1
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
2
|
Serebrovskaya EO, Bryushkova EA, Lukyanov DK, Mushenkova NV, Chudakov DM, Turchaninova MA. Toolkit for mapping the clonal landscape of tumor-infiltrating B cells. Semin Immunol 2024; 72:101864. [PMID: 38301345 DOI: 10.1016/j.smim.2024.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Our current understanding of whether B cell involvement in the tumor microenvironment benefits the patient or the tumor - in distinct cancers, subcohorts and individual patients - is quite limited. Both statements are probably true in most cases: certain clonal B cell populations contribute to the antitumor response, while others steer the immune response away from the desired mechanics. To step up to a new level of understanding and managing B cell behaviors in the tumor microenvironment, we need to rationally discern these roles, which are cumulatively defined by B cell clonal functional programs, specificities of their B cell receptors, specificities and isotypes of the antibodies they produce, and their spatial interactions within the tumor environment. Comprehensive analysis of these characteristics of clonal B cell populations is now becoming feasible with the development of a whole arsenal of advanced technical approaches, which include (1) methods of single-cell and spatial transcriptomics, genomics, and proteomics; (2) methods of massive identification of B cell specificities; (3) methods of deep error-free profiling of B cell receptor repertoires. Here we overview existing techniques, summarize their current application for B cells studies and propose promising future directions in advancing B cells exploration.
Collapse
Affiliation(s)
- E O Serebrovskaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Current position: Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - E A Bryushkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D K Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - N V Mushenkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Unicorn Capital Partners, 119049, Moscow, Russia
| | - D M Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - M A Turchaninova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
3
|
Geng Z, Wu L, Wang Q, Ma J, Shi Z. Non B Cell-Derived Immunoglobulins in Intestinal Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:137-149. [PMID: 38967756 DOI: 10.1007/978-981-97-0511-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Intestinal epithelium constitutes a barrier to the unrestricted movement of pathogens, and other detrimental substances from the external world (gut lumen) into the interstitial environment. Intestinal epithelial cells obstruct harmful substances passing through the epithelium as a physical and chemical barrier; Moreover, the epithelial cells can express Toll-like receptors (TLRs) and cytokines to exert innate immune function. In addition, high levels of immunoglobulin A (IgA) and other antibodies exist in the intestinal mucosa, maintaining intestinal immune homeostasis in conjunction with intestinal probiotics. Traditionally, these antibodies have been deemed to be secreted by submucosal plasma cells. Nonetheless, in recent years, it has been demonstrated that intestinal epithelial cells produce a substantial amount of Igs, especially IgA or free Ig light chains, which are involved in intestinal immune homeostasis and the survival of normal epithelial cells. Furthermore, mounting evidence affirms that many human carcinoma cells, including colorectal cancer (CRC), can overexpress Igs, particularly IgG. Cancer-derived Igs exhibit a unique V(D)J rearrangement pattern distinct from B cell-derived Ig; moreover, this cancer cell-derived IgG also has a unique sialic acid modification on the 162 site of CH1 domain (SIA-IgG). The SIA-IgG plays a crucial role in promoting cancer initiation, progression, metastasis, and tumour immune escape. Simultaneously, CRC cells can also express free Ig light chains, which promote colitis, colitis-associated colon carcinogenesis, and CRC progression. Therefore, Igs expressed by CRC cells could be a potential target for diagnosing and preventing the transformation of inflammation into cancer, as well as treating CRC.
Collapse
Affiliation(s)
- Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lina Wu
- Central Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qianqian Wang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Junfan Ma
- Department of Clinical Research, Sinocelltech Group Limited, Beijing, China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Xia M, Zhang C, Xiao L, Qiu X. Genetic Characteristics of Non B Cell-Derived Immunoglobulin Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:37-46. [PMID: 38967748 DOI: 10.1007/978-981-97-0511-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
It is widely acknowledged that immunoglobulins (Igs) are produced solely by B-lineage cells. The Ig gene is created by the rearrangement of a group of gene segments [variable (V), diversity (D), and joining (J) segments rearrangement, or V(D)J recombination], which results in the vast diversity of B cell-derived Ig responsible for recognising various antigens. Ig subsequently undergoes somatic hypermutation (SHM) and class switch recombination (CSR) after exposure to antigens, thus converting the low-affinity IgM to IgG, IgA, or IgE antibodies. IgM and IgD are primarily expressed in naïve B cells that have not been exposed to antigens, they do not undergo somatic hypermutation; hence, their variable region sequences remain the same as those in the germline. In contrast, IgG, IgA, and IgE are expressed in antigen-stimulated memory B cells or plasma cells, and thus, they often possess high-frequency mutations in their variable region sequences. Since the discovery that Ig can be produced by non-B cells, Qiu's group has investigated and compared the genetic characteristics of B cell-derived Ig and non-B cell-derived Ig. These findings demonstrated that non-B cell-derived Ig shares certain similarities with B cell-derived Ig in that the sequence of its constant region is identical to that of B cell-derived Ig, and its variable region is also strictly dependent on the rearrangement of V, D, and J gene segments. Moreover, akin to B cell-derived Ig, the V regions of IgM and IgD are rarely mutated, while IgG, IgA, and IgE produced by cancer cells are frequently mutated. However, the non-B cell-derived Ig V region sequence displays unique characteristics. (1) Unlike the vast diversity of B cell-derived Igs, non-B cell-derived Igs exhibit restricted diversity; cells from the same lineage always select the same V(D)J recombination patterns; (2) Both mRNA and proteins of RAG1/RAG2 recombinase have been detected in Ig positive cancer cell lines and normal tissues. But Ig recombination could also be found in RAG1-/- and RAG2-/- mice, suggesting that they are not necessary for the rearrangement of non-B cell-derived Igs. These features of non-B cell-derived Igs suggest a potentially undiscovered mechanism of V(D)J recombination, ligation, and SHM in non-B cells, which necessitates further investigation with advanced technology in molecular biology.
Collapse
Affiliation(s)
- Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Chi Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lin Xiao
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Huang J, Zhang J, Zhang L, Wang Z, Fan T, Yin S. The Structure Characteristics and Function of Non B Cell-Derived Immunoglobulin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:59-71. [PMID: 38967750 DOI: 10.1007/978-981-97-0511-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
According to classical immunology theory, immunoglobulin (Ig) is exclusively produced by differentiated B lymphocytes, which exhibit a typical tetrapeptide chain structure and are predominantly present on the surface of B cells and in bodily fluids. B-Ig is one of the critical effector molecules for humoral immune responses specifically recognising antigens and eliminating them. However, mounting evidence has demonstrated that Ig is widely expressed in non B lineage cells, especially malignant ones (referred to as non B-Ig). Interestingly, non B-Ig mainly resides in the cytoplasm and secretion, but to some extent on the cell surface. Furthermore non B-Ig not only displays a tetrapeptide chain structure but also shows free heavy chains and free light chains (FLCs). Additionally, Ig derived from non B cancer cell typically displays unique glycosylation modifications. Functionally, non B-Ig demonstrated diversity and versatility, showing antibody activity and cellular biological activity, such as promoting cell proliferation and survival, and it is implicated in cancer progression and some immune-related diseases, such as renal diseases.
Collapse
Affiliation(s)
- Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Jingxuan Zhang
- Platform Biology, Suzhou Abogen Biosciences, Suzhou, Jiangsu, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zihan Wang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Tianrui Fan
- Shanghai Discovery and Development Center, Abiosciences, Shanghai, China
| | - Sha Yin
- Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Zheng J, Li G, Liu W, Deng Y, Xu X. The Expression of Non B Cell-Derived Immunoglobulins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:11-36. [PMID: 38967747 DOI: 10.1007/978-981-97-0511-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Although V(D)J recombination and immunoglobulin (Ig) production are traditionally recognised to occur only in B lymphocytes and plasma cells, the expression of Igs in non-lymphoid cells, which we call non B cell-derived Igs (non B Igs), has been documented by growing studies. It has been demonstrated that non B-Igs can be widely expressed in most cell types, including, but not limited to, epithelial cells, cardiomyocytes, hematopoietic stem/progenitor cells, myeloid cells, and cells from immune-privileged sites, such as neurons and spermatogenic cells. In particular, malignant tumour cells express high level of IgG. Moreover, different from B-Igs that mainly localised on the B cell membrane and in the serum and perform immune defence function mainly, non B-Igs have been found to distribute more widely and play critical roles in immune defence, maintaining cell proliferation and survival, and promoting progression. The findings of non B-Igs may provide a wealthier breakthrough point for more therapeutic strategies for a wide range of immune-related diseases.
Collapse
Affiliation(s)
- Jie Zheng
- Hematologic Disease Laboratory, Department of Stem Cell Transplantation, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Guohui Li
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Wei Liu
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yuqing Deng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - XiaoJun Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Xu X, Delves PJ, Huang J, Shao W, Qiu X. Comparison of Non B-Ig and B-Ig. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:73-88. [PMID: 38967751 DOI: 10.1007/978-981-97-0511-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Immunoglobulin (Ig) has been widely acknowledged to be produced solely by B-lineage cells. However, growing evidence has demonstrated the expression of Ig in an array of cancer cells, as well as normal cells including epithelial cells, epidermal cells, mesangial cells, monocytes, and neutrophils. Ig has even been found to be expressed in non-B cells at immune-privileged sites such as neurons and spermatogenic cells. Despite these non-B cell-derived Igs (non-B-Igs) sharing the same symmetric structures with conventional Igs (B-Igs), further studies have revealed unique characteristics of non-B-Ig, such as restricted variable region and aberrant glycosylation. Moreover, non-B-Ig exhibits properties of promoting malignant behaviours of cancer cells, therefore it could be utilised in the clinic as a potential therapeutic biomarker or target. The elucidation of the generation and regulation of non-B-Ig will certainly broaden our understanding of immunology.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Peter J Delves
- Division of Infection and Immunity, Department of Immunology, UCL (University College London), London, UK
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Ge Z, Feng P, Zhang Z, Liang Z, Chen R, Li J. Identification of novel serum protein biomarkers in the context of 3P medicine for intravenous leiomyomatosis: a data-independent acquisition mass spectrometry-based proteomics study. EPMA J 2023; 14:613-629. [PMID: 38094583 PMCID: PMC10713895 DOI: 10.1007/s13167-023-00338-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/10/2023] [Indexed: 12/05/2024]
Abstract
Background Intravenous leiomyomatosis (IVL) is a rare endocrine-associated tumor with unique characteristics of intravascular invasion. This study aimed to identify reliable biomarkers to supervise the development or recurrence of IVL in the context of predictive, preventive, and personalized medicine (PPPM/3PM). Methods A total of 60 cases were recruited to detect differentially expressed proteins (DEPs) in serum samples from IVL patients. These cases included those with recurrent IVL, non-recurrent IVL, uterine myoma, and healthy individuals without uterine myoma, with 15 cases in each category. Then, weighted gene co-expression network analysis (WGCNA), lasso-penalized Cox regression analysis (Lasso), trend clustering, and a generalized linear regression model (GLM) were utilized to screen the hub proteins involved in IVL progression. Results First, 93 differentially expressed proteins (DEPs) were determined from 2582 recognizable proteins, with 54 proteins augmented in the IVL group, and the remaining proteins declined. These proteins were enriched in the modulation of the immune environment, mainly by activating the function of B cells. After the integrated analyses mentioned above, a model based on four proteins (A0A5C2FUE5, A0A5C2GPQ1, A0A5C2GNC7, and A0A5C2GBR3) was developed to efficiently determine the potential of IVL lesions to progress. Among these featured proteins, our results demonstrated that the risk factor A0A5C2FUE5 was associated with IVL progression (OR = 2.64). Conversely, A0A5C2GPQ1, A0A5C2GNC7, and A0A5C2GBR3 might act in a protective manner and prevent disease development (OR = 0.32, 0.60, 0.53, respectively), which was further supported by the multi-class receiver operator characteristic curve analysis. Conclusion Four hub proteins were eventually identified based on the integrated bioinformatics analyses. This study potentiates the promising application of these novel biomarkers to predict the prognosis or progression of IVL by a 3PM approach. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00338-0.
Collapse
Affiliation(s)
- Zhitong Ge
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Penghui Feng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Zijuan Zhang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Rong Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Jianchu Li
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|
9
|
Lin YW, Kang WP, Hong CQ, Huang BL, Qiu ZH, Liu CT, Chu LY, Xu YW, Guo HP, Wu FC. Nutritional and immune-related indicators-based Nomogram for predicting overall survival of surgical oral tongue squamous cell carcinoma. Sci Rep 2023; 13:8525. [PMID: 37237026 PMCID: PMC10219930 DOI: 10.1038/s41598-023-35244-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) is one of the most aggressive oral tumors. The aim of this study was to establish a nomogram to predict overall survival (OS) of TSCC patients after surgery. 169 TSCC patients who underwent surgical treatments in the Cancer Hospital of Shantou University Medical College were included. A nomogram based on Cox regression analysis results was established and internally validated using bootstrap resampling method. pTNM stage, age and total protein, immunoglobulin G, factor B and red blood cell count were identified as independent prognostic factors to create the nomogram. The Akaike Information Criterion and Bayesian Information Criterion of the nomogram were lower than those of pTNM stage, indicating a better goodness-of-fit of the nomogram for predicting OS. The bootstrap-corrected concordance index of nomogram was higher than that of pTNM stage (0.794 vs. 0.665, p = 0.0008). The nomogram also had a good calibration and improved overall net benefit. Based on the cutoff value obtained from the nomogram, the proposed high-risk group had poorer OS than low-risk group (p < 0.0001). The nomogram based on nutritional and immune-related indicators represents a promising tool for outcome prediction of surgical OTSCC.
Collapse
Affiliation(s)
- Yi-Wei Lin
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wei-Piao Kang
- Department of Otolaryngology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Chao-Qun Hong
- Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Oncological Laboratory Research, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bin-Liang Huang
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zi-Han Qiu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ling-Yu Chu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China.
- Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China.
- Guangdong Esophageal Cancer Institute, Shantou University Medical College, Shantou, 515041, China.
| | - Hai-Peng Guo
- Department of Head and Neck Surgery, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Fang-Cai Wu
- Department of Radiation Oncology, the Cancer Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
10
|
Liu RX, Wen C, Ye W, Li Y, Chen J, Zhang Q, Li W, Liang W, Wei L, Zhang J, Chan KW, Wang X, Yang X, Liu H. Altered B cell immunoglobulin signature exhibits potential diagnostic values in human colorectal cancer. iScience 2023; 26:106140. [PMID: 36879799 PMCID: PMC9984553 DOI: 10.1016/j.isci.2023.106140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Antibody-secreting B cells have long been considered the central element of gut homeostasis; however, tumor-associated B cells in human colorectal cancer (CRC) have not been well characterized. Here, we show that the clonotype, phenotype, and immunoglobulin subclasses of tumor-infiltrating B cells have changed compared to adjacent normal tissue B cells. Remarkably, the tumor-associated B cell immunoglobulin signature alteration can also be detected in the plasma of patients with CRC, suggesting that a distinct B cell response was also evoked in CRC. We compared the altered plasma immunoglobulin signature with the existing method of CRC diagnosis. Our diagnostic model exhibits improved sensitivity compared to the traditional biomarkers, CEA and CA19-9. These findings disclose the altered B cell immunoglobulin signature in human CRC and highlight the potential of using the plasma immunoglobulin signature as a non-invasive method for the assessment of CRC.
Collapse
Affiliation(s)
- Rui-Xian Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Chuangyu Wen
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Weibiao Ye
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Yewei Li
- Department of Statistical Science, School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Junxiong Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Qian Zhang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Weiqian Li
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Wanfei Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lili Wei
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Ka-Wo Chan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xueqin Wang
- International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangling Yang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| |
Collapse
|
11
|
Effect of glioma-derived immunoglobulin on biological function of glioma cells. Eur J Cancer 2022; 175:86-98. [PMID: 36096041 DOI: 10.1016/j.ejca.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Glioma is the most common and most invasive primary central nervous system tumour, and it is urgent to develop new specific therapeutic targets. Studies have confirmed that epithelial-derived tumour cells promote tumour cell proliferation and metastasis by secreting a large number of immunoglobulins (Igs), but the role of tumour-derived Igs in glioma has never been reported. METHODS The Gene Expression Profiling Interactive Analysis and Chinese Glioma Genome Atlas databases were used to analyse the Ig transcription and its correlation with the prognosis of patients with glioma. Immunohistochemistry and immunofluorescence were used to detect the protein expression of IgG and IgM in the glioma tissues of patients and glioma cell lines. When IgG was knocked down by small interfering RNA or knocked out by CRISPR-Cas9, the function of proliferation and migration of glioma cells were analysed by CCK-8, clone formation, wound healing, and transwell assays. Changes in proteins and their phosphorylation in signalling pathways were detected by western blotting. The nude mouse subcutaneous tumour-bearing model was established to analyse the effect of IgG in vivo. RESULTS The transcriptional level of IgG was pretty high in glioma tissues and was positively correlated with high WHO grade, recurrence, and poor prognosis. The expression of IgG and IgM was found in tumour tissues and human glioma cell lines U87 and U251, and the main expression form was secreted. Decreased IgG inhibited the proliferation and migration of glioma cells. Knockout or knockdown of IgG downregulated the phosphorylation of the key molecules in the MAPK and PI3K/Akt pathway through the HGF/SF-Met or FAK/Src pathway. In vivo tumourigenesis mouse model confirmed that reduced IgG expression inhibited glioma growth. CONCLUSION Ig was expressed in glioma tissues and cell lines, and a high expression level predicted a poor prognosis of patients. Glioma-derived IgG promoted glioma cell proliferation and migration through the HGF/SF-Met or FAK/Src pathway.
Collapse
|
12
|
Identification of the Antigens Recognised by Colorectal Cancer Patients Using Sera from Patients Who Exhibit a Crohn's-like Lymphoid Reaction. Biomolecules 2022; 12:biom12081058. [PMID: 36008952 PMCID: PMC9406176 DOI: 10.3390/biom12081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
A Crohn’s-like lymphoid reaction (CLR) is observed in about 15% of colorectal cancer (CRC) patients and is associated with favourable outcomes. To identify the immune targets recognised by CRC CLR patient sera, we immunoscreened a testes cDNA library with sera from three patients. Immunoscreening of the 18 antigens identified by SEREX with sera from normal donors showed that only the heavy chain of IgG3 (IGHG3) and a novel antigen we named UOB-COL-7, were solely recognised by sera from CRC CLR patients. ELISA showed an elevation in IgG3 levels in patients with CRC (p = 0.01). To extend our studies we analysed the expression of our SEREX-identified antigens using the RNA-sequencing dataset (GSE5206). We found that the transcript levels of multiple IGHG probesets were highly significant (p < 0.001) in their association with clinical features of CRC while above median levels of DAPK1 (p = 0.005) and below median levels of GTF2H5 (p = 0.004) and SH3RF2 (p = 0.02) were associated with improved overall survival. Our findings demonstrate the potential of SEREX-identified CRC CLR antigens to act as biomarkers for CRC and provide a rationale for their further characterization and validation.
Collapse
|
13
|
Foroughi pour A, White BS, Park J, Sheridan TB, Chuang JH. Deep learning features encode interpretable morphologies within histological images. Sci Rep 2022; 12:9428. [PMID: 35676395 PMCID: PMC9177767 DOI: 10.1038/s41598-022-13541-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Convolutional neural networks (CNNs) are revolutionizing digital pathology by enabling machine learning-based classification of a variety of phenotypes from hematoxylin and eosin (H&E) whole slide images (WSIs), but the interpretation of CNNs remains difficult. Most studies have considered interpretability in a post hoc fashion, e.g. by presenting example regions with strongly predicted class labels. However, such an approach does not explain the biological features that contribute to correct predictions. To address this problem, here we investigate the interpretability of H&E-derived CNN features (the feature weights in the final layer of a transfer-learning-based architecture). While many studies have incorporated CNN features into predictive models, there has been little empirical study of their properties. We show such features can be construed as abstract morphological genes (“mones”) with strong independent associations to biological phenotypes. Many mones are specific to individual cancer types, while others are found in multiple cancers especially from related tissue types. We also observe that mone-mone correlations are strong and robustly preserved across related cancers. Importantly, linear mone-based classifiers can very accurately separate 38 distinct classes (19 tumor types and their adjacent normals, AUC = \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$97.1\% \pm 2.8\%$$\end{document}97.1%±2.8% for each class prediction), and linear classifiers are also highly effective for universal tumor detection (AUC = \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$99.2\% \pm 0.12\%$$\end{document}99.2%±0.12%). This linearity provides evidence that individual mones or correlated mone clusters may be associated with interpretable histopathological features or other patient characteristics. In particular, the statistical similarity of mones to gene expression values allows integrative mone analysis via expression-based bioinformatics approaches. We observe strong correlations between individual mones and individual gene expression values, notably mones associated with collagen gene expression in ovarian cancer. Mone-expression comparisons also indicate that immunoglobulin expression can be identified using mones in colon adenocarcinoma and that immune activity can be identified across multiple cancer types, and we verify these findings by expert histopathological review. Our work demonstrates that mones provide a morphological H&E decomposition that can be effectively associated with diverse phenotypes, analogous to the interpretability of transcription via gene expression values. Our work also demonstrates mones can be interpreted without using a classifier as a proxy.
Collapse
|
14
|
Wang Q, Jiang D, Ye Q, Zhou W, Ma J, Wang C, Geng Z, Chu M, Zheng J, Chen H, Huang J, Dai H, Zhang Y, She ZL, Fu N, Qiu X. A widely expressed free immunoglobulin κ chain with a unique Vκ4-1/Jκ3 pattern promotes colon cancer invasion and metastasis by activating the integrin β1/FAK pathway. Cancer Lett 2022; 540:215720. [DOI: 10.1016/j.canlet.2022.215720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
|
15
|
Lim EJ, Kang JH, Kim YJ, Kim S, Lee SJ. ICAM-1 promotes cancer progression by regulating SRC activity as an adapter protein in colorectal cancer. Cell Death Dis 2022; 13:417. [PMID: 35487888 PMCID: PMC9054780 DOI: 10.1038/s41419-022-04862-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) has a 5-year survival rate of <10%, as it can metastasize to the lungs and liver. Anticancer drugs and targeted therapies used to treat metastatic colorectal cancer have insufficient therapeutic efficacy and are associated with complications. Therefore, research to develop new targeted therapeutics is necessary. Here, we present a novel discovery that intracellular adhesion molecule-1 (ICAM-1) is a potential therapeutic target to enhance therapeutic effectiveness for CRC. ICAM-1 is an important regulator of cell-cell interactions and recent studies have shown that it promotes malignancy in several carcinomas. However, little is known about its effect on CRC. Therefore, we conducted a study to define the mechanism by which ICAM-1 acts. ICAM-1 is phosphorylated by tyrosine-protein kinase Met (c-MET), and phosphorylated ICAM-1 can interact with SRC to increase SRC activity. Consequently, ICAM-1 may further accelerate SRC signaling, promoting the malignant potential of cancer. In addition, treatment with antibodies targeting ICAM-1 showed excellent therapeutic effects in reducing metastasis and angiogenesis. These findings suggest for the first time that ICAM-1 is an important adapter protein capable of mediating the c-MET-SRC signaling axis. Therefore, ICAM-1 can be used as a novel therapeutic target and a metastatic marker for CRC.
Collapse
Affiliation(s)
- Eun-Ji Lim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Jae-Hyeok Kang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Yeon-Ju Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Seungmo Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
16
|
Wang G, Li H, Pan J, Yan T, Zhou H, Han X, Su L, Hou L, Xue X. Upregulated Expression of Cancer-Derived Immunoglobulin G Is Associated With Progression in Glioma. Front Oncol 2021; 11:758856. [PMID: 34760705 PMCID: PMC8574069 DOI: 10.3389/fonc.2021.758856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Gliomas are the most aggressive intracranial tumors accounting for the vast majority of brain tumors with very poor prognosis and overall survival (OS). Cancer-derived immunoglobulin G (cancer-IgG) has been found to be widely expressed in several malignancies such as breast cancer, colorectal cancer, and lung cancer. Cancer-IgG could promote tumorigenesis and progression. However, its role in glioma has not been revealed yet. Methods We mined open databases including the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) to study the role of IGHG1, which encodes cancer-IgG in glioma. Examination of the differential expression of IGHG1 was carried out in the GEO and TCGA databases. Furthermore, its expression in different molecular subtypes was analyzed. Stratified analysis was performed with clinical features. Subsequently, immune infiltration analysis was conducted using single-sample gene set enrichment analysis (ssGSEA). GSEA was performed to reveal the mechanisms of IGHG1. Lastly, immunohistochemistry was processed to validate our findings. Results In this study, we found that the expression of IGHG1 was higher in glioma and molecular subtypes with poor prognosis. The overall survival of patients with a high expression of IGHG1 was worse in the stratified analysis. Immune infiltration analysis indicated that the expression level of IGHG1 was positively correlated with the stromal score, ESTIMATE score, and immune score and negatively correlated with tumor purity. Results from the GSEA and DAVID demonstrated that IGHG1 may function in phagosome, antigen processing and presentation, extracellular matrix structural constituent, antigen binding, and collagen-containing extracellular matrix. Finally, immunohistochemistry assay validated our findings that patients with a high expression of cancer-IgG had poor OS and disease-free survival (DFS). Conclusion Cancer-IgG is a promising biomarker of diagnosis and treatment for patients with glioma.
Collapse
Affiliation(s)
- Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Tianfang Yan
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Kdimati S, Mullins CS, Linnebacher M. Cancer-Cell-Derived IgG and Its Potential Role in Tumor Development. Int J Mol Sci 2021; 22:11597. [PMID: 34769026 PMCID: PMC8583861 DOI: 10.3390/ijms222111597] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
Human immunoglobulin G (IgG) is the primary component of the human serum antibody fraction, representing about 75% of the immunoglobulins and 10-20% of the total circulating plasma proteins. Generally, IgG sequences are highly conserved, yet the four subclasses, IgG1, IgG2, IgG3, and IgG4, differ in their physiological effector functions by binding to different IgG-Fc receptors (FcγR). Thus, despite a similarity of about 90% on the amino acid level, each subclass possesses a unique manner of antigen binding and immune complex formation. Triggering FcγR-expressing cells results in a wide range of responses, including phagocytosis, antibody-dependent cell-mediated cytotoxicity, and complement activation. Textbook knowledge implies that only B lymphocytes are capable of producing antibodies, which recognize specific antigenic structures derived from pathogens and infected endogenous or tumorigenic cells. Here, we review recent discoveries, including our own observations, about misplaced IgG expression in tumor cells. Various studies described the presence of IgG in tumor cells using immunohistology and established correlations between high antibody levels and promotion of cancer cell proliferation, invasion, and poor clinical prognosis for the respective tumor patients. Furthermore, blocking tumor-cell-derived IgG inhibited tumor cells. Tumor-cell-derived IgG might impede antigen-dependent cellular cytotoxicity by binding antigens while, at the same time, lacking the capacity for complement activation. These findings recommend tumor-cell-derived IgG as a potential therapeutic target. The observed uniqueness of Ig heavy chains expressed by tumor cells, using PCR with V(D)J rearrangement specific primers, suggests that this specific part of IgG may additionally play a role as a potential tumor marker and, thus, also qualify for the neoantigen category.
Collapse
Affiliation(s)
| | | | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany; (S.K.); (C.S.M.)
| |
Collapse
|
18
|
Zhao J, Peng H, Gao J, Nong A, Hua H, Yang S, Chen L, Wu X, Zhang H, Wang J. Current insights into the expression and functions of tumor-derived immunoglobulins. Cell Death Discov 2021; 7:148. [PMID: 34226529 PMCID: PMC8257790 DOI: 10.1038/s41420-021-00550-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have reported expressions of immunoglobulins (Igs) in many human tumor tissues and cells. Tumor-derived Igs have displayed multiple significant functions which are different from classical Igs produced by B lymphocytes and plasma cells. This review will concentrate on major progress in expressions, functions, and mechanisms of tumor-derived Igs, similarities and differences between tumor-derived Igs and B-cell-derived Igs. We also discuss the future research directions of tumor-derived Igs, including their structural characteristics, physicochemical properties, mechanisms for rearrangement and expression regulation, signaling pathways involved, and clinical applications.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hui Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Jie Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Anna Nong
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Haoming Hua
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Shulin Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Liying Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xiangsheng Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Juping Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China.
| |
Collapse
|
19
|
Immune Cells and Immunoglobulin Expression in the Mammary Gland Tumors of Dog. Animals (Basel) 2021; 11:ani11051189. [PMID: 33919282 PMCID: PMC8143349 DOI: 10.3390/ani11051189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 01/21/2023] Open
Abstract
Inflammatory cells have a role in tumor progression and have prognostic and therapeutic potential. The immunohistochemical expression for Mast Cell Tryptase, Macrophage Marker, CD79a, IgA, IgM and IgG on 43 cases of canine mammary gland lesions was analyzed. In hyperplasia, a few B cells (BCs) and Tumor-Associated Macrophages (TAMs) were observed, while the number of Tumor-Associated Mast Cells (TAMCs) was the highest. In the peritumoral stroma of malignant lesions, low number of TAMCs and a high number of TAMAs and BCs were present. Immune cells of each type were always lower in the intratumoral than peritumoral stroma. Positivity to CD79a was also detected in the epithelial cells of simple and micropapillay carcinomas. Immunoglobulin reactivity was mainly located in the epithelial cells where an intense positivity to IgA and IgG and a weak positivity for IgM were detectable. On the basis of our preliminary results and literature data, we suggest that such cells and molecules could be directly involved in the biology of canine mammary gland tumors. In breast cancer, stromal inflammatory cells and cancer derived immunoglobulins have been correlated with the progression, malignancy and poor prognosis of the tumor. The results herein reported show that the dog's mammary gland epithelium also expresses immunoglobulins, and they mostly show a direct relationship with the infiltration of macrophages. In addition, this study shows that the infiltration of mast cells, B-cells and macrophages varies depending on the degree of malignancy of neoplasia.
Collapse
|
20
|
Coura MDM, Barbosa EA, Brand GD, Bloch C, de Sousa JB. Identification of Differential N-Glycan Compositions in the Serum and Tissue of Colon Cancer Patients by Mass Spectrometry. BIOLOGY 2021; 10:biology10040343. [PMID: 33923867 PMCID: PMC8074232 DOI: 10.3390/biology10040343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Incidence of colorectal cancer (CRC) has been rising in Brazil. To date, no reliable biomarker has been described in CRC for diagnosis and prognosis. Modifications in the N-glycosylation profile are usually associated with many cancers, as CRC. In turn, mass spectrometry (MS)-based methods are the most accurate technology in quantification of N-glycans. Therefore, we described a unique pattern of compositions altered in serum and tissues of stages II and III colon cancer patients, identified by MALDI-TOF/MS and LC-MS technology. N-glycans were mostly found decreased in serum whilst oligomannosidic, hypogalactosylated, and tetra-antennary forms were overexpressed in tumor tissues. Total N-glycome in serum of cancer patients was different from the profile found in serum of healthy individuals. Strikingly, no correlation between tissue N-glycosylation profile and serum profile was observed in cancer patients, posing the question where these compositions are originated from. Abstract Colorectal cancer (CRC) ranks second as the leading cause of cancer-related deaths worldwide. N-glycosylation is one of the most common posttranslational protein modifications. Therefore, we studied the total serum N-glycome (TSNG) of 13 colon cancer patients compared to healthy controls using MALDI-TOF/MS and LC-MS. N-glycosylation of cancer tumor samples from the same cohort were further quantified using a similar methodology. In total, 23 N-glycan compositions were down-regulated in the serum of colon cancer patients, mostly galactosylated forms whilst the mannose-rich HexNAc2Hex7, the fucosylated bi-antennary glycan HexNAc4Hex5Fuc1NeuAc2, and the tetra-antennary HexNAc6Hex7NeuAc3 were up-regulated in serum. Hierarchical clustering analysis of TSNG correctly singled out 85% of the patients from controls. Albeit heterogenous, N-glycosylation of tumor samples showed overrepresented oligomannosidic, bi-antennary hypogalactosylated, and branched compositions related to normal colonic tissue, in both MALDI-TOF/MS and LC-MS analysis. Moreover, compositions found upregulated in tumor tissue were mostly uncorrelated to compositions in serum of cancer patients. Mass spectrometry-based N-glycan profiling in serum shows potential in the discrimination of patients from healthy controls. However, the compositions profile in serum showed no parallel with N-glycans in tumor microenvironment, which suggests a different origin of compositions found in serum of cancer patients.
Collapse
Affiliation(s)
- Marcelo de M.A. Coura
- Division of Colorectal Surgery, University Hospital of Brasilia, School of Medicine, University of Brasilia, SGAN 605, Brasilia-DF 70840-901, Brazil;
- Correspondence:
| | - Eder A. Barbosa
- Laboratory of Mass Spectrometry, EMBRAPA Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte, Brasilia-DF 70770-917, Brazil; (E.A.B.); (C.B.J.)
- Laboratory for the Synthesis and Analysis of Biomolecules, Institute of Chemistry, Campus Universitario Darcy Ribeiro, University of Brasilia, Brasilia-DF 70910-900, Brazil;
| | - Guilherme D. Brand
- Laboratory for the Synthesis and Analysis of Biomolecules, Institute of Chemistry, Campus Universitario Darcy Ribeiro, University of Brasilia, Brasilia-DF 70910-900, Brazil;
| | - Carlos Bloch
- Laboratory of Mass Spectrometry, EMBRAPA Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte, Brasilia-DF 70770-917, Brazil; (E.A.B.); (C.B.J.)
| | - Joao B. de Sousa
- Division of Colorectal Surgery, University Hospital of Brasilia, School of Medicine, University of Brasilia, SGAN 605, Brasilia-DF 70840-901, Brazil;
| |
Collapse
|
21
|
Pharmaceutical immunoglobulin G impairs anti-carcinoma activity of oxaliplatin in colon cancer cells. Br J Cancer 2021; 124:1411-1420. [PMID: 33558709 PMCID: PMC8039037 DOI: 10.1038/s41416-021-01272-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Recent evidence proves that intravenous human immunoglobulin G (IgG) can impair cancer cell viability. However, no study evaluated whether IgG application benefits cancer patients receiving chemotherapeutics. METHODS Influence of pharmaceutical-grade human IgG on the viability of a series of patient-derived colon cancer cell lines with and without chemotherapeutic intervention was determined. Cell death was analysed flow cytometrically. In addition, the influence of oxaliplatin and IgG on the ERK1/2-signalling pathway was evaluated by western blots. RESULTS We evaluated the effects of pharmaceutical IgG, such as PRIVIGEN® IgG and Tonglu® IgG, in combination with chemotherapeutics. We did not observe any significant effects of IgG on tumour cell viability directly; however, human IgG significantly impaired the anti-tumoral effects of oxaliplatin. Primary cancer cell lines express IgG receptors and accumulate human IgG intracellularly. Moreover, while oxaliplatin induced the activation of ERK1/2, the pharmaceutical IgG inhibited ERK1/2 activity. CONCLUSIONS The present study demonstrates that pharmaceutical IgG, such as PRIVIGEN® IgG and Tonglu® IgG, can impair the anti-carcinoma activity of oxaliplatin. These data strongly suggest that therapeutic IgG as co-medication might have harmful side effects in cancer patients. The clinical significance of these preclinical observations absolutely advises further preclinical, as well as epidemiological and clinical research.
Collapse
|
22
|
Cui M, Huang J, Zhang S, Liu Q, Liao Q, Qiu X. Immunoglobulin Expression in Cancer Cells and Its Critical Roles in Tumorigenesis. Front Immunol 2021; 12:613530. [PMID: 33841396 PMCID: PMC8024581 DOI: 10.3389/fimmu.2021.613530] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Traditionally, immunoglobulin (Ig) was believed to be produced by only B-lineage cells. However, increasing evidence has revealed a high level of Ig expression in cancer cells, and this Ig is named cancer-derived Ig. Further studies have shown that cancer-derived Ig shares identical basic structures with B cell-derived Ig but exhibits several distinct characteristics, including restricted variable region sequences and aberrant glycosylation. In contrast to B cell-derived Ig, which functions as an antibody in the humoral immune response, cancer-derived Ig exerts profound protumorigenic effects via multiple mechanisms, including promoting the malignant behaviors of cancer cells, mediating tumor immune escape, inducing inflammation, and activating the aggregation of platelets. Importantly, cancer-derived Ig shows promising potential for application as a diagnostic and therapeutic target in cancer patients. In this review, we summarize progress in the research area of cancer-derived Ig and discuss the perspectives of applying this novel target for the management of cancer patients.
Collapse
Affiliation(s)
- Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
Zhang JA, Zhou XY, Huang D, Luan C, Gu H, Ju M, Chen K. Development of an Immune-Related Gene Signature for Prognosis in Melanoma. Front Oncol 2021; 10:602555. [PMID: 33585219 PMCID: PMC7874014 DOI: 10.3389/fonc.2020.602555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma remains a potentially deadly malignant tumor. The incidence of melanoma continues to rise. Immunotherapy has become a new treatment method and is widely used in a variety of tumors. Original melanoma data were downloaded from TCGA. ssGSEA was performed to classify them. GSVA software and the "hclust" package were used to analyze the data. The ESTIMATE algorithm screened DEGs. The edgeR package and Venn diagram identified valid immune-related genes. Univariate, LASSO and multivariate analyses were used to explore the hub genes. The "rms" package established the nomogram and calibrated the curve. Immune infiltration data were obtained from the TIMER database. Compared with that of samples in the high immune cell infiltration cluster, we found that the tumor purity of samples in the low immune cell infiltration cluster was higher. The immune score, ESTIMATE score and stromal score in the low immune cell infiltration cluster were lower. In the high immune cell infiltration cluster, the immune components were more abundant, while the tumor purity was lower. The expression levels of TIGIT, PDCD1, LAG3, HAVCR2, CTLA4 and the HLA family were also higher in the high immune cell infiltration cluster. Survival analysis showed that patients in the high immune cell infiltration cluster had shorter OS than patients in the low immune cell infiltration cluster. IGHV1-18, CXCL11, LTF, and HLA-DQB1 were identified as immune cell infiltration-related DEGs. The prognosis of melanoma was significantly negatively correlated with the infiltration of CD4+ T cells, CD8+ T cells, dendritic cells, neutrophils and macrophages. In this study, we identified immune-related melanoma core genes and relevant immune cell subtypes, which may be used in targeted therapy and immunotherapy of melanoma.
Collapse
Affiliation(s)
- Jia-An Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Xu-Yue Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
24
|
Comparative transcriptomic profiling in HPV-associated cervical carcinogenesis: Implication of MHC class II and immunoglobulin heavy chain genes. Life Sci 2020; 256:118026. [PMID: 32615187 DOI: 10.1016/j.lfs.2020.118026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
AIM We aimed to determine the biological processes and pathways involved in cervical carcinogenesis associated with high-risk human papillomavirus (HPV) infection. MATERIALS AND METHODS Total RNA was extracted from three formalin-fixed paraffin-embedded (FFPE) samples each of normal cervix, HPV-infected low-grade squamous intraepithelial lesion (LSIL), high-grade SIL (HSIL) and squamous cell carcinoma (SCC). Transcriptomic profiling by microarrays was conducted followed by downstream Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS We examined the difference in GOs enriched for each transition stage from normal cervix to LSIL, HSIL, and SCC, and found 307 genes to be differentially expressed. In the transition from normal cervix to LSIL, the extracellular matrix (ECM) genes were significantly downregulated. The MHC class II genes were significantly upregulated in the LSIL to HSIL transition. In the final transition from HSIL to SCC, the immunoglobulin heavy locus genes were significantly upregulated and the ECM pathway was implicated. CONCLUSION Deregulation of the immune-related genes including MHC II and immunoglobulin heavy chain genes were involved in the transitions from LSIL to HSIL and SCC, suggesting immune escape from host anti-tumour response. The extracellular matrix plays an important role during the early and late stages of cervical carcinogenesis.
Collapse
|
25
|
Jiang H, Kang B, Huang X, Yan Y, Wang S, Ye Y, Shen Z. Cancer IgG, a potential prognostic marker, promotes colorectal cancer progression. Chin J Cancer Res 2019; 31:499-510. [PMID: 31354219 PMCID: PMC6613500 DOI: 10.21147/j.issn.1000-9604.2019.03.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective Currently, no satisfactory targets for colorectal cancer or markers for immunotherapy and diagnosis and prognosis are available. Immunoglobulin G (IgG) is widely expressed in many cancers, and it promotes cancer progression. This study explored the role of cancer-derived IgG (CIgG) in colorectal cancer. Methods First, using a monoclonal antibody to CIgG, we examined the expression levels of CIgG in colorectal cancer cell lines by western blot and immunofluorescence analyses and in tissue specimens by immunohistochemistry. Second, the variable region gene was amplified by nested polymerase chain reaction (PCR), and PCR products were sequenced and analyzed. Third, we investigated the effect of CIgG on colorectal cancer cells by cell proliferation, wound healing, migration and invasion assays, and colony formation assay. Fourth, we performed in vivo tumorigenicity experiments to explore the effect of CIgG on tumorigenicity. Finally, we used RNA-seq analysis and co-immunoprecipitation experiments to further clarify possible mechanisms of CIgG.
Results We found that CIgG is widely expressed in colorectal cancer cells, and the overexpression of CIgG indicates significantly poor colorectal cancer prognosis. Furthermore, CIgG knockdown significantly inhibits the proliferation, migration and invasion ability of cells, and tumor growth in vivo. RNA-seq analysis indicated that CIgG knockdown results primarily in changes in expression of apical junction and epithelial-mesenchymal transition-related genes. CIgG may be involved in colorectal cancer invasion and metastasis through interacting with E-cadherin.
Conclusions CIgG is a potential human oncogene in colorectal cancer and that it has potential for application as a novel target in targeted therapy and a marker for prognostic evaluation.
Collapse
Affiliation(s)
- Hongpeng Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Boxi Kang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xinmei Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yichao Yan
- Department of Gastroenterological Surgery, Peking University International Hospital, Beijing 102206, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|