt, a devastating disease of lauraceous trees. R. lauricola is also an obligate nutritional symbiont of several ambrosia beetle species who act as vectors for the pathogen. Here, we sought to establish the baseline “phenome” of R. lauricola with knowledge concerning its metabolic capability, expanding our understanding of how these processes are impacted by environmental and host nutrients. Phenotypic screening using a microarray of over one thousand compounds was used to generate a detailed profile of R. lauricola substrate utilization and chemical sensitivity. These data revealed (i) relatively restricted carbon utilization, (ii) broad sulfur and phosphate utilization, and (iii) pH and osmotic sensitivities that could be rescued by specific compounds. Additional growth profiling on fatty acids revealed toxicity on C10 substrates and lower, with robust growth on C12–C18 fatty acids. Conditions for lipid droplet (LD) visualization and LD dynamics were examined using a series of lipid dyes. These data provide unique insights regarding R. lauricola metabolism and physiology, and identify distinct patterns of substrate usage and sensitivity which likely reflect important aspects of the host-microbe interface and can be exploited for the development of strategies for mitigating the spread of laurel wilt.
Collapse
|
14
|
Fungal mutualisms and pathosystems: life and death in the ambrosia beetle mycangia. Appl Microbiol Biotechnol 2021; 105:3393-3410. [PMID: 33837831 DOI: 10.1007/s00253-021-11268-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
Ambrosia beetles and their microbial communities, housed in specialized structures termed mycangia, represent one of the oldest and most diverse systems of mutualism and parasitism described thus far. Comprised of core filamentous fungal members, but also including bacteria and yeasts, the mycangia represent a unique adaptation that allows beetles to store and transport their source of nutrition. Although perhaps the most ancient of "farmers," the nature of these interactions remains largely understudied, with the exception of a handful of emerging pathosystems, where the fungal partner acts as a potentially devastating tree pathogen. Such virulence is often seen during "invasions," where (invasive) beetles carrying the fungal symbiont/plant pathogen expand into new territories and presumably "naïve" trees. Here, we summarize recent findings on the phylogenetic relationships between beetles and their symbionts and advances in the developmental and genetic characterization of the mechanisms that underlie insect-fungal-plant interactions. Results on genomic, transcriptomic, and metabolomic aspects of these relationships are described. Although many members of the fungal Raffaelea-beetle symbiont genera are relatively harmless to host trees, specialized pathosystems including wilt diseases of laurel and oak, caused by specific subspecies (R. lauricola and R. quercus, in the USA and East Asia, respectively), have emerged as potent plant pathogens capable of killing healthy trees. With the development of genetic tools, coupled to biochemical and microscopic techniques, the ambrosia beetle-fungal symbiont is establishing itself as a unique model system to study the molecular determinants and mechanisms that underlie the convergences of symbioses, mutualism, parasitism, and virulence. KEY POINTS: • Fungal-beetle symbioses are diverse and ancient examples of microbial farming. • The mycangium is a specialized structure on insects that houses microbial symbionts. • Some beetle symbiotic fungi are potent plant pathogens vectored by the insect.
Collapse
|
15
|
Bark beetle mycobiome: collaboratively defined research priorities on a widespread insect-fungus symbiosis. Symbiosis 2020. [DOI: 10.1007/s13199-020-00686-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Kendra PE, Montgomery WS, Narvaez TI, Carrillo D. Comparison of Trap Designs for Detection of Euwallacea nr. fornicatus and Other Scolytinae (Coleoptera: Curculionidae) That Vector Fungal Pathogens of Avocado Trees in Florida. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:980-987. [PMID: 31742602 DOI: 10.1093/jee/toz311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Laurel wilt and Fusarium dieback are vascular diseases caused by fungal symbionts of invasive ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). Both diseases threaten avocado trees in Florida. Redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of the laurel wilt pathogen, Raffaelea lauricola, but in recent years this symbiont has been transferred laterally to at least nine other species of ambrosia beetle, which now comprise a community of secondary vectors. Dieback disease, caused by Fusarium spp. fungi, is spread by shot hole borers in the Euwallacea fornicatus species complex. In this study, we conducted field tests in Florida avocado groves to compare efficacy of four trap designs for detection of Scolytinae. Treatments included an 8-funnel Lindgren trap, black 3-vane flight interception trap, green 3-vane interception trap, white sticky panel trap, and an unbaited sticky panel (control). In two tests targeting E. nr. fornicatus and X. glabratus, traps were baited with a two-component lure (α-copaene and quercivorol). In a test targeting other species, traps were baited with a low-release ethanol lure. For E. nr. fornicatus, sticky panels and black interception traps captured significantly more beetles than Lindgren traps; captures with green traps were intermediate. With ethanol-baited traps, 20 species of bark/ambrosia beetle were detected. Trap efficacy varied by species, but in general, sticky traps captured the highest number of beetles. Results indicate that sticky panel traps are more effective for monitoring ambrosia beetles than Lindgren funnel traps, the current standard, and may provide an economical alternative for pest detection in avocado groves.
Collapse
Affiliation(s)
- Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL
| | | | | | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL
| |
Collapse
|
17
|
Rivera MJ, Martini X, Conover D, Mafra-Neto A, Carrillo D, Stelinski LL. Evaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado. Sci Rep 2020; 10:2670. [PMID: 32060382 PMCID: PMC7021720 DOI: 10.1038/s41598-020-59569-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/29/2020] [Indexed: 11/25/2022] Open
Abstract
Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) bore into tree xylem to complete their life cycle, feeding on symbiotic fungi. Ambrosia beetles are a threat to avocado where they have been found to vector a symbiotic fungus, Raffaelea lauricola, the causal agent of the laurel wilt disease. We assessed the repellency of methyl salicylate and verbenone to two putative laurel wilt vectors in avocado, Xyleborus volvulus (Fabricius) and Xyleborus bispinatus (Eichhoff), under laboratory conditions. Then, we tested the same two chemicals released from SPLAT flowable matrix with and without low-dose ethanol dispensers for manipulation of ambrosia beetle populations occurring in commercial avocado. The potential active space of repellents was assessed by quantifying beetle catch on traps placed ‘close’ (~5–10 cm) and ‘far’ (~1–1.5 m) away from repellent dispensers. Ambrosia beetles collected on traps associated with all in-field treatments were identified to species to assess beetle diversity and community variation. Xyleborus volvulus was not repelled by methyl salicylate (MeSA) or verbenone in laboratory assays, while X. bispinatus was repelled by MeSA but not verbenone. Ambrosia beetle trap catches were reduced in the field more when plots were treated with verbenone dispensers (SPLAT) co-deployed with low-dose ethanol dispensers than when treated with verbenone alone. Beetle diversity was highest on traps deployed with low-dose ethanol lures. The repellent treatments and ethanol lures significantly altered the species composition of beetles captured in experiment plots. Our results indicate that verbenone co-deployed with ethanol lures holds potential for manipulating ambrosia beetle vectors via push-pull management in avocado. This tactic could discourage immigration and/or population establishment of ambrosia beetles in commercial avocado and function as an additional tool for management programs of laurel wilt.
Collapse
Affiliation(s)
- Monique J Rivera
- Department of Entomology, University of California Riverside, Riverside, CA, USA.
| | - Xavier Martini
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | - Derrick Conover
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | | | - Daniel Carrillo
- Department of Entomology, Tropical Research & Education Center, University of Florida, Homestead, FL, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
18
|
|
19
|
Cognato AI, Smith SM, Li Y, Pham TH, Hulcr J. Genetic Variability Among Xyleborus glabratus Populations Native to Southeast Asia (Coleoptera: Curculionidae: Scolytinae: Xyleborini) and the Description of Two Related Species. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1274-1284. [PMID: 30785204 DOI: 10.1093/jee/toz026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 06/09/2023]
Abstract
The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is native to Southeast Asia, where it specializes on Lauraceae trees. It forms a symbiosis with the ambrosia fungus Raffaelea lauricola T.C. Harr., Fraedrich & Aghayeva, which can act as a pathogen in living host trees. The beetle and fungus were recently introduced into the United States, where they have killed millions of native Lauraceae trees and threaten the avocado industry. These introduced populations have limited genetic variation. In the native range, the fungi are genetically variable, but the native genetic variability of the beetles is unknown. It is important to assess the beetle's native genetic variation because different lineages may vary in the capacity to vector this fungus, which may affect disease etiology. Here, we analyzed genetic variation in several Chinese, Taiwanese, and Vietnamese populations of X. glabratus using mitochondrial (COI) and nuclear DNA (CAD) markers. Phylogenetic analysis revealed nine COI haplotypes and four CAD genotypes. Uncorrected 'p' distance for intrapopulation comparisons ranged from 0 to 0.1 and 0 to 0.013 and interpopulation comparisons ranged from 0.137 to 0.168 and 0.015 to 0.032 for COI and CAD, respectively. Two populations exceeded the range of intraspecific nucleotide differences for both genes. Given that individuals from these populations also exhibited consistent morphological differences, they are described as two new species: Xyleborus insidiosus Cognato & Smith, n. sp. and Xyleborus mysticulus Cognato & Smith, n. sp. Xyleborus glabratus was redescribed and a lectotype was designated to facilitate its recognition in light of these new species. These results indicate that X. glabratus is genetically variable and is related to two morphologically similar species. Whether these new species and X. glabratus lineages associate with different fungal strains is unknown. Given that the biology and host colonization of these new species are unknown, preventing their introduction to other regions is prudent.
Collapse
Affiliation(s)
- Anthony I Cognato
- Department of Entomology, Michigan State University, East Lansing, MI
| | - Sarah M Smith
- Department of Entomology, Michigan State University, East Lansing, MI
| | - You Li
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL
| | - Thai Hong Pham
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Jiri Hulcr
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL
| |
Collapse
|
20
|
|
21
|
Riggins JJ, Chupp AD, Formby JP, Dearing NA, Bares HM, Brown RL, Oten KF. Impacts of laurel wilt disease on arthropod herbivores of North American Lauraceae. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1838-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Kendra PE, Montgomery WS, Niogret J, Tabanca N, Owens D, Epsky ND. Utility of essential oils for development of host-based lures for Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), vector of laurel wilt. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractRedbay ambrosia beetle, Xyleborus glabratus, is native to Southeast Asia, but subsequent to introduction in Georgia in 2002, it has become a serious invasive pest in the USA, now established in nine southeastern states. Females vector Raffaelea lauricola, the fungus that causes laurel wilt, a lethal vascular disease of trees in the family Lauraceae. Laurel wilt has caused extensive mortality in native Persea species, including redbay (P. borbonia), swampbay (P. palustris), and silkbay (P. humilis). Avocado (P. americana) is now impacted in Florida, and with continued spread, laurel wilt has potential to affect avocado and native Lauraceae in California, Mexico, and throughout the American tropics. Effective lures for detection and control of X. glabratus are critical to slow the spread of laurel wilt. No pheromones are known for this species; primary attractants are volatile terpenoids emitted from host Lauraceae. This report provides a concise summary of the chemical ecology of X. glabratus, highlighting research to identify kairomones used by females for host location. It summarizes development of essential oil lures for pest detection, including discussions of the initial use of phoebe and manuka oil lures, the current cubeb oil lure, and a newly-developed distilled oil lure enriched in (-)-α-copaene.
Collapse
Affiliation(s)
- Paul E. Kendra
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - Wayne S. Montgomery
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - Jerome Niogret
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
- Niogret Ecology Consulting LLC, 2980 SW 25th Street, Miami, FL 33133, USA
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - David Owens
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
- University of Delaware, Carvel Research and Education Center, 16483 County Seat Highway, Georgetown, DE 19947, USA
| | - Nancy D. Epsky
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| |
Collapse
|
23
|
Zhou Y, Avery PB, Carrillo D, Duncan RH, Lukowsky A, Cave RD, Keyhani NO. Identification of the Achilles heels of the laurel wilt pathogen and its beetle vector. Appl Microbiol Biotechnol 2018; 102:5673-5684. [PMID: 29717343 DOI: 10.1007/s00253-018-9037-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 11/25/2022]
Abstract
Ambrosia beetles harbor fungal symbionts that serve as food sources for larvae and adults. These beetles lay their eggs along tunnels in xylem sapwood, which is the substrate for fungal growth. Symbiotic fungi of the genus Raffaelea found in invasive and indigenous ambrosia beetles include the highly virulent plant pathogen Raffaelea lauricola affecting members of the Lauraceae family. R. lauricola is responsible for the deaths of > 500 million trees since 2005. Infection by as few as 100 spores can kill a healthy tree within months. Our data show that R. lauricola is cold-adapted with optimal growth between 16 and 26 °C, with little to no growth at temperatures ≥ 30 °C. The fungus is halophilic and shows a dramatic decrease in growth at pH ≥ 6.8. Fungicide resistance profiling revealed sensitivity of R. lauricola to prochloraz, dichlorofluanid, most conazoles, dithiocarbamates, and zineb (zinc fungicide), whereas the related species Raffaelea arxii showed more limited fungicide sensitivity. Entomopathogenic fungi potentially useful for beetle control were generally highly resistant to most fungicides tested. Coupling pH decreased the concentration for 95% inhibition of fungal growth (IC95) of the most potent R. lauricola fungicides by 3-4-fold. Use of avocado bark plug insect bioassays revealed that commercially available Beauveria bassiana can be used as a biological control agent capable of effectively killing the beetle vectors. These data provide simple and practical recommendations to specifically target R. lauricola while having minimal effects on other symbiotic and entomopathogenic fungi, the latter of which can be used to manage the beetle vectors.
Collapse
Affiliation(s)
- Yonghong Zhou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA
| | - Pasco B Avery
- Department of Entomology and Nematology, University of Florida, IFAS, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA
| | - Daniel Carrillo
- IFAS, Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
| | - Rita H Duncan
- IFAS, Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
| | - Alison Lukowsky
- Department of Entomology and Nematology, University of Florida, IFAS, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA
| | - Ronald D Cave
- Department of Entomology and Nematology, University of Florida, IFAS, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA.
- Department of Microbiology and Cell Science, Bldg 981, Museum Rd., Gainesville, FL, 32611, USA.
| |
Collapse
|
24
|
Formby JP, Rodgers JC, Koch FH, Krishnan N, Duerr DA, Riggins JJ. Cold tolerance and invasive potential of the redbay ambrosia beetle (Xyleborus glabratus) in the eastern United States. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1606-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Owens D, Montgomery WS, Narvaez TI, Deyrup MA, Kendra PE. Evaluation of Lure Combinations Containing Essential Oils and Volatile Spiroketals for Detection of Host-Seeking Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1596-1602. [PMID: 28575468 DOI: 10.1093/jee/tox158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 06/07/2023]
Abstract
The invasive redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), vectors the fungal pathogen (Raffaelea lauricola) that causes laurel wilt, a disease responsible for widespread mortality of trees in the Lauraceae in the southeastern United States. Early detection of incipient vector populations may allow for management practices that could successfully mitigate damage. Developing new, highly effective attractants is a priority for improving sensitivity of early detection efforts. In this study, two field tests were conducted to evaluate combinations of commercially available bark and ambrosia beetle lures for enhanced attraction of host-seeking female X. glabratus. In addition, lures were compared for capture of nontarget scolytine beetles. In the first experiment, traps baited with a combination of cubeb oil, conophthorin, chalcogran, and ethanol captured greater numbers of X. glabratus than cubeb oil alone, the current standard attractant. However, this combination lure resulted in higher nontarget scolytine captures than with the cubeb lure. In the second field test, an oil enriched in the sesquiterpene α-copaene caught significantly more X. glabratus than other lures currently available for monitoring this pest. There were no differences in efficacy between cubeb oil lures produced by two different manufacturers, and a combination lure containing copaiba and cubeb oils did not increase captures over the cubeb lure alone. Results of these two tests suggest that increased sensitivity for detection of X. glabratus may be achieved with a multicomponent lure that incorporates α-copaene, spiroketals, and low release of ethanol.
Collapse
Affiliation(s)
- D Owens
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158
| | - Wayne S Montgomery
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158
| | - Teresa I Narvaez
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158
| | - Mark A Deyrup
- Archbold Biological Station, P.O. Box 2057, Lake Placid, FL 33862
| | - Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158
| |
Collapse
|
26
|
Kendra PE, Owens D, Montgomery WS, Narvaez TI, Bauchan GR, Schnell EQ, Tabanca N, Carrillo D. α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). PLoS One 2017; 12:e0179416. [PMID: 28609448 PMCID: PMC5469513 DOI: 10.1371/journal.pone.0179416] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
The tea shot-hole borer, Euwallacea fornicatus Eichhoff, is an ambrosia beetle endemic to Asia and a pest of commercial tea, Camellia sinensis (L.) Kuntze. Recently, a complex of species morphologically similar to E. fornicatus has been recognized, which includes new pests established in Israel and the USA, both in California and Florida. Collectively termed E. nr. fornicatus, these cryptic species carry symbiotic Fusarium spp. fungi, some of which cause dieback disease in susceptible hosts, which include avocado, Persea americana Miller. Due to the threat to this economically important crop, research was initiated to evaluate efficacy of kairomone-based lures for detection of the beetle in Florida (termed the Florida tea shot hole borer, FL-TSHB). A series of field tests were conducted in 2016 in commercial avocado groves known to have FL-TSHB at various population levels. All tests evaluated lures containing quercivorol (p-menth-2-en-1-ol) and α-copaene, presented separately and in combination; and one test evaluated effect of trap type on beetle captures. In addition, electroantennography (EAG) was used to quantify female olfactory responses to lure emissions. This study identified (-)-α-copaene as a new attractant for FL-TSHB, equivalent in efficacy to quercivorol (the standard lure for Euwallacea detection in the USA); however, the combination of lures captured significantly more FL-TSHB than either lure alone. This combination resulted in synergistic attraction at two field sites and additive attraction at a third site. Sticky panel traps captured more FL-TSHB than comparably-baited Lindgren funnel traps. Females engaged in host-seeking flight from 11:00 to 16:00 hr (EST), with peak numbers observed between 12:00 and 13:00 hr. EAG analyses confirmed olfactory chemoreception of both kairomones, with a higher response elicited with the combination of volatiles. Results indicate that detection of pest E. nr. fornicatus in Florida can be improved by using a two-component lure consisting of p-menth-2-en-1-ol and (-)-α-copaene.
Collapse
Affiliation(s)
- Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - David Owens
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Wayne S. Montgomery
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Teresa I. Narvaez
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Gary R. Bauchan
- United States Department of Agriculture, Agricultural Research Service, Beltsville Area Research Center, Electron and Confocal Microscopy Unit, Beltsville, MD, United States of America
| | - Elena Q. Schnell
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Nurhayat Tabanca
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Daniel Carrillo
- University of Florida, Tropical Research and Education Center, Homestead, FL, United States of America
| |
Collapse
|
27
|
Seo M, Martini X, Rivera MJ, Stelinski LL. Flight Capacities and Diurnal Flight Patterns of the Ambrosia Beetles, Xyleborus glabratus and Monarthrum mali (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:729-734. [PMID: 28459955 DOI: 10.1093/ee/nvx085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 06/07/2023]
Abstract
We compared the flight activity of Xyleborus glabratus Eichhoff, vector and symbiont of the causal agent of laurel wilt disease (Raffaelea lauricola), with a native species Monarthrum mali (Fitch) using flight mills. Flight mills were operated either for 24 h or for three 3-h time intervals. During the 3-h interval experiment, the shortest time to flight initiation for X. glabratus occurred at 1600-1900 hours. The average flight time and total flying distance during 1600-2100 hours were also higher than those quantified during the other two recording times investigated. However, total flight duration and proportion of fliers was highest at 1000-1300 hours. We compared several flight parameters. About 64.0% of tested X. glabratus flew <20 m. During 24-h recording periods, M. mali flew longer distances than X. glabratus. Over 50.0% of M. mali flew over 100 m on the flight mill. Xyleborus glabratus flight activity was greatest between 1200 and 1800 hours, while M. mali flew most frequently between 1500 and 2100 hours. Monarthrum mali flew more than five times more frequently than X. glabratus, and their longest single flight distance (37.5 ± 12.5 m) and total flight distance (213.7 ± 85.5 m) were greater than those of X. glabratus. These data will be useful for development of species-specific control and monitoring protocols for these ambrosia beetles based on greater understanding of their flight capacities and associated invasion distance.
Collapse
Affiliation(s)
- Meeja Seo
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850 (; ; )
| | - Xavier Martini
- Entomology and Nematology Department, North Florida Research and Education Center, University of Florida, 155 Experiment Rd., Quincy, FL 32351
| | - Monique J Rivera
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850 (; ; )
| | - Lukasz L Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850 (; ; )
| |
Collapse
|
28
|
Martini X, Hughes MA, Killiny N, George J, Lapointe SL, Smith JA, Stelinski LL. The Fungus Raffaelea lauricola Modifies Behavior of Its Symbiont and Vector, the Redbay Ambrosia Beetle (Xyleborus Glabratus), by Altering Host Plant Volatile Production. J Chem Ecol 2017; 43:519-531. [PMID: 28455797 DOI: 10.1007/s10886-017-0843-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/05/2017] [Accepted: 04/10/2017] [Indexed: 12/28/2022]
Abstract
The redbay ambrosia beetle Xyleborus glabratus is the vector of the symbiotic fungus, Raffaelea lauricola that causes laurel wilt, a highly lethal disease to members of the Lauraceae family. Pioneer X. glabratus beetles infect live trees with R. lauricola, and only when tree health starts declining more X. glabratus are attracted to the infected tree. Until now this sequence of events was not well understood. In this study, we investigated the temporal patterns of host volatiles and phytohormone production and vector attraction in relation to laurel wilt symptomology. Following inoculations with R. lauricola, volatile collections and behavioral tests were performed at different time points. Three days after infection (DAI), we found significant repellency of X. glabratus by leaf odors of infected swamp bay Persea palustris as compared with controls. However, at 10 and 20 DAI, X. glabratus were more attracted to leaf odors from infected than non-infected host plants. GC-MS analysis revealed an increase in methyl salicylate (MeSA) 3 DAI, whereas an increase of sesquiterpenes and leaf aldehydes was observed 10 and 20 DAI in leaf volatiles. MeSA was the only behaviorally active repellent of X. glabratus in laboratory bioassays. In contrast, X. glabratus did not prefer infected wood over healthy wood, and there was no associated significant difference in their volatile profiles. Analyses of phytohormone profiles revealed an initial increase in the amount of salicylic acid (SA) in leaf tissues following fungal infection, suggesting that the SA pathway was activated by R. lauricola infection, and this activation caused increased release of MeSA. Overall, our findings provide a better understanding of X. glabratus ecology and underline chemical interactions with its symbiotic fungus. Our work also demonstrates how the laurel wilt pathosystem alters host defenses to impact vector behavior and suggests manipulation of host odor by the fungus that attract more vectors.
Collapse
Affiliation(s)
- Xavier Martini
- Entomology and Nematology Department, North Florida Research and Education Center, University of Florida, 155 Experiment Road, Quincy, FL, 32351, USA. .,Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA.
| | - Marc A Hughes
- School of Forest Resources and Conservation, University of Florida, 136 Newins-Ziegler Hall, Gainesville, FL, 32611-0410, USA
| | - Nabil Killiny
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Justin George
- Subtropical Insects and Horticultural Research Unit, United States Horticultural Research Laboratory, USDA-ARS, 2001 South Rock Rd., Fort Pierce, FL, 34945, USA
| | - Stephen L Lapointe
- Subtropical Insects and Horticultural Research Unit, United States Horticultural Research Laboratory, USDA-ARS, 2001 South Rock Rd., Fort Pierce, FL, 34945, USA
| | - Jason A Smith
- School of Forest Resources and Conservation, University of Florida, 136 Newins-Ziegler Hall, Gainesville, FL, 32611-0410, USA
| | - Lukasz L Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| |
Collapse
|
29
|
Laurel Wilt in Natural and Agricultural Ecosystems: Understanding the Drivers and Scales of Complex Pathosystems. FORESTS 2017. [DOI: 10.3390/f8020048] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, Kayim M, Kasson MT, Thu PQ, Bateman C, Rugman-Jones P, Hulcr J, Stouthamer R, Eskalen A. Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 2017; 108:313-29. [DOI: 10.3852/15-063] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Shannon Colleen Lynch
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
- Center for Conservation Biology, University of California, Riverside, California 92521
| | - Mathias Twizeyimana
- AgBiome, Inc., 104 T.W. Alexander Drive, Building 1, Research Triangle Park, North Carolina 27709
| | | | | | - Francis Na
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Mukaddes Kayim
- Department of Plant Protection, Faculty of Agriculture, University of Çukurova, Balcali 01330, Adana, Turkey
| | - Matthew T. Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Pham Quang Thu
- Forest Protection Research Center, Vietnamese Academy of Forest Sciences, 46 Dong Ngac Road, Duc Thang, Northern Tu Liem, Hanoi, Vietnam
| | - Craig Bateman
- Department of Entomology, University of Florida, Gainesville, Florida 32611
| | - Paul Rugman-Jones
- Department of Entomology, University of California, Riverside, California 92521
| | - Jiri Hulcr
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611
| | - Richard Stouthamer
- Department of Entomology, University of California, Riverside, California 92521
| | - Akif Eskalen
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| |
Collapse
|
31
|
Kendra PE, Montgomery WS, Schnell EQ, Deyrup MA, Epsky ND. Efficacy of α-Copaene, Cubeb, and Eucalyptol Lures for Detection of Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2428-2435. [PMID: 27986939 DOI: 10.1093/jee/tow214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is a wood-boring pest that has now invaded nine states in the southeastern United States. The beetle's dominant fungal symbiont (Raffaelea lauricola) is phytopathogenic, inducing laurel wilt in trees within the family Lauraceae. Members of the genus Persea are particularly susceptible to the lethal disease, including native redbay (P. borbonia) and swampbay (P. palustris), as well as commercial avocado (P. americana). Cubeb oil lures are the current standard for detection of X. glabratus, but recently eucalyptol and a 50% α-copaene oil have been identified as additional attractants. This study used a combination of binary-choice bioassays, field cage release-and-recapture assays, and a 12-wk field trial to compare efficacy of eucalyptol and copaene lures relative to commercial cubeb lures. In addition, GC-MS was used to quantify emissions from lures field-aged for 12 wk. In laboratory bioassays, copaene lures were more attractive than eucalyptol lures. In field cage assays, copaene lures recaptured a higher percentage of released beetles than cubeb lures. In the field test, cubeb lures captured fewer beetles than copaene lures, and lowest captures were obtained with eucalyptol lures. Combining eucalyptol with either copaene or cubeb lures did not increase captures over those lures deployed alone. Both copaene and cubeb lures were effective in attracting X. glabratus for 12 wk, but field life of eucalyptol lures was only 4 wk, consistent with the quantification of lure emissions. Results suggest that the 50% α-copaene lure provides the best pest detection currently available for X. glabratus.
Collapse
Affiliation(s)
- Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 (; ; ; )
| | - Wayne S Montgomery
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 (; ; ; )
| | - Elena Q Schnell
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 (; ; ; )
| | - Mark A Deyrup
- Archbold Biological Station, P.O. Box 2057, Lake Placid, FL 33862
| | - Nancy D Epsky
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 (; ; ; )
| |
Collapse
|
32
|
Lu M, Hulcr J, Sun J. The Role of Symbiotic Microbes in Insect Invasions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China;
| | - Jiri Hulcr
- School of Forest Resources and Conservation and the Entomology and Nematology Department, University of Florida, Gainesville, Florida 32611
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China;
| |
Collapse
|
33
|
Campbell AS, Ploetz RC, Dreaden TJ, Kendra PE, Montgomery WS. Geographic variation in mycangial communities of Xyleborus glabratus. Mycologia 2016; 108:657-67. [PMID: 27055571 DOI: 10.3852/15-133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 03/04/2016] [Indexed: 11/10/2022]
Abstract
Factors that influence fungal communities in ambrosia beetle mycangia are poorly understood. The beetle that is responsible for spreading laurel wilt in SE USA, Xyleborus glabratrus, was examined at three sites along a 500 km N-S transect in Florida, each populated by host trees in the Lauraceae. Fungal phenotypes were quantified in mycangia of individual females that were collected from a site in Miami-Dade County (MDC), 25.8N, with swamp bay (Persea palustris), one in Highlands County (HC), 27.9N, with silkbay (P. humulis) and swamp bay and another in Alachua County (AC), 29.8N, with redbay (P. borbonia). Based on combined LSU, SSU and beta-tubulin datasets the most prominent phenotypes were Raffaelea lauricola (cause of laurel wilt), R. subalba, R. subfusca, R. fusca, R. arxii and an undescribed Raffaelea sp. Mean numbers of colony forming units (CFUs) of R. lauricola varied by location (P < 0.003), and a multivariate analysis, which accounted for the presence and relative abundance of fungal species, indicated that there were significant variations in mycangial communities among the sites; thus climate and vegetation might have affected fungal diversity and the relative abundance of these fungi in the mycangia of X. glabratus Statistically it was unlikely that any of the species influenced the presence and prevalence of another species.
Collapse
Affiliation(s)
- Alina S Campbell
- University of Florida, Tropical Research & Education Center, Homestead, Florida 33031
| | - Randy C Ploetz
- University of Florida, Tropical Research & Education Center, Homestead, Florida 33031
| | - Tyler J Dreaden
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611Southern Research Station, USDA-Forest Service, Forest Health Research and Education Center, Lexington, Kentucky 40517
| | - Paul E Kendra
- Subtropical Horticulture Research Station, USDA-ARS, Miami, Florida 33158
| | - Wayne S Montgomery
- Subtropical Horticulture Research Station, USDA-ARS, Miami, Florida 33158
| |
Collapse
|
34
|
Reed SE, Juzwik J, English JT, Ginzel MD. Colonization of Artificially Stressed Black Walnut Trees by Ambrosia Beetle, Bark Beetle, and Other Weevil Species (Coleoptera: Curculionidae) in Indiana and Missouri. ENVIRONMENTAL ENTOMOLOGY 2015; 44:1455-64. [PMID: 26314028 DOI: 10.1093/ee/nvv126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
Thousand cankers disease (TCD) is a new disease of black walnut (Juglans nigra L.) in the eastern United States. The disease is caused by the interaction of the aggressive bark beetle Pityophthorus juglandis Blackman and the canker-forming fungus, Geosmithia morbida M. Kolarik, E. Freeland, C. Utley & Tisserat, carried by the beetle. Other insects also colonize TCD-symptomatic trees and may also carry pathogens. A trap tree survey was conducted in Indiana and Missouri to characterize the assemblage of ambrosia beetles, bark beetles, and other weevils attracted to the main stems and crowns of stressed black walnut. More than 100 trees were girdled and treated with glyphosate (Riverdale Razor Pro, Burr Ridge, Illinois) at 27 locations. Nearly 17,000 insects were collected from logs harvested from girdled walnut trees. These insects represented 15 ambrosia beetle, four bark beetle, and seven other weevil species. The most abundant species included Xyleborinus saxeseni Ratzburg, Xylosandrus crassiusculus Motschulsky, Xylosandrus germanus Blandford, Xyleborus affinis Eichhoff, and Stenomimus pallidus Boheman. These species differed in their association with the stems or crowns of stressed trees. Multiple species of insects were collected from individual trees and likely colonized tissues near each other. At least three of the abundant species found (S. pallidus, X. crassiusculus, and X. germanus) are known to carry propagules of canker-causing fungi of black walnut. In summary, a large number of ambrosia beetles, bark beetles, and other weevils are attracted to stressed walnut trees in Indiana and Missouri. Several of these species have the potential to introduce walnut canker pathogens during colonization.
Collapse
Affiliation(s)
- Sharon E Reed
- Plant Sciences Division, University of Missouri, 108 Waters Hall, Columbia, MO 65211.
| | - Jennifer Juzwik
- U.S. Forest Service, Northern Research Station, 151 Lindig St., St. Paul, MN 55108
| | - James T English
- Plant Sciences Division, University of Missouri, 108 Waters Hall, Columbia, MO 65211
| | - Matthew D Ginzel
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907
| |
Collapse
|
35
|
Steininger MS, Hulcr J, Šigut M, Lucky A. Simple and Efficient Trap for Bark and Ambrosia Beetles (Coleoptera: Curculionidae) to Facilitate Invasive Species Monitoring and Citizen Involvement. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1115-1123. [PMID: 26470236 DOI: 10.1093/jee/tov014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/23/2014] [Indexed: 06/05/2023]
Abstract
Bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae & Platypodinae) are among the most damaging forest pests worldwide, and monitoring is essential to damage prevention. Unfortunately, traps and attractants that are currently used are costly, and agencies rely on limited field personnel for deployment. The situation can be greatly aided by 1) the development of cost-effective trapping techniques, and 2) distribution of the effort through the Citizen Science approach. The goal of this study was to test a simple, effective trap that can be made and deployed by anyone interested in collecting bark and ambrosia beetles. Three trap types made from 2-liter soda bottles and, separately, four attractants were compared. Simple, one-window traps performed comparably at capturing species in traps painted or with multiple windows. A comparison of attractants in two-window traps found that 95% ethanol attracted the highest number of species but that Purell hand sanitizer (70% ethanol) and then Germ-X hand sanitizer (63% ethanol) were also effective. A perforated zip-top plastic bag containing Purell hanging over a trap filled with automobile antifreeze attracted the fewest species and individual specimens. Overall, >4,500 bark and ambrosia beetles, including 30 species were captured, representing a third of the regional species diversity. More than three quarters of the specimens were nonnative, representing nearly half of the known regional exotic species. These results suggest that simple one-window soda bottle traps baited with ethanol-based hand sanitizer will be effective and inexpensive tools for large-scale monitoring of bark and ambrosia beetles.
Collapse
Affiliation(s)
- M S Steininger
- Entomology and Nematology Department, University of Florida-IFAS, 1881 Natural Area Drive, Gainesville, FL 32611-0410
| | - J Hulcr
- Entomology and Nematology Department, University of Florida-IFAS, 1881 Natural Area Drive, Gainesville, FL 32611-0410. School of Forest Resources and Conservation, University of Florida-IFAS, 317 Newins-Ziegler Hall, Gainesville, FL 32611-0620.
| | - M Šigut
- Department of Biology and Ecology, University of Ostrava, Dvořákova 7, 701 03 Ostrava 1, Czech Republic
| | - A Lucky
- Entomology and Nematology Department, University of Florida-IFAS, 1881 Natural Area Drive, Gainesville, FL 32611-0410
| |
Collapse
|
36
|
Kendra PE, Niogret J, Montgomery WS, Deyrup MA, Epsky ND. Cubeb Oil Lures: Terpenoid Emissions, Trapping Efficacy, and Longevity for Attraction of Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:350-361. [PMID: 26470139 DOI: 10.1093/jee/tou023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/21/2014] [Indexed: 06/05/2023]
Abstract
Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood borer and the primary vector of Raffaelea lauricola, a symbiotic fungus that causes laurel wilt. This lethal disease has decimated native redbay [Persea borbonia (L.) Sprengel] and swampbay [Persea palustris (Rafinesque) Sargent] throughout southeastern U.S. forests, and currently threatens avocado (Persea americana Miller) in Florida. To curtail the spread of laurel wilt, effective attractants are needed for early detection of the vector. Phoebe oil lures were the best known attractant for X. glabratus, but they are no longer available. The current detection system uses manuka oil lures, but previous research indicated that manuka lures have a short field life in Florida. Recently, cubeb oil was identified as a new attractant for X. glabratus, and cubeb bubble lures are now available commercially. This study compared trapping efficacy and field longevity of cubeb and manuka lures with phoebe lures that had been in storage since 2010 over a 12-wk period in south Florida. In addition, terpenoid emissions were quantified from cubeb and manuka lures aged outdoors for 12 wk. Captures were comparable with all three lures for 3 wk, but by 4 wk, captures with manuka were significantly less. Equivalent captures were obtained with cubeb and phoebe lures for 7 wk, but captures with cubeb were significantly greater from 8 to 12 wk. Our results indicate that cubeb bubble lures are the most effective tool currently available for detection of X. glabratus, with a field life of 3 months due to extended low release of attractive sesquiterpenes, primarily α-copaene and α-cubebene.
Collapse
Affiliation(s)
- Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158.
| | - Jerome Niogret
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158. Present address: Niogret Ecology Consulting LLC, 2980 SW 25th St., Miami, FL 33133
| | - Wayne S Montgomery
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158
| | - Mark A Deyrup
- Archbold Biological Station, P. O. Box 2057, Lake Placid, FL 33862
| | - Nancy D Epsky
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158
| |
Collapse
|
37
|
Population dynamics of redbay (Persea borbonia) after laurel wilt disease: an assessment based on forest inventory and analysis data. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0799-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Kendra PE, Montgomery WS, Niogret J, Pruett GE, Mayfield AE, MacKenzie M, Deyrup MA, Bauchan GR, Ploetz RC, Epsky ND. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae). PLoS One 2014; 9:e102086. [PMID: 25007073 PMCID: PMC4090202 DOI: 10.1371/journal.pone.0102086] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/15/2014] [Indexed: 11/30/2022] Open
Abstract
The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were positively correlated with attraction, and EAG analyses confirmed chemoreception of terpenoids by antennal receptors of X. glabratus.
Collapse
Affiliation(s)
- Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, Florida, United States of America
| | - Wayne S. Montgomery
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, Florida, United States of America
| | - Jerome Niogret
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, Florida, United States of America
| | - Grechen E. Pruett
- Archbold Biological Station, Lake Placid, Florida, United States of America
| | - Albert E. Mayfield
- United States Department of Agriculture, Forest Service, Southern Research Station, Asheville, North Carolina, United States of America
| | - Martin MacKenzie
- United States Department of Agriculture, Forest Service, Forest Health Protection, Stanislaus National Forest, Sonora, California, United States of America
| | - Mark A. Deyrup
- Archbold Biological Station, Lake Placid, Florida, United States of America
| | - Gary R. Bauchan
- United States Department of Agriculture, Agricultural Research Service, Beltsville Area Research Center, Electron and Confocal Microscopy Unit, Beltsville, Maryland, United States of America
| | - Randy C. Ploetz
- University of Florida, Tropical Research and Education Center, Homestead, Florida, United States of America
| | - Nancy D. Epsky
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, Florida, United States of America
| |
Collapse
|
39
|
Scriber JM. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes. INSECTS 2013; 5:1-61. [PMID: 26462579 PMCID: PMC4592632 DOI: 10.3390/insects5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge.
Collapse
Affiliation(s)
- Jon Mark Scriber
- Department of Entomology, Michigan State University, East Lansing, Michigan, MI 48824, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
40
|
Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae). PLoS One 2013; 8:e73601. [PMID: 24039994 PMCID: PMC3767776 DOI: 10.1371/journal.pone.0073601] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Chemical analyses were conducted to determine the qualitative and quantitative differences in monoterpenes and sesquiterpenes in plant material from avocado trees, Persea americana Mill. (Lauraceae). The initial study analyzed plant material sampled from the trunk to the leaves through different branch diameters to quantify proximo-distal spatial differences within a tree. All trees were seedlings initiated from a single maternal tree. Two-way analysis of variance was conducted on 34 chemicals that comprised at least 3% of the total chemical content of at least one tree and/or location within a tree. There were significant interactions between genotype and location sampled for most chemicals. Parentage analysis using microsatellite molecular markers (SSR's) determined that the four trees had three fathers and that they represented two full-siblings and two half-sibling trees. Descriptive discriminant analysis found that both genotype and location within a tree could be separated based on chemical content, and that the chemical content from full-siblings tended to be more similar than chemical content from half-siblings. To further explore the relationship between genetic background and chemical content, samples were analyzed from leaf material from 20 trees that included two sets of full-sibling seedling trees, the maternal tree and the surviving paternal tree. Descriptive discriminant analysis found good separation between the two full-sibling groups, and that the separation was associated with chemistry of the parental trees. Six groups of chemicals were identified that explained the variation among the trees. We discuss the results in relation to the discrimination process used by wood-boring insects for site-selection on host trees, for tree selection among potential host trees, and the potential use of terpenoid chemical content in chemotaxonomy of avocado trees.
Collapse
|
41
|
Niogret J, Epsky ND, Schnell EQ, Schnell RJ, Heath RR, Meerow AW, Kendra PE. Analysis of Sesquiterpene Distributions in the Leaves, Branches, and Trunks of Avocado (<i>Persea americana</i> Mill.). ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.44114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|