1
|
Wei S, Ma F, Feng S, Ha X. Integrating transcriptomics and proteomics to understand the molecular mechanisms underlying the pathogenesis of type 2 diabetes mellitus. Genomics 2024; 116:110964. [PMID: 39571829 DOI: 10.1016/j.ygeno.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
The liver plays an important role in glucose regulation, and their dysfunction is closely associated with the development of type 2 diabetes mellitus (T2DM), and insulin resistance (IR) in hepatocyte mediate the pathogenesis of diabetes mellitus. In T2DM rats and their correlated control, we investigated various genes expression at transcriptional and translational level by utilizing transcriptomic using RNA sequencing (RNA-seq) and proteomics using isobaric tags for relative and absolute quantification (iTRAQ) to disclose potential candidates for Type 2 diabetes diagnosis and therapy. We found the lecithin retinol acyltransferase (Lrat) gene regulate hepatocyte IR in T2DM. Furthermore, BRL-3A cells, rat liver cells, worked as the IR model in vitro study. Hence, Lrat gene was overexpressed in BRL-3A cells to explore the role of Lrat gene in IR by measuring the cellular glucose consumption, TCHO, and LDL-C levels. Finally, we found that Lrat gene can improve the level of glycolipid metabolism in BRL-3A cells and reduce the degree of IR in BRL-3A cells. Therefore, further exploration of Lrat gene related molecular mechanism is meaningful.
Collapse
Affiliation(s)
- Shuyao Wei
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730050, China; Department of Clinical Laboratory, Xuzhou Municipal First People's Hospital, Xuzhou 221009, China; Clinical Laboratory Diagnostics, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China
| | - Feifei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China
| | - Shanshan Feng
- Clinical Laboratory Diagnostics, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China
| | - Xiaoqin Ha
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730050, China; Clinical Laboratory Diagnostics, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China.
| |
Collapse
|
2
|
Guo H, Wan C, Zhu J, Jiang X, Li S. Association of systemic immune-inflammation index with insulin resistance and prediabetes: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1377792. [PMID: 38904046 PMCID: PMC11188308 DOI: 10.3389/fendo.2024.1377792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background and Objective Previous research suggested a relationship between the Systemic Immune-Inflammation Index (SII) and multiple adverse health conditions. However, the role of SII in prediabetes and insulin resistance (IR) remains poorly understood. Therefore, this study aims to explore the potential relationship between SII and prediabetes and IR, providing data support for effective diabetes prevention by reducing systemic inflammation. Methods Linear regression models were used to assess the correlation between continuous SII and risk markers for type 2 diabetes (T2D). Subsequently, multivariate logistic regression models and subgroup analyses were employed to evaluate the association between SII tertiles and prediabetes and IR, controlling for various confounding factors. Finally, restricted cubic spline graphs were used to analyze the nonlinear relationship between SII and IR and prediabetes. Results After controlling for multiple potential confounders, SII was positively correlated with fasting blood glucose (FBG) (β: 0.100; 95% CI: 0.040 to 0.160), fasting serum insulin (FSI) (β: 1.042; 95% CI: 0.200 to 1.885), and homeostasis model assessment of insulin resistance (HOMA-IR) (β: 0.273; 95% CI: 0.022 to 0.523). Compared to participants with lower SII, those in the highest tertile had increased odds of prediabetes (OR: 1.17; 95% CI: 1.02-1.34; p for trend < 0.05) and IR (OR: 1.35; 95% CI: 1.18 to 1.51; p for trend<0.001). Conclusions Our study results demonstrate an elevated association between SII levels and both IR and prediabetes, indicating SII as a straightforward and cost-effective method identifying individuals with IR and prediabetes.
Collapse
Affiliation(s)
- Han Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuxing Jiang
- Frontier Medical Training Brigade, Third Military Medical University (Army Medical University), Xinjiang, China
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Qin G, Sun Z, Jin Y, Ren X, Zhang Z, Wang S, Zhou G, Huang K, Zhao H, Jiang X. The association between the triglyceride-glucose index and prognosis in postoperative renal cell carcinoma patients: a retrospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1301703. [PMID: 38476671 PMCID: PMC10927751 DOI: 10.3389/fendo.2024.1301703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Background Insulin resistance has been proven to be associated with renal cell carcinoma (RCC). However, the prognostic value of the triglyceride-glucose (TyG) index, as a marker for insulin resistance (IR), is still unclear. Therefore, we conducted research to explore the prognostic value and the predictive performance of the TyG index in postoperative RCC patients. Methods A total of 651 postoperative RCC patients from January 2016 to June 2018 were enrolled in the final study. Their clinical and laboratory parameters were collected from medical records and through follow-up by phone. The triglyceride-glucose (TyG) index was calculated as follows: TyG = Ln[TG (mg/dl) × FBG (mg/dL)/2]. The overall survival (OS) and disease-free survival (DFS) were identified as the main outcomes. Results The TyG index is an independent prognostic factor for OS (HR = 2.340, 95% CI = 1.506 to 3.64, P < 0.001) and DFS (HR = 2.027, 95% CI = 1.347 to 3.051, P < 0.001) in postoperative RCC patients. Kaplan-Meier survival curves of the different TyG index levels showed statistically significant differences in terms of OS and DFS (log-rank test, P < 0.0001). Furthermore, the TyG index was significantly associated with RCC risk factors. Conclusion The TyG index is significantly associated with RCC survival. The mechanisms responsible for these results may contribute toward the improvement of RCC prognosis and immunotherapy efficacy and the development of new immunotherapeutic targets.
Collapse
Affiliation(s)
- Guoliang Qin
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhuang Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuxiang Jin
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangguo Ren
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaocun Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuo Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Guanwen Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Kun Huang
- Department of Urology, Changle County People’s Hospital, Weifang, China
| | - Haifeng Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xianzhou Jiang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Yadav M, Akhter Y. Validating Fractalkine receptor as a target and identifying candidates for drug discovery against type 2 diabetes. J Cell Biochem 2024; 125:127-145. [PMID: 38112285 DOI: 10.1002/jcb.30511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases employing abnormal levels of insulin. Enhancing the insulin production is greatly aided by the regulatory mechanisms of the Fractalkine receptor (CX3CR1) system in islet β-cell function. However, elements including a high-fat diet, obesity, and ageing negatively impact the expression of CX3CR1 in islets. CX3CL1/CX3CR1 receptor-ligand complex is now recognized as a novel therapeutic target. It suggests that T2DM-related β-cell dysfunction may result from lower amount of these proteins. We analyzed the differential expression of CX3CR1 gene samples taken from persons with T2DM using data obtained from the Gene Expression Omnibus database. Homology modeling enabled us to generate the three-dimensional structure of CX3CR1 and a possible binding pocket. The optimized CX3CR1 structure was subjected to rigorous screening against a massive library of 693 million drug-like molecules from the ZINC15 database. This screening process led to the identification of three compounds with strong binding affinity at the identified binding pocket of CX3CR1. To further evaluate the potential of these compounds, molecular dynamics simulations were conducted over a 50 ns time scale to assess the stability of the protein-ligand complexes. These simulations revealed that ZINC000032506419 emerged as the most promising drug-like compound among the three potent molecules. The discovery of ZINC000032506419 holds exciting promise as a potential therapeutic agent for T2D and other related metabolic disorders. These findings pave the way for the development of effective medications to address the complexities of T2DM and its associated metabolic diseases.
Collapse
Affiliation(s)
- Madhu Yadav
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Ayala-García JC, Díaz-Benítez CE, Lagunas-Martínez A, Orbe-Orihuela YC, Castañeda-Márquez AC, Ortiz-Panozo E, Bermúdez-Morales VH, Cruz M, Burguete-García AI. Mediation Analysis of Waist Circumference in the Association of Gut Microbiota with Insulin Resistance in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1382. [PMID: 37628382 PMCID: PMC10453241 DOI: 10.3390/children10081382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Persistent gut microbiota (GM) imbalance has been associated with metabolic disease development. This study evaluated the mediating role of waist circumference in the association between GM and insulin resistance (IR) in children. METHODS This cross-sectional study included 533 children aged between 6 and 12. The anthropometry, metabolic markers, and relative abundance (RA) of five intestinal bacterial species were measured. Path coefficients were estimated using path analysis to assess direct, indirect (mediated by waist circumference), and total effects on the association between GM and IR. RESULTS The results indicated a positive association mediated by waist circumference between the medium and high RA of S. aureus with homeostatic model assessments for insulin resistance (HOMA-IR) and for insulin resistance adiponectin-corrected (HOMA-AD). We found a negative association mediated by waist circumference between the low and medium RA of A. muciniphila and HOMA-IR and HOMA-AD. Finally, when we evaluated the joint effect of S. aureus, L. casei, and A. muciniphila, we found a waist circumference-mediated negative association with HOMA-IR and HOMA-AD. CONCLUSIONS Waist circumference is a crucial mediator in the association between S. aureus and A. muciniphila RA and changes in HOMA-IR and HOMA-AD scores in children.
Collapse
Affiliation(s)
- Juan Carlos Ayala-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (C.E.D.-B.); (A.L.-M.); (Y.C.O.-O.); (V.H.B.-M.)
| | - Cinthya Estefhany Díaz-Benítez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (C.E.D.-B.); (A.L.-M.); (Y.C.O.-O.); (V.H.B.-M.)
| | - Alfredo Lagunas-Martínez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (C.E.D.-B.); (A.L.-M.); (Y.C.O.-O.); (V.H.B.-M.)
| | - Yaneth Citlalli Orbe-Orihuela
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (C.E.D.-B.); (A.L.-M.); (Y.C.O.-O.); (V.H.B.-M.)
| | | | - Eduardo Ortiz-Panozo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Víctor Hugo Bermúdez-Morales
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (C.E.D.-B.); (A.L.-M.); (Y.C.O.-O.); (V.H.B.-M.)
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico;
| | - Ana Isabel Burguete-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (C.E.D.-B.); (A.L.-M.); (Y.C.O.-O.); (V.H.B.-M.)
| |
Collapse
|
6
|
Vejrazkova D, Vankova M, Lukasova P, Hill M, Vcelak J, Tura A, Chocholova D, Bendlova B. The Glycemic Curve during the Oral Glucose Tolerance Test: Is It Only Indicative of Glycoregulation? Biomedicines 2023; 11:biomedicines11051278. [PMID: 37238949 DOI: 10.3390/biomedicines11051278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The shape of the glycemic curve during the oral glucose tolerance test (OGTT), interpreted in the correct context, can predict impaired glucose homeostasis. Our aim was to reveal information inherent in the 3 h glycemic trajectory that is of physiological relevance concerning the disruption of glycoregulation and complications beyond, such as components of metabolic syndrome (MS). METHODS In 1262 subjects (1035 women, 227 men) with a wide range of glucose tolerance, glycemic curves were categorized into four groups: monophasic, biphasic, triphasic, and multiphasic. The groups were then monitored in terms of anthropometry, biochemistry, and timing of the glycemic peak. RESULTS Most curves were monophasic (50%), then triphasic (28%), biphasic (17.5%), and multiphasic (4.5%). Men had more biphasic curves than women (33 vs. 14%, respectively), while women had more triphasic curves than men (30 vs. 19%, respectively) (p < 0.01). Monophasic curves were more frequent in people with impaired glucose regulation and MS compared to bi-, tri-, and multiphasic ones. Peak delay was the most common in monophasic curves, in which it was also most strongly associated with the deterioration of glucose tolerance and other components of MS. CONCLUSION The shape of the glycemic curve is gender dependent. A monophasic curve is associated with an unfavorable metabolic profile, especially when combined with a delayed peak.
Collapse
Affiliation(s)
| | | | - Petra Lukasova
- Institute of Endocrinology, 110 00 Prague, Czech Republic
| | - Martin Hill
- Institute of Endocrinology, 110 00 Prague, Czech Republic
| | - Josef Vcelak
- Institute of Endocrinology, 110 00 Prague, Czech Republic
| | - Andrea Tura
- Institute of Neuroscience, National Research Council (CNR), 351 22 Padova, Italy
| | - Denisa Chocholova
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Bela Bendlova
- Institute of Endocrinology, 110 00 Prague, Czech Republic
| |
Collapse
|
7
|
Muacevic A, Adler JR. Women With Polycystic Ovary Syndrome: A Review of Susceptibility to Type 2 Diabetes. Cureus 2023; 15:e33390. [PMID: 36751233 PMCID: PMC9897680 DOI: 10.7759/cureus.33390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
The polycystic ovarian syndrome affects many women today. Previous research has demonstrated a direct link between it and serious ailments such as type 2 diabetes, heart disease, and infertility. Originally thought to be a reproductive disorder, polycystic ovarian syndrome (PCOS) is now understood to be a metabolic and psychological disorder. Women of reproductive age suffering from PCOS undergo hormonal imbalances in which progesterone, insulin, and testosterone are produced in excess. PCOS exhibits a variety of characteristics as well as a heterogeneity of symptoms, including acne, hirsutism, androgenic alopecia, irregular menstruation, infertility, obesity, and mood disorders like despair and anxiety. Chronic anovulation, hyperandrogenism, type 2 diabetes, dyslipidemia, and an elevated threat of coronary artery disease are some of its defining characteristics. PCOS develops due to interacting genetic and environmental factors. From a gynaecological curiosity, it grew into a multisystem endocrinopathy. It is fascinating to learn how hormonal issues result in gynaecological problems. Insulin resistance, compensatory hyperinsulinism, and an increase in ovarian androgenic hyperresponsiveness to circulating insulin are all directly related to hyperandrogenism and anovulation. Independent of weight, insulin resistance is more common with PCOS and plays a crucial role in the syndrome's metabolic and reproductive complications. Anovulation, polycystic ovaries, and elevated luteinizing hormones, which increase circulating androgen, are all caused by a reduction in follicle-stimulating hormone. High androgen levels cause hyperinsulinemia, which leads cells to become insulin resistant and makes PCOS patients more likely to develop diabetes mellitus. Later research established that women with polycystic ovarian shape and persistent anovulation are the only ones susceptible to insulin resistance. Insulin resistance is thus a distinct characteristic of the condition. The purpose of this review paper is to investigate how PCOS ultimately results in type 2 diabetes mellitus.
Collapse
|
8
|
Moeez S, Khalid S, Shaeen S, Khalid M, Zia A, Gul A, Niazi R, Khalid Z. Clinically significant findings of high-risk mutations in human SLC29A4 gene associated with diabetes mellitus type 2 in Pakistani population. J Biomol Struct Dyn 2022; 40:12660-12673. [PMID: 34551672 DOI: 10.1080/07391102.2021.1975561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study conducted an in-depth analysis combining computational and experimental verifications of the deleterious missense mutations associated with the SLC29A4 protein. The functional annotation of the non-synonymous single nucleotide polymorphism (nsSNPs), followed by structure-function analysis, revealed 13 single nucleotide polymorphisms (SNP) as the most damaging. Among these, six mutants P429T/S, L144S, M108V, N86H, and V79E, were predicted as structurally and functionally damaging by protein stability analysis. Also, these variants are located at evolutionary conserved regions, either buried, contributing to the structural damage, or exposed, causing functional changes in the protein. These mutants were further taken for molecular docking studies. When verified via experimental analysis, the SNPs M108V (rs149798710), N86H (rs151039853), and V79E (rs17854505) showed an association with type 2 diabetes mellitus (T2DM). Minor allele frequency for rs149798710 (A > G) was 0.23 in controls, 0.29 in metformin responders, 0.37 in metformin non-responder, for rs151039853 (A > C) was 0.21 in controls, 0.28 in metformin responders, 0.36 in metformin non-responder and for rs17854505 (T > A) was 0.20 in controls, 0.25 in metformin responders, 0.37 in metformin non-responder. Hence, this study concludes that SLC29A4 M108V (rs149798710), N86H (rs151039853), and V79E (rs17854505) polymorphisms were associated with the increased risk of T2DM as well as with the increased risk towards the failure of metformin therapeutic response in T2DM patients of Pakistan. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadaf Moeez
- Department of Bioinformatics & Biotechnology, International Islamic University (IIUI), Islamabad, Pakistan
| | - Sumbul Khalid
- Department of Bioinformatics & Biotechnology, International Islamic University (IIUI), Islamabad, Pakistan
| | - Sania Shaeen
- Department of Bioinformatics & Biotechnology, International Islamic University (IIUI), Islamabad, Pakistan
| | - Madiha Khalid
- PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Asima Zia
- Department of Biosciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Asma Gul
- Department of Bioinformatics & Biotechnology, International Islamic University (IIUI), Islamabad, Pakistan
| | - Rauf Niazi
- Department of Medicine, Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Zoya Khalid
- Computational Biology research lab, Department of computer science, National University of Computer and Emerging Sciences, NUCES-FAST, Islamabad, Pakistan
| |
Collapse
|
9
|
Giha HA, Joatar FE, AlDehaini DMB, Malalla ZHA, Ali ME, Al Qarni AA. Association of obesity in T2DM with differential polymorphism of ghrelin, growth hormone secretagogue receptor-1 and telomeres maintenance genes. Horm Mol Biol Clin Investig 2022; 43:297-306. [PMID: 35446515 DOI: 10.1515/hmbci-2021-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/12/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although obesity and T2DM comorbidity is too frequent, the molecular basis of diabetic obesity is largely unexplained and barely investigated. MATERIALS Cross-sectional studies were conducted in Kingdom of Saudi Arabia (KSA) in 2013 and Kuwait in 2019. Fasting blood samples were obtained from a total of 216 T2DM patients (104 from KSA) and 193 nondiabetic subjects (93 from KSA) after their consents. Eight SNPs in 5 genes known to be associated with both obesity and T2DM, ghrelin (GHRL) and growth hormone secretagogue receptor -GHSR (KSA) and telomeres maintenance genes (Kuwait) were genotyped by rtPCR. Both patients and controls were grouped into obese and non-obese and sub-grouped into 4-BMI- grades: normal, overweight (OW), obese (OBS) and severely obese (SOBS). RESULTS Showed that the only SNP which was distinguished between all groups/subgroups in all study subjects was the ACYP2 rs6713088G/C, where the common CC genotype was under-expressed in the obese compared to non-obese diabetics (17.8% vs. 40.4%, p 0.01) and between the 4-BMI-grade (p 0.025). Interestingly the same genotype was over-expressed in obese compared to non-obese non-diabetics (50% vs. 27.6%, p 0.04). Furthermore, the GHRL (rs27647C/T), GHSR (rs509030G/C) and TERC (rs12696304G/C) MAFs were significantly low in normal BMI patients; p=0.034, 0.008 and 0.011, respectively. CONCLUSIONS This is the first report about the molecular distinction between the obese and non-obese diabetics, it showed the association of rs6713088G/C mutant allele with diabetic obesity, while the GHRL, GHSR and TERC SNPs were differentially expressed based on the BMI-grades.
Collapse
Affiliation(s)
- Hayder A Giha
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan
| | - Faris E Joatar
- Clinical Biochemistry Laboratory, King Abdulaziz Hospital, Ministry of National Guard Health affairs, Al Ahsa, Saudi Arabia
| | | | - Zainab H A Malalla
- Medical Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Kingdom of Bahrain
| | - Muhalab E Ali
- Medical Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Kingdom of Bahrain
| | - Ali A Al Qarni
- Endocrinology and Metabolism Section, King Abdulaziz Hospital, Ministry of National Guard Health Affairs, King Abdullah Medical Research Center-Estern Region, Al Ahsa, Saudi Arabia
| |
Collapse
|
10
|
Rout M, Kour B, Vuree S, Lulu SS, Medicherla KM, Suravajhala P. Diabetes mellitus susceptibility with varied diseased phenotypes and its comparison with phenome interactome networks. World J Clin Cases 2022; 10:5957-5964. [PMID: 35949812 PMCID: PMC9254192 DOI: 10.12998/wjcc.v10.i18.5957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
An emerging area of interest in understanding disease phenotypes is systems genomics. Complex diseases such as diabetes have played an important role towards understanding the susceptible genes and mutations. A wide number of methods have been employed and strategies such as polygenic risk score and allele frequencies have been useful, but understanding the candidate genes harboring those mutations is an unmet goal. In this perspective, using systems genomic approaches, we highlight the application of phenome-interactome networks in diabetes and provide deep insights. LINC01128, which we previously described as candidate for diabetes, is shown as an example to discuss the approach.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, University of Oklahoma Health Sciences Centre, Oklahoma City, OK 73104, United States
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, Rajasthan, India
| | - Bhumandeep Kour
- Department of Biotechnology, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Sugunakar Vuree
- Department of Biotechnology, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Sajitha S Lulu
- Department of Biotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, Rajasthan, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Vallikavu PO, Amritapuri, Clappana, Kollam 690525, Kerala, India
| |
Collapse
|
11
|
Pullano SA, Greco M, Bianco MG, Foti D, Brunetti A, Fiorillo AS. Glucose biosensors in clinical practice: principles, limits and perspectives of currently used devices. Theranostics 2022; 12:493-511. [PMID: 34976197 PMCID: PMC8692922 DOI: 10.7150/thno.64035] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
The demand of glucose monitoring devices and even of updated guidelines for the management of diabetic patients is dramatically increasing due to the progressive rise in the prevalence of diabetes mellitus and the need to prevent its complications. Even though the introduction of the first glucose sensor occurred decades ago, important advances both from the technological and clinical point of view have contributed to a substantial improvement in quality healthcare. This review aims to bring together purely technological and clinical aspects of interest in the field of glucose devices by proposing a roadmap in glucose monitoring and management of patients with diabetes. Also, it prospects other biological fluids to be examined as further options in diabetes care, and suggests, throughout the technology innovation process, future directions to improve the follow-up, treatment, and clinical outcomes of patients.
Collapse
Affiliation(s)
| | - Marta Greco
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Maria Giovanna Bianco
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Daniela Foti
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonino S. Fiorillo
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
12
|
Mohammad A, Falahi E, Mohd Yusof BN, Hanipah ZN, Sabran MR, Mohamad Yusof L, Gheitasvand M. The effects of the ginger supplements on inflammatory parameters in type 2 diabetes patients: A systematic review and meta-analysis of randomised controlled trials. Clin Nutr ESPEN 2021; 46:66-72. [PMID: 34857250 DOI: 10.1016/j.clnesp.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/28/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The effect of ginger supplements on inflammatory biomarkers and oxidative stress in patients with type 2 diabetes (T2DM) has been investigated, but findings are inconsistent. This systematic review and meta-analysis were conducted to determine the effects of ginger supplementation on inflammatory parameters (high-sensitivity C-reactive protein [hs-CRP], tumour necrosis factor-alpha [TNF-α], and interleukin-6 [IL-6]) in patients with T2DM. METHODS We performed a systematic search using PubMed, Scopus, Cochrane Library, Web of Science for randomised controlled trials (RCTs), published until March 17, 2021. The quality assessment was carried out using the Cochrane Collaboration risk of bias tool. The Q-test and I 2 tests were used for the determination of heterogeneity of the included studies. Data were pooled using a random-effects model, and weighted mean difference (WMD) was used for the overall effect size. RESULTS Pooled findings of the five RCTs demonstrated that ginger supplementations had significantly reduced hs-CRP (WMD -0.42 mg/L; 95% CI, -0.78, -0.05, P = 0.03), TNF-α (-2.13 pg/mL; 95% CI: -3.41, -0.86, P = 0.001), and IL-6 (WMD: -0.61 pg/mL; 95% CI: -0.92, -0.30, P = 0.001) levels in patients with T2DM. The quality assessment of the studies showed that all of the included studies were at high risk of bias. CONCLUSIONS The meta-analysis shows that ginger supplementations reduced inflammatory parameters in patients with T2DM. Nonetheless, the reduction is relatively small, and its meaningful clinical effects are unknown. Future high-quality RCTs are needed to confirm the beneficial effects of ginger supplementation in patients with T2DM.
Collapse
Affiliation(s)
- Abolfathi Mohammad
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Ebrahim Falahi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Barakatun-Nisak Mohd Yusof
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia; Research Centre of Excellence for Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia; Institute of Social Sciences, Universiti Putra Malaysia, Malaysia.
| | - Zubaidah Nor Hanipah
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Mohd Redzwan Sabran
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Loqman Mohamad Yusof
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia.
| | - Mohsen Gheitasvand
- Department of Pathology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
13
|
Das B, Das M, Kalita A, Baro MR. The role of Wnt pathway in obesity induced inflammation and diabetes: a review. J Diabetes Metab Disord 2021; 20:1871-1882. [PMID: 34900830 PMCID: PMC8630176 DOI: 10.1007/s40200-021-00862-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023]
Abstract
Diabetes has become a major killer worldwide and at present, millions are affected by it. Being a chronic disease it increases the risk of other diseases ranging from pulmonary disorders to soft tissue infections. The loss of insulin-producing capacity of the pancreatic β-cells is the main reason for the development of the disease. Obesity is a major complication that can give rise to several other diseases such as cancer, diabetes, etc. Visceral adiposity is one of the major factors that play a role in the development of insulin resistance. Obesity causes a chronic low-grade inflammation in the tissues that further increases the chances of developing diabetes. Several pathways have been associated with the development of diabetes due to inflammation caused by obesity. The Wnt pathway is one such candidate pathway that is found to have a controlling effect on the development of insulin resistance. Moreover, the pathway has also been linked to obesity and inflammation. This review aims to find a connection between obesity, inflammation, and diabetes by taking the wnt pathway as the connecting link.
Collapse
Affiliation(s)
- Bhabajyoti Das
- Department of Zoology, Animal Physiology and Biochemistry Laboratory, Gauhati University, Guwahati, 781014 Assam India
| | - Manas Das
- Department of Zoology, Animal Physiology and Biochemistry Laboratory, Gauhati University, Guwahati, 781014 Assam India
| | - Anuradha Kalita
- Department of Zoology, Animal Physiology and Biochemistry Laboratory, Gauhati University, Guwahati, 781014 Assam India
| | - Momita Rani Baro
- Department of Zoology, Animal Physiology and Biochemistry Laboratory, Gauhati University, Guwahati, 781014 Assam India
| |
Collapse
|
14
|
Insulin Resistance and Cancer: In Search for a Causal Link. Int J Mol Sci 2021; 22:ijms222011137. [PMID: 34681797 PMCID: PMC8540232 DOI: 10.3390/ijms222011137] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is a condition which refers to individuals whose cells and tissues become insensitive to the peptide hormone, insulin. Over the recent years, a wealth of data has made it clear that a synergistic relationship exists between IR, type 2 diabetes mellitus, and cancer. Although the underlying mechanism(s) for this association remain unclear, it is well established that hyperinsulinemia, a hallmark of IR, may play a role in tumorigenesis. On the other hand, IR is strongly associated with visceral adiposity dysfunction and systemic inflammation, two conditions which favor the establishment of a pro-tumorigenic environment. Similarly, epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNA, in IR states, have been often associated with tumorigenesis in numerous types of human cancer. In addition to these observations, it is also broadly accepted that gut microbiota may play an intriguing role in the development of IR-related diseases, including type 2 diabetes and cancer, whereas potential chemopreventive properties have been attributed to some of the most commonly used antidiabetic medications. Herein we provide a concise overview of the most recent literature in this field and discuss how different but interrelated molecular pathways may impact on tumor development.
Collapse
|
15
|
Kane JP, Pullinger CR, Goldfine ID, Malloy MJ. Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Curr Opin Pharmacol 2021; 61:21-27. [PMID: 34562838 DOI: 10.1016/j.coph.2021.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is a complex disease. We are increasingly gaining a better understanding of its mechanisms at the molecular level. From these new insights, better therapeutic approaches should emerge. Diabetes mellitus is a syndrome with many associated subphenotypes. These include mitochondrial disorders, lipodystrophies, and inflammatory disorders involving cytokines. Levels of sphingosine-1-phosphate, which has recently been shown to play a role in glucose homeostasis, are low in diabetics, whereas levels of ceramides are increased. Major phenotypes associated with diabetes mellitus are dyslipidemias, notably hypertriglyceridemia and low high-density lipoprotein cholesterol levels. Both diabetes and dyslipidemia are strongly associated with increased risk for atherosclerotic vascular disease.
Collapse
Affiliation(s)
- John P Kane
- Cardiovascular Research Institute, University of California, San Francisco, United States; Department of Medicine, University of California, San Francisco, United States; Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco, United States; Department of Physiological Nursing, University of California, San Francisco, United States.
| | - Ira D Goldfine
- Cardiovascular Research Institute, University of California, San Francisco, United States; Department of Medicine, University of California, San Francisco, United States
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California, San Francisco, United States; Department of Medicine, University of California, San Francisco, United States
| |
Collapse
|
16
|
Malekizadeh A, Rahbaran M, Afshari M, Abbasi D, Aghaei Meybodi HR, Hasanzad M. Association of common genetic variants of KCNJ11 gene with the risk of type 2 diabetes mellitus. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:530-541. [PMID: 33853507 DOI: 10.1080/15257770.2021.1905841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial polygenic disease. Potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) gene mutations can result in susceptibility of T2DM. The aim of this study is to investigate the relationship between risk of T2DM and its complications (retinopathy & renal) and polymorphisms rs5210 and rs5215 of the KCNJ11 gene in a group of Iranian population. In this case-control study, 111 Iranian patients with T2DM and 82 control subjects were genotyped for each polymorphism by polymerase chain reaction (PCR) and Sanger Sequencing methods. Frequencies of genotypes of rs5210 polymorphism among subjects with and without diabetes mellitus were 53.15% vs. 51.22% for GG and 37.84% vs. 42.68% for AG (p = 0.7), respectively. Corresponding frequencies for rs5215 polymorphism among diabetics and non-diabetics were 13.51% vs. 13.41% for CC and 50.45% vs. 37.80% for CT (p = 0.2). G allele carriers (rs5210 polymorphism) and C allele carriers (rs5215 polymorphism) had the same frequency among diabetics and non-diabetics (p = 0.9 for G allele and p = 0.2 for C allele). Our results suggested that none of the polymorphisms of KCNJ11, rs5210 (p = 0.7) and rs5215 (p = 0.2), were significantly associated with T2DM. Only, the relationship between CT genotype of rs5215 and retinopathy (p = 0.01) showed a borderline significant association.
Collapse
Affiliation(s)
- Azadeh Malekizadeh
- Medical Genomics Research Center, Islamic Azad Tehran Medical Sciences University, Tehran, Iran
| | - Marzieh Rahbaran
- Medical Genomics Research Center, Islamic Azad Tehran Medical Sciences University, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Afshari
- Department of Community Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Davood Abbasi
- Iranian Diabetes Society, Eslamshahr Branch, Eslamshahr, Iran
| | - Hamid Reza Aghaei Meybodi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Medical Genomics Research Center, Islamic Azad Tehran Medical Sciences University, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Evseeva MN, Dyikanov DT, Karagyaur MN, Prikazchikova TA, Sheptulina AF, Balashova MS, Zatsepin TS, Rubtsov YP, Kulebyakin KY. Hematopoietically-expressed homeobox protein HHEX regulates adipogenesis in preadipocytes. Biochimie 2021; 185:68-77. [PMID: 33677034 DOI: 10.1016/j.biochi.2021.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/18/2022]
Abstract
Obesity is a key health problem and is associated with a high risk of type 2 diabetes and other metabolic diseases. Increased weight as well as dysregulation of adipocyte homeostasis are the main drivers of obesity. Pathological adipogenesis plays a central role in obesity-related complications such as type 2 diabetes, hypertension and others. Thus, an understanding of the molecular mechanisms involved in physiological and pathogenic adipogenesis can help to develop new strategies to prevent or cure obesity and related diseases. Previously, genetic polymorphisms in the HHEX gene that encodes the homeobox transcription factor HEX (PRH) were found to be associated with type 2 diabetes and high body mass index at birth by GWAS in distinct human populations. To understand whether HHEX has a regulatory function in adipogenesis, we performed RNAi-mediated knockdown of Hhex in preadipocyte cell line 3T3-L1 in vitro, and studied changes in the efficacy of adipogenesis. We found that Hhex knockdown blocks adipogenesis in preadipocytes in a dose-dependent manner and leads to a significant decrease of PPAR-gamma protein - the main regulator of adipogenesis. We also propose that Hhex can play an important role in adipocyte differentiation by affecting the level of the PPAR-gamma protein. Our study supports the claim that Hhex plays an important role in adipocyte differentiation program and can contribute to fat tissue homeostasis.
Collapse
Affiliation(s)
- Maria N Evseeva
- Faculty of Medicine, Lomonosov Moscow State University, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russia.
| | | | | | - Tatyana A Prikazchikova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Anna F Sheptulina
- Department of Gastroenterology and Hepatology, Sechenov 1st State Medical University, Moscow, Russia
| | - Maria S Balashova
- Department of Medical Genetics, Sechenov 1st State Medical University, Moscow, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yury P Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russia
| | | |
Collapse
|
18
|
Role of Wnt signaling pathways in type 2 diabetes mellitus. Mol Cell Biochem 2021; 476:2219-2232. [PMID: 33566231 DOI: 10.1007/s11010-021-04086-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has become a major global public health issue in the twenty-first century and its incidence has increased each year. Wnt signaling pathways are a set of multi-downstream signaling pathways activated by the binding of Wnt ligands to membrane protein receptors. Wnt signaling pathways regulate protein expression and play important roles in protecting the body's normal physiological metabolism. This review describes Wnt signaling pathways, and then aims to reveal how Wnt signaling pathways participate in the occurrence and development of T2DM. We found that Wnt/c-Jun N-terminal kinase signaling was closely associated with insulin resistance, inflammatory response, and pancreatic β-cell and endothelial dysfunction. β-catenin/transcription factor 7-like 2 (TCF7L2)-mediated and calcineurin/nuclear factor of activated T cells-mediated target genes were involved in insulin synthesis and secretion, insulin degradation, pancreatic β-cell growth and regeneration, and functional application of pancreatic β-cells. In addition, polymorphisms in the TCF7L2 gene could increase risk of T2DM according to previous and the most current results, and the T allele of its variants was a more adverse factor for abnormal pancreatic β-cell function and impaired glucose tolerance in patients with T2DM. These findings indicate a strong correlation between Wnt signaling pathways and T2DM, particularly in terms of pancreatic islet dysfunction and insulin resistance, and new therapeutic targets for T2DM may be identified.
Collapse
|
19
|
Sadeghi MB, Nakhaee A, Saravani R, Sargazi S. Significant association of LXRβ (NR1H2) polymorphisms (rs28514894, rs2303044) with type 2 diabetes mellitus and laboratory characteristics. J Diabetes Metab Disord 2021; 20:261-270. [PMID: 34178836 DOI: 10.1007/s40200-021-00740-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
Purpose To investigate if single-nucleotide polymorphisms (SNPs) in the NR1H2 gene encoding LXRβ contribute to the development of type-2 diabetes mellitus (T2DM) and whether genotypes of two NR1H2 polymorphisms, rs28514894 and rs2303044, are associated with laboratory characteristics of T2DM patients. Method A total of 900 subjects (450 T2DM cases and 450 healthy subjects) of Iranian ancestry were genotyped for NR1H2 polymorphisms via ARMS-PCR and PCR-RFLP techniques. Result Our findings showed a significant correlation between both polymorphisms and increased risk of T2DM. The haplotype analysis showed an association between the C A haplotype with enhanced risk of T2DM. In T2DM patients, the mean level of HbA1C and BUN significantly differed among carriers of CC and TT genotypes of the rs28514894 polymorphism (P = 0.05 and P < 0.0001, respectively); while in the control group, no significant difference was noticed between subjects with these genotypes. The mean BUN levels also significantly differed among carriers of TC and TT genotypes of this variant in T2DM patients (P = 0.01) and controls (P = 0.04). As for rs2303044 polymorphism, only the mean BUN level significantly differed between GA and GG carriers in T2DM patients (P = 0.006). Compared with CT and TT genotypes, the CC genotype of rs28514894 polymorphism was more frequent in overweight T2DM patients ( 25 < body mass index < 30). Conclusions The present research provided the first documents of the correlation of NR1H2 rs28514894 and rs2303044 polymorphisms with susceptibility to T2DM. Replicated case-control studies on larger populations are needed to validate these findings.
Collapse
Affiliation(s)
- Mohammad Bagher Sadeghi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Nakhaee
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
20
|
AlDehaini DMB, Al-Bustan SA, Malalla ZHA, Ali ME, Sater M, Giha HA. The influence of TERC, TERT and ACYP2 genes polymorphisms on plasma telomerase concentration, telomeres length and T2DM. Gene 2021; 766:145127. [PMID: 32937184 DOI: 10.1016/j.gene.2020.145127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/20/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022]
Abstract
Telomeres are duplex tandem repeats of DNA sequence 5'-TTAGGG-3' at chromosomal ends synthesized by telomerase enzyme (TE). Telomeres length (TL) shortening is associated with age and age-related disorders. Recently, we demonstrated marked leukocytes TL (LTL) shortening in T2DM. To set the relationship between the TE, LTL and T2DM, we analyzed samples from 212 Kuwaiti subjects, 112 patients withT2DM and 100 non-diabetic subjects. The plasma TE and fasting insulin were measured by ELISA, the LTL was estimated by qPCR and three SNPs of genes related to TL; TERC rs12696304 (C/G), TERT rs2736100 (C/A) and ACYP2 rs6713088 (C/G) were genotyped by rtPCR. Results revealed comparable TE levels and alleles/genotypes between the cases and controls with no influence of either on the LTL. Interestingly, although the plasma concentration of the TE was generally low, it was significantly influenced by the TERT and ACYP2 but not TERC polymorphisms. The CC genotype carriers of rs2736100 (C/A) had significantly higher plasma TE levels compared to CA and AA carriers, p 0.009 and p 0.047, respectively, and the A-allele was associated with low TE, p 0.018. Similarly, significantly higher TE levels were detected in CC carriers of ACYP2 rs6713088 (C/G) compared with GC carriers, p 0.002, and the G-allele was associated with low TE, p 0.009. Finally, the TERT and ACYP2 polymorphisms had an influence on blood glucose levels. In conclusion, the telomeres shortening in T2DM was not due to TE deficiency or gene polymorphisms, while the TE levels were significantly associated with the TERT and ACYP2 but not TERC polymorphisms.
Collapse
Affiliation(s)
- Dhuha M B AlDehaini
- Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Bahrain; Farwaniya Hospital, Biochemistry Laboratory, PO Box 13373, Farwaniya 81004, Kuwait
| | - Suzanne A Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Zainab Hasan Abdulla Malalla
- Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Bahrain
| | - Muhalab E Ali
- Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Bahrain
| | - Mai Sater
- Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Bahrain
| | - Hayder A Giha
- Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Bahrain.
| |
Collapse
|
21
|
Raza W, Guo J, Qadir MI, Bai B, Muhammad SA. qPCR Analysis Reveals Association of Differential Expression of SRR, NFKB1, and PDE4B Genes With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:774696. [PMID: 35046895 PMCID: PMC8761634 DOI: 10.3389/fendo.2021.774696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a heterogeneous, metabolic, and chronic condition affecting vast numbers of the world's population. The related variables and T2DM associations have not been fully understood due to their diverse nature. However, functional genomics can facilitate understanding of the disease. This information will be useful in drug design, advanced diagnostic, and prognostic markers. AIM To understand the genetic causes of T2DM, this study was designed to identify the differentially expressed genes (DEGs) of the disease. METHODS We investigated 20 publicly available disease-specific cDNA datasets from Gene Expression Omnibus (GEO) containing several attributes including gene symbols and clone identifiers, GenBank accession numbers, and phenotypic feature coordinates. We analyzed an integrated system-level framework involving Gene Ontology (GO), protein motifs and co-expression analysis, pathway enrichment, and transcriptional factors to reveal the biological information of genes. A co-expression network was studied to highlight the genes that showed a coordinated expression pattern across a group of samples. The DEGs were validated by quantitative PCR (qPCR) to analyze the expression levels of case and control samples (50 each) using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the reference gene. RESULTS From the list of 50 DEGs, we ranked three T2DM-related genes (p < 0.05): SRR, NFKB1, and PDE4B. The enriched terms revealed a significant functional role in amino acid metabolism, signal transduction, transmembrane and intracellular transport, and other vital biological functions. DMBX1, TAL1, ZFP161, NFIC (66.7%), and NR1H4 (33.3%) are transcriptional factors associated with the regulatory mechanism. We found substantial enrichment of insulin signaling and other T2DM-related pathways, such as valine, leucine and isoleucine biosynthesis, serine and threonine metabolism, adipocytokine signaling pathway, P13K/Akt pathway, and Hedgehog signaling pathway. The expression profiles of these DEGs verified by qPCR showed a substantial level of twofold change (FC) expression (2-ΔΔCT) in the genes SRR (FC ≤ 0.12), NFKB1 (FC ≤ 1.09), and PDE4B (FC ≤ 0.9) compared to controls (FC ≥ 1.6). The downregulated expression of these genes is associated with pathophysiological development and metabolic disorders. CONCLUSION This study would help to modulate the therapeutic strategies for T2DM and could speed up drug discovery outcomes.
Collapse
Affiliation(s)
- Waseem Raza
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jinlei Guo
- School of Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Baogang Bai
- School of Information and Technology, Wenzhou Business College, Wenzhou, China
- Engineering Research Center of Intelligent Medicine, Wenzhou, China
- The 1st School of Medical, School of Information and Engineering, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Syed Aun Muhammad, ; Baogang Bai,
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Syed Aun Muhammad, ; Baogang Bai,
| |
Collapse
|
22
|
Sarah EH, El Omri N, Ibrahimi A, El Jaoudi R. Metabolic and genetic studies of glimepiride and metformin and their association with type 2 diabetes. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Zhang L, Zhang L, Li L, Hölscher C. Semaglutide is Neuroprotective and Reduces α-Synuclein Levels in the Chronic MPTP Mouse Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:157-171. [PMID: 30741689 DOI: 10.3233/jpd-181503] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological motor control disorder. A key feature is the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (α-syn). No current treatment is on the market that slows or halts disease progression. Previous studies have shown that glucagon-like peptide-1 (GLP-1) receptor agonists have neuroprotective effects in animal models of PD. In addition, in a phase II clinical trial, the GLP-1 receptor agonist exendin-4 has shown good protective effects in PD patients. In the present study, we have investigated the neuroprotective effects of the GLP-1 analogues semaglutide (25 nmol/kg ip. once every two days for 30 days) and liraglutide (25 nmol/kg ip. once daily for 30 days) in the chronic MPTP mouse model of PD. Both drugs are currently on the market as a treatment for Type II diabetes. Our results show that both semaglutide and liraglutide improved MPTP-induced motor impairments. In addition, both drugs rescued the decrease of tyrosine hydroxylase (TH) levels, reduced the accumulation of α-syn, alleviated the chronic inflammation response in the brain, reduced lipid peroxidation, and inhibited the mitochondrial mitophagy signaling pathway, and furthermore increased expression of the key growth factor GDNF that protects dopaminergic neurons in the substantia nigra (SN) and striatum. Moreover, the long- acting GLP-1 analogue semaglutide was more potent compared with once daily liraglutide in most parameters measured in this study. Our results demonstrate that semaglutide may be a promising treatment for PD. A clinical trial testing semaglutide in PD patients will start shortly.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - LingYu Zhang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Lin Li
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Christian Hölscher
- Department of Second Hospital Neurology, Shanxi medical University, Taiyuan, Shanxi, PR China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan province, China
| |
Collapse
|
24
|
Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020; 12:nu12041066. [PMID: 32290535 PMCID: PMC7230471 DOI: 10.3390/nu12041066] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR), defined as an attenuated biological response to circulating insulin, is a fundamental defect in obesity and type 2 diabetes (T2D), and is also linked to a wide spectrum of pathological conditions, such as non-alcoholic fatty liver disease (NAFLD), cognitive impairment, endothelial dysfunction, chronic kidney disease (CKD), polycystic ovary syndrome (PCOS), and some endocrine tumors, including breast cancer. In obesity, the unbalanced production of pro- and anti-inflammatory adipocytokines can lead to the development of IR and its related metabolic complications, which are potentially reversible through weight-loss programs. The Mediterranean diet (MedDiet), characterized by high consumption of extra-virgin olive oil (EVOO), nuts, red wine, vegetables and other polyphenol-rich elements, has proved to be associated with greater improvement of IR in obese individuals, when compared to other nutritional interventions. Also, recent studies in either experimental animal models or in humans, have shown encouraging results for insulin-sensitizing nutritional supplements derived from MedDiet food sources in the modulation of pathognomonic traits of certain IR-related conditions, including polyunsaturated fatty acids from olive oil and seeds, anthocyanins from purple vegetables and fruits, resveratrol from grapes, and the EVOO-derived, oleacein. Although the pharmacological properties and clinical uses of these functional nutrients are still under investigation, the molecular mechanism(s) underlying the metabolic benefits appear to be compound-specific and, in some cases, point to a role in gene expression through an involvement of the nuclear high-mobility group A1 (HMGA1) protein.
Collapse
|
25
|
Wang X, Wei C, Zhang Z, Liu D, Guo Y, Sun G, Wang Y, Li H, Tian Y, Kang X, Han R, Li Z. Association of growth traits with a structural variation downstream of the KCNJ11 gene: a large population-based study in chickens. Br Poult Sci 2020; 61:320-327. [PMID: 32008360 DOI: 10.1080/00071668.2020.1724878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. The potassium voltage-gated channel subfamily J member 11 gene (KCNJ11) is involved in the insulin secretion pathway. Studies have shown that mutation in this gene is associated with muscle weakness. The objective of the present study was to establish the association between KCNJ11 gene polymorphism and chicken growth performance and to analyse its expression pattern. 2. A novel 163-bp insertion/deletion (indel) polymorphism was identified in the region downstream of the KCNJ11 gene in 2330 individuals from ten populations by polymerase chain reaction (PCR). An F2 resource population was used to investigate the genetic effects of the chicken KCNJ11 gene. Association analysis showed that the indel was significantly associated with chicken growth traits and that the phenotypic value of the ins-ins (II) genotype is higher than that of the ins-del (ID) and del-del (DD) genotypes. 3. Gene expression for different genotypes showed that birds carrying the II allele had a higher expression level than the DD genotypes. Analysis of tissue and spatiotemporal expression patterns indicated that the KCNJ11 gene was highly expressed in muscle tissues, with the highest levels in muscle tissue at one week of age, and that a 10% crude protein diet reduced the expression of this gene, average daily gain and muscle fibre diameter. 4. The results suggested that this novel 163-bp indel has the potential to become a new target for marker-assisted selection.
Collapse
Affiliation(s)
- X Wang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - C Wei
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Z Zhang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - D Liu
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Y Guo
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - G Sun
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Y Wang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - H Li
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Y Tian
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - X Kang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - R Han
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Z Li
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| |
Collapse
|
26
|
Foley K, McNaughton D, Ward P. Monitoring the 'diabetes epidemic': A framing analysis of United Kingdom print news 1993-2013. PLoS One 2020; 15:e0225794. [PMID: 31951616 PMCID: PMC6968867 DOI: 10.1371/journal.pone.0225794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/12/2019] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The view that we are in the midst of a global diabetes epidemic has gained considerable ground in recent years and is often linked to the prior 'obesity epidemic'. This research explored how the diabetes epidemic was represented in United Kingdom (UK) news over the same time period that the obesity epidemic was widely reported. The research was motivated by a sociological interest in how postmodern 'epidemics' synergise with each other amidst broader political, economic, moral and sociocultural discourses. METHOD We analysed three time-bound samples of UK news articles about diabetes: 1993 (n = 19), 2001 (n = 119) and 2013 (n = 324). Until now, UK media has had the least attention regarding portrayal of diabetes. We adopted an empathically neutral approach and used a dual method approach of inductive thematic analysis and deductive framing analysis. The two methods were triangulated to produce the findings. RESULTS Framing of diabetes moved from medical in 1993 to behavioural in 2001, then societal in 2013. By 2001 obesity was conceptualised as causal to diabetes, rather than a risk factor. Between 2001 and 2013 portrayals of the modifiable risk factors for diabetes (i.e. diet, exercise and weight) became increasingly technical. Other risk factors like age, family history and genetics faded during 2001 and 2013, while race, ethnicity and culture were positioned as states of 'high risk' for diabetes. The notion of an 'epidemic' of diabetes 'powered up' these concerns from an individual problem to a societal threat in the context of obesity as a well-known health risk. DISCUSSION AND CONCLUSION Portraying diabetes and the diabetes epidemic as anticipated consequences of obesity enlivens the heightened awareness to future risks in everyday life brought about during the obesity epidemic. The freeform adoption of the 'epidemic' term in contemporary health discourse appears to foster individual and societal dependence on biomedicine, giving it political, economic and divisive utility.
Collapse
Affiliation(s)
- Kristen Foley
- Discipline of Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Darlene McNaughton
- Discipline of Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Paul Ward
- Discipline of Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Lin Y, Li J, Wu D, Wang F, Fang Z, Shen G. Identification of Hub Genes in Type 2 Diabetes Mellitus Using Bioinformatics Analysis. Diabetes Metab Syndr Obes 2020; 13:1793-1801. [PMID: 32547141 PMCID: PMC7250707 DOI: 10.2147/dmso.s245165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases in the world with complicated pathogenesis. This study aimed to identify differentially expressed genes (DEGs) and molecular pathways in T2DM using bioinformatics analysis. MATERIALS AND METHODS To explore potential therapeutic targets for T2DM, we analyzed three microarray datasets (GSE50397, GSE38642, and GSE44035) acquired from the Gene Expression Omnibus (GEO) database. DEGs between T2DM islet and normal islet were picked out by the GEO2R tool and Venn diagram software. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to identify the pathways and functional annotation of DEGs. Then, protein-protein interaction (PPI) of these DEGs was visualized by Cytoscape with Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). RESULTS In total, we identified 36 DEGs in the three datasets, including 32 up-regulated genes and four down-regulated genes. The improved functions and pathways of the DEGs enriched in cytokine-cytokine receptor interaction, pathways in cancer, PI3K-Akt signaling pathway, and Rheumatoid arthritis. Among them, ten hub genes with a high degree of connectivity were selected. Furthermore, via the re-analysis of DAVID, four genes (IL6, MMP3, MMP1, and IL11) were significantly enriched in the Rheumatoid arthritis pathway. CONCLUSION Our study, based on the GEO database, identified four significant up-regulated DEGs and provided novel targets for diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- YiXuan Lin
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - Jinju Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - Di Wu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - FanJing Wang
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - ZhaoHui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, People’s Republic of China
- Anhui Academic of Traditional Chinese Medicine Diabetes Research Institute, Hefei, Anhui, People’s Republic of China
- Correspondence: ZhaoHui Fang; GuoMing Shen Tel +86-13085513100 Email ;
| | - GuoMing Shen
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
28
|
Laboratory Parameters of Hemostasis, Adhesion Molecules, and Inflammation in Type 2 Diabetes Mellitus: Correlation with Glycemic Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17010300. [PMID: 31906326 PMCID: PMC6982208 DOI: 10.3390/ijerph17010300] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/25/2022]
Abstract
Background: Type 2 diabetes mellitus (T2DM) is characterized by a prothrombotic state, predisposing to vascular complications. Some related markers, linking thrombophilia to hemostasis and inflammation, however, have been poorly explored in relation to patients’ glycemia. We therefore investigated the association of laboratory hemostatic parameters, circulating adhesion molecules (ADMs), white blood cell (WBC) count, and neutrophil/lymphocyte ratio (NLR) with T2DM and glycemic control. Research design: In this study, 82 subjects, grouped into T2DM patients (n = 41) and healthy individuals (n = 41) were enrolled. To evaluate glycemic control, the T2DM cohort was expanded to 133 patients and sub-classified according to glycated hemoglobin (HbA1c) <7% and ≥ 7% (n = 58 and n = 75, respectively). We assessed glycemia, HbA1c, prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen, plasminogen activator inhibitor-1 (PAI-1), platelet and leukocyte parameters, vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and selectins (E-, P-, L-). Results: PT % activity, PAI-1, VCAM-1, WBC, and neutrophil counts were significantly higher in T2DM patients than in healthy subjects. Poor glycemic control (HbA1c ≥ 7%) was correlated with increased PT activity (p = 0.015), and higher levels of E-selectin (p = 0.009), P-selectin (p = 0.012), and NLR (p = 0.019). Conclusions: Both T2DM and poor glycemic control affect some parameters of hemostasis, inflammation, and adhesion molecules. Further studies are needed to establish their clinical utility as adjuvant markers for cardio-vascular risk in T2DM patients.
Collapse
|
29
|
Mambiya M, Shang M, Wang Y, Li Q, Liu S, Yang L, Zhang Q, Zhang K, Liu M, Nie F, Zeng F, Liu W. The Play of Genes and Non-genetic Factors on Type 2 Diabetes. Front Public Health 2019; 7:349. [PMID: 31803711 PMCID: PMC6877736 DOI: 10.3389/fpubh.2019.00349] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetes has been a disease of public health concern for a number of decades. It was in the 1930s when scientists made an interesting discovery that the disease is actually divided into two types as some patients were insensitive to insulin treatment then. Type 2 Diabetes which happens to be the non-insulin dependent one is the most common form of the disease and is caused by the interaction between genetic and non-genetic factors. Despite conflicting results, numerous studies have identified genetic and non-genetic factors associated with this common type of diabetes. This review has summarized literature on some genes and non-genetic factors which have been identified to be associated with Type 2 diabetes. It has sourced literature from PubMed, Web of Science and Medline without any limitation to regions, publication types, or languages. The paper has started with the introduction, the play of non-genetic factors, the impact of genes in general, and ended with the interaction between some genes and environmental factors.
Collapse
Affiliation(s)
- Michael Mambiya
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Mengke Shang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Yue Wang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Qian Li
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Shan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Luping Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Qian Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Kaili Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Mengwei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fangfang Nie
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fanxin Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Wanyang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
30
|
Zhu X, Qiu Z, Ouyang W, Miao J, Xiong P, Mao D, Feng K, Li M, Luo M, Xiao H, Cao Y. Hepatic transcriptome and proteome analyses provide new insights into the regulator mechanism of dietary avicularin in diabetic mice. Food Res Int 2019; 125:108570. [PMID: 31554135 DOI: 10.1016/j.foodres.2019.108570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 11/23/2022]
Abstract
Many dietary flavonoids existing as glycosides in fruits and vegetables are considered bioactive food components with various potential health benefits. Type 2 diabetes mellitus (T2DM) is a complex and polygenic disease with increasing global prevalence and economic burden. In this study, the hypoglycemic effect of avicularin (quercetin-3-O-α-arabinofuranoside), a flavonoid glycoside commonly found in natural plants and fruits, was determined in a high fat diet/streptozotocin induced type 2 diabetes mouse model. Our results demonstrated that dietary avicularin treatment reduced levels of fasting blood glucose, serum TG and LDL-C, liver AST and ALT, and increased hepatic glycogen in T2DM mice. Furthermore, we used RNA-Seq and iTRAQ to compare the gene and protein expression in the livers of the normal control mice (NC), diabetic control mice (DC) and avicularin treated mice (DA100). The differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed based on gene annotations and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Integrated analysis of the RNA-Seq and iTRAQ data indicated that the fifteen DEGs/DEPs showed the same trend in mRNA and protein expression levels in comparisons of both NC vs DC and DC vs DA100. KEGG analysis revealed that four DEGs/DEPs (PKM, PEPCK, PYG, and PLA2) in the glycolysis, gluconeogenesis, and arachidonic acid pathway, and six DEPs (Ndufb4, Ndufa6, Cox5a, Cox5b, Cox6c, and ATPSβ) in the oxidative phosphorylation signaling pathway, play important roles in avicularin's hypoglycemic effect. We also found six other DEGs/DEPs related to T2DM (CA1, Serpinb6a, AK, Pcolce, Cand2, and Atp2a3), and five related to cancer (Phgdh, Tes, Papss1, Psat1, and Fam49b). We did further verify by qRT-PCR and explored the possible binding modes of avicularin with targeted proteins with molecular docking simulations. Taken together, our results demonstrated the protective effects of avicularin against diabetes and provided a global view about the system-level hypoglycemic mechanisms of avicularin by the comprehensive analysis of transcriptomic and proteomic data in T2DM mice.
Collapse
Affiliation(s)
- Xiaoai Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhirou Qiu
- Zhaoqing University, Zhaoqing 526000, PR China
| | - Wen Ouyang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410007, PR China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ping Xiong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Duobin Mao
- Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Minxiong Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Minna Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
31
|
Rosik J, Szostak B, Machaj F, Pawlik A. The role of genetics and epigenetics in the pathogenesis of gestational diabetes mellitus. Ann Hum Genet 2019; 84:114-124. [DOI: 10.1111/ahg.12356] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jakub Rosik
- Department of Physiology Pomeranian Medical University Szczecin Poland
| | - Bartosz Szostak
- Department of Physiology Pomeranian Medical University Szczecin Poland
| | - Filip Machaj
- Department of Physiology Pomeranian Medical University Szczecin Poland
| | - Andrzej Pawlik
- Department of Physiology Pomeranian Medical University Szczecin Poland
| |
Collapse
|
32
|
Zhou X, Chen C, Yin D, Zhao F, Bao Z, Zhao Y, Wang X, Li W, Wang T, Jin Y, Lv D, Lu Q, Yin X. A Variation in the ABCC8 Gene Is Associated with Type 2 Diabetes Mellitus and Repaglinide Efficacy in Chinese Type 2 Diabetes Mellitus Patients. Intern Med 2019; 58:2341-2347. [PMID: 31118371 PMCID: PMC6746626 DOI: 10.2169/internalmedicine.2133-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective Previous studies have suggested that variations in the ABCC8 gene may be closely associated with T2DM susceptibility and repaglinide response. However, these results have not been entirely consistent, and there are no related studies in a Chinese population, suggesting the need for further exploration. The current study investigated the associations of the ABCC8 rs1801261 polymorphism with type 2 diabetes mellitus (T2DM) susceptibility and repaglinide therapeutic efficacy in Chinese Han T2DM patients. Methods A total of 234 T2DM patients and 105 healthy subjects were genotyped for ABCC8 rs1801261 polymorphism by a polymerase chain reaction-restriction fragment length polymorphism assay. A total of 70 patients with the same genotypes of CYP2C8*3 139Arg and OATP1B1 521TT were randomized to orally take 3 mg repaglinide per day (1 mg each time before meals) for 8 consecutive weeks. The pharmacodynamic parameters of repaglinide and biochemical indicators were then determined before and after repaglinide treatment. Results The frequency of ABCC8 rs1801261 allele was higher in T2DM patients than in the control subjects (22.6% vs.11.0%, p<0.01). After repaglinide treatment, T2DM patients carrying genotype CT showed a significantly attenuated efficacy on FPG (p<0.01) and HbA1c (p<0.01) compared with those with genotype CC. Conclusion These results suggested that the ABCC8 rs1801261 polymorphism might influence T2DM susceptibility and the therapeutic effect of repaglinide in Chinese Han T2DM patients. This study was registered in the Chinese Clinical Trial Register on May 14, 2013 (No. ChiCTR-CCC13003536).
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Chunxia Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Di Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Feng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Zejun Bao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Yun Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Xi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Wei Li
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Yingliang Jin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Dongmei Lv
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| |
Collapse
|
33
|
Hasanzad M, Sarhangi N, Aghaei Meybodi HR, Nikfar S, Khatami F, Larijani B. Precision Medicine in Non Communicable Diseases. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:1-18. [PMID: 32351905 PMCID: PMC7175610 DOI: 10.22088/ijmcm.bums.8.2.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) are the leading cause of death and disease burden globally, cardiovascular diseases (CVDs) account for the major part of death related to NCDs followed by different types of cancer, chronic obstructive pulmonary disease (COPD), and diabetes. As the World Health Organization (WHO) and the United Nations have announced a 25% reduction in mortality of NCDs by 2025, different communities need to adopt preventive strategies for achieving this goal. Personalized medicine approach as a predictive and preventive strategy aims for a better therapeutic goal to the patients to maximize benefits and reduce harms. The clinical benefits of this approach are already realized in cancer targeted therapy, and its impact on other conditions needs more studies in different societies. In this review, we essentially describe the concept of personalized (or precision) medicine in association with NCDs and the future of precision medicine in prediction, prevention, and personalized treatment.
Collapse
Affiliation(s)
- Mandana Hasanzad
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Sarhangi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Zuo ML, Wang AP, Tian Y, Mao L, Song GL, Yang ZB. Oxymatrine ameliorates insulin resistance in rats with type 2 diabetes by regulating the expression of KSRP, PETN, and AKT in the liver. J Cell Biochem 2019; 120:16185-16194. [PMID: 31087709 DOI: 10.1002/jcb.28898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Insulin resistance plays a key role in the development and progression of type 2 diabetes mellitus (T2DM). Recent studies found that insulin resistance was associated with the dysfunction of KH-type splicing regulatory protein (KSRP) expression and AKT pathway, and that oxymatrine possesses an antidiabetic effect. The aim of the present study was to investigate whether the protection of oxymatrine against T2DM was associated with the modulation of the KSRP expression and AKT pathway. Sprague-Dawley rats were fed a high-fat diet and injected with streptozotocin intraperitoneally to induce T2DM, which led to an increase in blood glucose levels and insulin resistance, and a decrease in insulin sensitivity and glycogen synthesis concomitant with KSRP downregulation, PTEN upregulation, and AKT phosphorylation deficiency. The administration of oxymatrine decreased blood glucose levels and insulin resistance, increased insulin sensitivity, and improved glycogen synthesis in the liver of T2DM rats, through a reversal in the expression of KSRP, PTEN, and AKT. On the basis of these observations, we concluded that oxymatrine can protect T2DM rats from insulin resistance through the regulation of the KSRP, PETN, and AKT expression in the liver.
Collapse
Affiliation(s)
- Mei-Ling Zuo
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ying Tian
- Institute of Clinical Research, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Li Mao
- Department of Basic Medicine, Changsha Health Vocational College, Changsha, Hunan, China
| | - Gui-Lin Song
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, China
| | - Zhong-Bao Yang
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, China
| |
Collapse
|
35
|
Keshavarzi F, Golsheh S. IRS1- rs10498210 G/A and CCR5-59029 A/G polymorphisms in patients with type 2 diabetes in Kurdistan. Mol Genet Genomic Med 2019; 7:e631. [PMID: 30884193 PMCID: PMC6503169 DOI: 10.1002/mgg3.631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/23/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The insulin receptor substrate 1 (IRS1) is a critical factor in the signaling pathway for insulin, and mutations in this gene have been reported, which contribute to the ability to develop type 2 diabetes. The polymorphisms in the promoter region of C-C motif chemokine receptor5 (CCR5) are also being studied as candidates for susceptibility to develop type 2 diabetes. The aim of the current study was to determine the relationship between IRS1 and CCR5 polymorphisms with type 2 diabetes in the Kurdistan population. METHODS Genomic DNA was isolated from the blood by salt extraction method and the polymorphisms were examined using Restriction Fragment Length Polymorphism (RFLP) method. RESULTS The results of current study indicated that the frequency of AA genotype in type 2 diabetic patients in both CCR5 (OR = 2.9, p = 0.04) and IRS1 (OR = 3.3, p = 0.036) were significantly more than controls. CONCLUSION According to the results of this study, the presence of AA genotype in both CCR5 and IRS1 is associated with type 2 diabetes. There was no significant association between AG or GG genotypes with type 2 diabetes.
Collapse
Affiliation(s)
| | - Shadi Golsheh
- Department of BiologyKurdistan Science and Research BranchIslamic Azad UniversitySanandajIran
| |
Collapse
|
36
|
Mirabelli M, Chiefari E, Caroleo P, Vero R, Brunetti FS, Corigliano DM, Arcidiacono B, Foti DP, Puccio L, Brunetti A. Long-Term Effectiveness and Safety of SGLT-2 Inhibitors in an Italian Cohort of Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2019; 2019:3971060. [PMID: 31781664 PMCID: PMC6875368 DOI: 10.1155/2019/3971060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND SGLT-2 (sodium-glucose cotransporter-2) inhibitors are a novel class of oral hypoglycemic agents for the management of type 2 diabetes mellitus (T2DM). Herein, we aimed to assess the long-term effectiveness and safety of SGLT-2 inhibitors in a Southern Italy population of subjects affected by T2DM. PATIENTS AND METHODS 408 diabetic patients treated with one of the three SGLT-2 inhibitors currently available in Italy (dapagliflozin, empagliflozin, and canagliflozin), either alone or in combination with other antidiabetic drugs, were retrospectively assessed at baseline, during, and after 18 months of continuous therapy. RESULTS Treatment with SGLT-2 inhibitors resulted in a median decrease in HbA1c of 0.9%, with a percentage of decrement of 12 in relation to the baseline value, followed by a significant reduction (P < 0.001) in fasting plasma glucose. Variations in HbA1c occurred independently of the baseline clinical or biochemical characteristics. In addition, treatment with SGLT-2 inhibitors reduced body weight (P < 0.008) and decreased diastolic blood pressure (P = 0.004). With regard to safety outcomes, 66 patients out of 91 stopped SGLT-2 inhibitors during follow-up because of chronic or recurring genital infections, while the rest experienced other adverse events, such as urinary tract infections, polyuria, nausea, hypotension, dizziness, acute coronary event, worsening of glycemic control status, and rapid deterioration of renal function. CONCLUSION In our patients' population, the glycometabolic effects of SGLT-2 inhibitors were durable and comparable to those observed in multicenter randomized controlled trials. This notwithstanding safety concerns must be raised regarding the frequent occurrence of genitourinary infections and the risk of a rapid decline of renal function in patients with evidence of volume depletion and/or receiving other medications which can adversely affect kidney function.
Collapse
Affiliation(s)
- Maria Mirabelli
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Patrizia Caroleo
- Complex Operative Structure Endocrinology-Diabetology, Hospital Pugliese-Ciaccio, Catanzaro, Italy
| | - Raffaella Vero
- Complex Operative Structure Endocrinology-Diabetology, Hospital Pugliese-Ciaccio, Catanzaro, Italy
| | | | | | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Luigi Puccio
- Complex Operative Structure Endocrinology-Diabetology, Hospital Pugliese-Ciaccio, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
37
|
Golsheh S, Keshavarzi F. Genetic variants linked to T2DM risk in Kurdish populations. Diabetes Metab Syndr Obes 2019; 12:431-437. [PMID: 31114273 PMCID: PMC6497875 DOI: 10.2147/dmso.s189170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background: The polymorphisms of the C-C chemokine receptor type 5 (CCR5) and the insulin receptor substrate 1 (IRS1) have been studied as candidates for the susceptibility to develop type 2 diabetes mellitus (T2DM). CCR5 is a chemokine receptor, and the polymorphisms in the promoter region of this receptor are being studied as candidates for the susceptibility to develop T2DM. Also, IRS1 is a critical factor in the signaling pathway for insulin, and mutations in this gene have been reported, which contribute to the ability to develop T2DM. The aim of the current study was to determine the relationship between CCR5 (59029A/G) and IRS1 (rs10498210) polymorphisms with T2DM in Sanandajian patients. Methods: Genomic DNA was isolated from 200 healthy individuals and 220 Kurdish T2DM patients by salt extraction method and the polymorphisms were examined by restriction fragment length polymorphism (RFLP) method and then the results were analyzed using Chi-square test. Results: The frequency of AA genotype in 220 Kurdish patients for both genes CCR5 (OR=1.9, P=0.02) and IRS1 (OR [95% CI]=2.62, P=0.02) were significantly more than controls. There was no significant association between AG or GG genotypes in with T2DM. Conclusion: The presence of AA homozygote alleles in both loci of IRS1 (rs10498210) and CCR5 (59029A/G) genes increased the risk of T2DM.
Collapse
Affiliation(s)
- Shadi Golsheh
- Department of Biology, Kurdistan Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Fatemeh Keshavarzi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
- Correspondence: Fatemeh KeshavarziSanandaj Branch, Islamic Azad University, Pasdaran Avenue, Sanandaj, IranTel +98 918 370 4918Fax +98 873 328 8677Email
| |
Collapse
|
38
|
Zafar U, Khaliq S, Ali Z, Lone K. Adrenergic receptor beta-3 rs4994 (T>C) and liver X receptor alpha rs12221497 (G>A) polymorphism in Pakistanis with metabolic syndrome. CHINESE J PHYSIOL 2019; 62:196-202. [DOI: 10.4103/cjp.cjp_45_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Li X, Li X, Wang G, Xu Y, Wang Y, Hao R, Ma X. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice. Front Med 2018; 12:688-696. [PMID: 30421394 DOI: 10.1007/s11684-018-0662-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/15/2018] [Indexed: 01/08/2023]
Abstract
Xiao Ke Qing (XKQ) granule has been clinically used to treat type 2 diabetes mellitus (T2DM) for 10 years in Chinese traditional medication. However, its mechanisms against hyperglycemia remain poorly understood. This study aims to investigate XKQ mechanisms on diabetes and diabetic liver disease by using the KKAy mice model. Our results indicate that XKQ can significantly reduce food and water intake. XKQ treatment also remarkably decreases both the fasting blood glucose and blood glucose in the oral glucose tolerance test. Additionally, XKQ can significantly decrease the serum alanine aminotransferase level and liver index and can alleviate the fat degeneration in liver tissues. Moreover, XKQ can ameliorate insulin resistance and upregulate the expression of IRS-1, PI3K (p85), p-Akt, and GLUT4 in the skeletal muscle of KKAy mice. XKQ is an effective drug for T2DM by ameliorating insulin resistance and regulating the PI3K/Akt signaling pathway in the skeletal muscle.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin, 300410, China
| | - Xinxin Li
- Department of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin, 300410, China.
| | - Genbei Wang
- Department of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin, 300410, China
| | - Yan Xu
- Department of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin, 300410, China
| | - Yuanyuan Wang
- Department of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin, 300410, China
| | - Ruijia Hao
- Department of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin, 300410, China
| | - Xiaohui Ma
- Department of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin, 300410, China
| |
Collapse
|
40
|
Zafar U, Khaliq S, Ahmad HU, Manzoor S, Lone KP. Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens) 2018; 17:299-313. [PMID: 30171523 DOI: 10.1007/s42000-018-0051-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS), today a major global public health problem, is a cluster of clinical, metabolic, and biochemical abnormalities, such as central adiposity, hypertension, insulin resistance, and dyslipidemias. These MetS-related traits significantly increase the risk of type 2 diabetes mellitus, adverse cardiac events, stroke, and hepatic steatosis. The pathogenesis of MetS is multifactorial, with the interplay of environmental, nutritional, and genetic factors. Chronic low-grade inflammation together with visceral adipose tissue, adipocyte dysfunction, and insulin resistance plays a major role in the progression of the syndrome by impairing lipid and glucose homeostasis in insulin-sensitive tissues, such as the liver, muscle, and adipocytes. Adipose-derived inflammatory cytokines and non-esterified fatty acids establish the link between central obesity IR, inflammation, and atherogenesis. Various studies have reported an association between MetS and related traits with single-nucleotide polymorphisms of different susceptibility genes. Modulation of cytokine levels, pro-oxidants, and disturbed energy homeostasis, in relation to the genetic variations, is described in this review of the recent literature, which also provides updated data regarding the epidemiology, diagnostic criteria, and pathogenesis of MetS.
Collapse
Affiliation(s)
- Uzma Zafar
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan.
- Department of Physiology, Lahore Medical and Dental College, Lahore, Pakistan.
| | - Saba Khaliq
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Hafiz Usman Ahmad
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Sobia Manzoor
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Khalid P Lone
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
41
|
Chatterjee R, Davenport CA, Raffield LM, Maruthur N, Lange L, Selvin E, Butler K, Yeh HC, Wilson JG, Correa A, Edelman D, Hauser E. KCNJ11 variants and their effect on the association between serum potassium and diabetes risk in the Atherosclerosis Risk in Communities (ARIC) Study and Jackson Heart Study (JHS) cohorts. PLoS One 2018; 13:e0203213. [PMID: 30169531 PMCID: PMC6118367 DOI: 10.1371/journal.pone.0203213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/16/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In the Atherosclerosis Risk in Communities (ARIC) Study and Jackson Heart Study (JHS) cohorts, serum potassium (K) is an independent predictor of diabetes risk, particularly among African-American participants. Experimental studies show that serum K levels affects insulin secretion. The KCNJ11 gene encodes for a K channel that regulates insulin secretion and whose function is affected by serum K levels. Variants in KCNJ11 are associated with increased diabetes risk. We hypothesized that there could be a gene-by-environment interaction between KCNJ11 variation and serum K on diabetes risk. METHODS Evaluating a combined cohort of ARIC and JHS participants, we sought to determine if KCNJ11 variants are risk factors for diabetes; and if KCNJ11 variants modify the association between serum K and diabetes risk. Among participants without diabetes at baseline, we performed multivariable logistic regression to determine the effect of serum K, KCNJ11 variants, and their interactions on the odds of incident diabetes mellitus over 8-9 years in the entire cohort and by race. RESULTS Of 11,812 participants, 3220 (27%) participants developed diabetes. 48% and 47% had 1 or 2 diabetes risk alleles of rs5215 and rs5219, respectively. Caucasians had higher proportions of these risk alleles compared to African Americans (60% vs 17% for rs5215 and 60% vs 13% for rs5219, p<0.01). Serum K was a significant independent predictor of incident diabetes. Neither rs5215 nor rs5219 was associated with incident diabetes. In multivariable models, we found no statistically significant interactions between race and either rs5215 or rs5219 (P-values 0.493 and 0.496, respectively); nor between serum K and either rs5215 or rs5219 on odds of incident diabetes (P-values 0.534 and 0.687, respectively). CONCLUSION In this cohort, rs5215 and rs5219 of KCNJ11 were not significant predictors of incident diabetes nor effect modifiers of the association between serum K and incident diabetes.
Collapse
Affiliation(s)
| | | | - Laura M. Raffield
- University of North Carolina, Chapel Hill, NC, United States of America
| | - Nisa Maruthur
- Johns Hopkins University,Baltimore, MD, United States of America
| | - Leslie Lange
- University of Colorado, Denver,CO, United States of America
| | - Elizabeth Selvin
- Johns Hopkins University,Baltimore, MD, United States of America
| | - Kenneth Butler
- University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Hsin-Chieh Yeh
- Johns Hopkins University,Baltimore, MD, United States of America
| | - James G. Wilson
- University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, United States of America
| | - David Edelman
- Duke University, Durham, NC, United States of America
| | | |
Collapse
|
42
|
Moeez S, Riaz S, Masood N, Kanwal N, Arif MA, Niazi R, Khalid S. Evaluation of the rs3088442 G>A SLC22A3 Gene Polymorphism and the Role of microRNA 147 in Groups of Adult Pakistani Populations With Type 2 Diabetes in Response to Metformin. Can J Diabetes 2018; 43:128-135.e3. [PMID: 30297296 DOI: 10.1016/j.jcjd.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Type 2 diabetes is a complex genetic disorder, and a large number of genetic polymorphisms may be involved in its pathogenesis. Pharmacologically, type 2 diabetes can be treated with 9 different approved classes of drugs, but metformin is suggested as the first line of therapy, followed by sulfonylureas. METHODS This was a case-control study consisting of 300 metformin responders and 300 metformin nonresponders in patients with type 2 diabetes and 300 healthy Pakistani subjects. Genotyping of the SLC22A3 G>A polymorphism was performed by allele-specific polymerase chain reaction (PCR) for microRNA 147 expression; real-time polymerase chain reaction was used, and expressional analysis of SLC22A3 was done by semiquantitative polymerase chain reaction. RESULTS GA and AA genotypes were highly significantly associated with the drug treatments when compared with controls. A statistically significant difference was observed in the distribution of the SLC22A3 A allele between healthy subjects and patients with type 2 diabetes. When odds ratios were adjusted for glycated hemoglobin levels and postprandial and fasting blood glucose levels, our findings showed that the overexpression of allele A of the rs3088442 G>A variant may act as a protective allele and is associated with the clinical response to metformin. microRNA 147 expression was found to be increased in patients who were metformin responders compared with the nonresponder group and controls. mRNA expression of SLC22A3 was significantly reduced in patients taking metformin as compared to other groups. CONCLUSIONS These results suggested that the SLC22A3 rs3088442 at position 2282 A allele may confer metformin clinical responses in patients with type 2 diabetes in the Pakistani population. Overexpression of microRNA 147 is associated with a downward expression of the SLC22A3 gene in patients who have type 2 diabetes.
Collapse
Affiliation(s)
- Sadaf Moeez
- Department of Bioinformatics & Biotechnology, International Islamic University, H-10, Islamabad, Pakistan
| | - SyedaKiran Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Nosheen Masood
- Department of Environmental Sciences/Biotechnology, Fatima Jinnah Women University, The Mall, Rawalpindi, Pakistan
| | - Naghmana Kanwal
- Department of Health Care Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12, Islamabad, Pakistan
| | - Mohammad Ali Arif
- Department of Medicine, Pakistan Institute of Medical Sciences, ShaheedZulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Rauf Niazi
- Department of Medicine, Pakistan Institute of Medical Sciences, ShaheedZulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sumbul Khalid
- Department of Bioinformatics & Biotechnology, International Islamic University, H-10, Islamabad, Pakistan.
| |
Collapse
|
43
|
Manukumar HM, Shiva Kumar J, Chandrasekhar B, Raghava S, Umesha S. Evidences for diabetes and insulin mimetic activity of medicinal plants: Present status and future prospects. Crit Rev Food Sci Nutr 2018; 57:2712-2729. [PMID: 26857927 DOI: 10.1080/10408398.2016.1143446] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a considerable systemic metabolic disorder to exhibit various metabolic and cardiovascular disorders, mainly hyperglycemia. The global projected estimate of diabetes in 2030 will be about 439 million adults, out of which 300 million expected are of type-2 diabetes mellitus (T2DM). The present knowledge revealed responsible factors, occurrence and mechanism of these factors involved in the DM diseases. Hence, the aim of this review is to address and summarize the causes, plant resources, importance, present status and future programmes for diabetes control. The present review answers the contemporary present questions raised in the scientific field on DM. Two major problems are explained in detail about the autoimmune attack or dysfunction of β-cell and insulin resistance involved for Type 1 and Type 2 DM, respectively. Though there are various approaches to reduce the ill effects of diabetes and its secondary complications, many preferred herbal formulations due to lesser side effects and low cost. For this reason still it is getting increased attention in searching antidiabetic medicinal plants for hot research and to develop targeted medicine. Recurrence of islet autoimmunity lesson from pancreatic islet cell transplantation to cure T1D was outlined. With these highlights, the review summarizes the current knowledge on diabetes occurrence, factors (environmental and genetics), and types (I, II, gestation, and secondary DM), antidiabetic plants, sources for insulin mimetic plant principle compounds and their target mechanism with current and future trusted research areas for controlling of DM.
Collapse
Affiliation(s)
- H M Manukumar
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| | - J Shiva Kumar
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| | - B Chandrasekhar
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| | - Sri Raghava
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| | - S Umesha
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| |
Collapse
|
44
|
Li Y, Li L, Hölscher C. Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Rev Neurosci 2018; 27:689-711. [PMID: 27276528 DOI: 10.1515/revneuro-2016-0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer's disease (AD) and Parkinson's disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases.
Collapse
|
45
|
Chiefari E, Foti DP, Sgarra R, Pegoraro S, Arcidiacono B, Brunetti FS, Greco M, Manfioletti G, Brunetti A. Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor. Front Endocrinol (Lausanne) 2018; 9:357. [PMID: 30034366 PMCID: PMC6043803 DOI: 10.3389/fendo.2018.00357] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
HMGA1 (high mobility group A1) is a nonhistone architectural chromosomal protein that functions mainly as a dynamic regulator of chromatin structure and gene transcription. As such, HMGA1 is involved in a variety of fundamental cellular processes, including gene expression, epigenetic regulation, cell differentiation and proliferation, as well as DNA repair. In the last years, many reports have demonstrated a role of HMGA1 in the transcriptional regulation of several genes implicated in glucose homeostasis. Initially, it was proved that HMGA1 is essential for normal expression of the insulin receptor (INSR), a critical link in insulin action and glucose homeostasis. Later, it was demonstrated that HMGA1 is also a downstream nuclear target of the INSR signaling pathway, representing a novel mediator of insulin action and function at this level. Moreover, other observations have indicated the role of HMGA1 as a positive modulator of the Forkhead box protein O1 (FoxO1), a master regulatory factor for gluconeogenesis and glycogenolysis, as well as a positive regulator of the expression of insulin and of a series of circulating proteins that are involved in glucose counterregulation, such as the insulin growth factor binding protein 1 (IGFBP1), and the retinol binding protein 4 (RBP4). Thus, several lines of evidence underscore the importance of HMGA1 in the regulation of glucose production and disposal. Consistently, lack of HMGA1 causes insulin resistance and diabetes in humans and mice, while variations in the HMGA1 gene are associated with the risk of type 2 diabetes and metabolic syndrome, two highly prevalent diseases that share insulin resistance as a common pathogenetic mechanism. This review intends to give an overview about our current knowledge on the role of HMGA1 in glucose metabolism. Although research in this field is ongoing, many aspects still remain elusive. Future directions to improve our insights into the pathophysiology of glucose homeostasis may include epigenetic studies and the use of "omics" strategies. We believe that a more comprehensive understanding of HMGA1 and its networks may reveal interesting molecular links between glucose metabolism and other biological processes, such as cell proliferation and differentiation.
Collapse
Affiliation(s)
- Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Daniela P. Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Manfredi Greco
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | | | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti
| |
Collapse
|
46
|
De Martino M, Forzati F, Arra C, Fusco A, Esposito F. HMGA1-pseudogenes and cancer. Oncotarget 2017; 7:28724-35. [PMID: 26895108 PMCID: PMC5053758 DOI: 10.18632/oncotarget.7427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/05/2016] [Indexed: 12/25/2022] Open
Abstract
Pseudogenes are DNA sequences with high homology to the corresponding functional gene, but, because of the accumulation of various mutations, they have lost their initial functions to code for proteins. Consequently, pseudogenes have been considered until few years ago dysfunctional relatives of the corresponding ancestral genes, and then useless in the course of genome evolution. However, several studies have recently established that pseudogenes are owners of key biological functions. Indeed, some pseudogenes control the expression of functional genes by competitively binding to the miRNAs, some of them generate small interference RNAs to negatively modulate the expression of functional genes, and some of them even encode functional mutated proteins. Here, we concentrate our attention on the pseudogenes of the HMGA1 gene, that codes for the HMGA1a and HMGA1b proteins having a critical role in development and cancer progression. In this review, we analyze the family of HMGA1 pseudogenes through three aspects: classification, characterization, and their possible function and involvement in cancer.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
47
|
Chiefari E, Arcidiacono B, Foti D, Brunetti A. Gestational diabetes mellitus: an updated overview. J Endocrinol Invest 2017; 40:899-909. [PMID: 28283913 DOI: 10.1007/s40618-016-0607-5] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
The clinical and public health relevance of gestational diabetes mellitus (GDM) is widely debated due to its increasing incidence, the resulting negative economic impact, and the potential for severe GDM-related pregnancy complications. Also, effective prevention strategies in this area are still lacking, and controversies exist regarding diagnosis and management of this form of diabetes. Different diagnostic criteria are currently adopted worldwide, while recommendations for diet, physical activity, healthy weight, and use of oral hypoglycemic drugs are not always uniform. In the present review, we provide an update of current insights on clinical aspects of GDM, by discussing the more controversial issues.
Collapse
Affiliation(s)
- E Chiefari
- Chair of Endocrinology, Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - B Arcidiacono
- Chair of Endocrinology, Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - D Foti
- Chair of Clinical Pathology, Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - A Brunetti
- Chair of Endocrinology, Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy.
| |
Collapse
|
48
|
Duan B, Zhao Z, Liao W, Xiong H, Liu S, Yin L, Gao T, Mei Z. Antidiabetic Effect of Tibetan Medicine Tang-Kang-Fu-San in db/db Mice via Activation of PI3K/Akt and AMPK Pathways. Front Pharmacol 2017; 8:535. [PMID: 28883792 PMCID: PMC5573713 DOI: 10.3389/fphar.2017.00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
This study was to investigate the anti-diabetic effects and molecular mechanisms of Tang-Kang-Fu-San (TKFS), a traditional Tibetan medicine, in treating type 2 diabetes mellitus of spontaneous diabetic db/db mice. Firstly HPLC fingerprint analysis was performed to gain the features of the chemical compositions of TKFS. Next different doses of TKFS (0.5 g/kg, 1.0 g/kg, and 2.0 g/kg) were administrated via oral gavage to db/db mice and their controls for 4 weeks. TKFS significantly lowered hyperglycemia and ameliorated insulin resistance (IR) in db/db mice, indicated by results from multiple tests, including fasting blood glucose test, intraperitoneal insulin and glucose tolerance tests, fasting serum insulin levels and homeostasis model assessment of IR analysis as well as histology of pancreas islets. TKFS also decreased concentrations of serum triglyceride, total and low-density lipoprotein cholesterol, even though it did not change the mouse body weights. Results from western blot and immunohistochemistry analysis indicated that TKFS reversed the down-regulation of p-Akt and p-AMPK, and increased the translocation of Glucose transporter type 4 in skeletal muscles of db/db mice. In all, TKFS had promising benefits in maintaining the glucose homeostasis and reducing IR. The underlying molecular mechanisms are related to promote Akt and AMPK activation and Glucose transporter type 4 translocation in skeletal muscles. Our work showed that multicomponent Tibetan medicine TKFS acted synergistically on multiple molecular targets and signaling pathways to treat type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Bailu Duan
- College of Basic Medicine, Hubei University of Chinese MedicineWuhan, China
| | - Zhongqiu Zhao
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St. LouisMO, United States.,Barnes-Jewish Hospital, St. LouisMO, United States
| | - Weifang Liao
- College of Pharmaceutical Sciences, South-Central University for NationalitiesWuhan, China
| | - Hui Xiong
- College of Pharmaceutical Sciences, South-Central University for NationalitiesWuhan, China
| | - Sisi Liu
- College of Pharmaceutical Sciences, South-Central University for NationalitiesWuhan, China
| | - Liang Yin
- College of Pharmaceutical Sciences, South-Central University for NationalitiesWuhan, China
| | - Tiexiang Gao
- College of Basic Medicine, Hubei University of Chinese MedicineWuhan, China
| | - Zhinan Mei
- College of Pharmaceutical Sciences, South-Central University for NationalitiesWuhan, China
| |
Collapse
|
49
|
Elk N, Iwuchukwu OF. Using Personalized Medicine in the Management of Diabetes Mellitus. Pharmacotherapy 2017; 37:1131-1149. [PMID: 28654165 DOI: 10.1002/phar.1976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a worldwide problem with an immense pharmacoeconomic burden. The multifactorial and complex nature of the disease lends itself to personalized pharmacotherapeutic approaches to treatment. Variability in individual risk and subsequent development of diabetes has been reported in addition to differences in response to the many oral glucose lowering therapies currently available for diabetes pharmacotherapy. Pharmacogenomic studies have attempted to uncover the heritable components of individual variability in risk susceptibility and response to pharmacotherapy. We review the current pharmacogenomics evidence as it relates to common oral glucose lowering therapies and how they can be utilized in the management of polygenic and monogenic forms of diabetes. Evidence supports the use of genetic testing and personalized approaches to the treatment of monogenic diabetes of the young. The data are not as robust for the current application of pharmacogenetic approaches to the treatment of polygenic type 2 diabetes mellitus, but there are suggestions as to future applications in this regard. We reviewed pertinent primary literature sources as well as current evidence-based guidelines on diabetes management.
Collapse
Affiliation(s)
- Nina Elk
- Division of Pharmacy Practice, Fairleigh Dickinson University School of Pharmacy, Florham Park, New Jersey
| | - Otito F Iwuchukwu
- Division of Pharmaceutical Sciences, Fairleigh Dickinson University School of Pharmacy, Florham Park, New Jersey
| |
Collapse
|
50
|
Amuta AO, Mkuu R, Jacobs W, Barry AE. Number and Severity of Type 2 Diabetes among Family Members Are Associated with Nutrition and Physical Activity Behaviors. Front Public Health 2017; 5:157. [PMID: 28752087 PMCID: PMC5507971 DOI: 10.3389/fpubh.2017.00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/19/2017] [Indexed: 01/30/2023] Open
Abstract
AIM A binary measurement of type 2 diabetes (T2D) has been found not to influence behaviors. We aimed to examine the influence of other measures of family history such as number of relatives, genetic closeness of relatives, and severity of T2D of family members on nutrition and physical activity behaviors among college students. METHODS Students across four colleges in Texas were sampled. Multiple linear regression models, controlling for covariates, were used to model results. Cross-sectional data were used. RESULTS More number of relatives with T2D was associated with vegetable consumption (β = 0.131, p = 0.007) and exercise (β = 0.129, p = 0.037). Having relatives with severe T2D was associated with vegetable consumption (β = 0.157, p = 0.002) and exercise (β = 106, p = 0.027). Closer genetic relationship with someone with T2D was associated with increased vegetable consumption (β = 0.107, p = 0.023) and exercise (β = 0.096, p = 0.047). CONCLUSION It is likely that the severe complications that may accompany the relatives T2D or having an immediate family member living with T2D may in fact motivate other family members without T2D to modify their attitudes, beliefs, and knowledge about T2D, thus encourage health-protective behaviors.
Collapse
Affiliation(s)
- Ann Oyare Amuta
- Health Studies, Texas Woman's University, Denton, TX, United States
| | - Rahma Mkuu
- Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Wura Jacobs
- Health Science, California State University Fullerton, Fullerton, CA, United States
| | - Adam E Barry
- Health & Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|