1
|
Kilic G, Hacioglu C, Tuncer C, Kar E, Kar F, Taskesen A, Kurtulus A, Ipek O, Cetiner OD, Erdin C. Boric Acid Suppresses Glioblastoma Cellular Survival by Regulating Ferroptosis via SOX10/GPx4/ACSL4 Signalling and Iron Metabolism. J Cell Mol Med 2025; 29:e70529. [PMID: 40159622 PMCID: PMC11955407 DOI: 10.1111/jcmm.70529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Ferroptosis, a distinct form of regulated cell death, plays a role in glioma pathogenesis. SRY-box (SOX) transcription factors are key regulators of cancer progression. In this study, we investigated the role of SOX10 in ferroptosis induction in U87 cells following boric acid treatment. First, the cytotoxic effects of boric acid on HMC3 and U87 cells were assessed using CCK8 and BrdU incorporation assays. Subsequently, SOX10, GPX4, ACSL4, GSH, MDA, total ROS, Fe2+, and TFR levels were analysed using ELISA, Western blot, and RT-PCR techniques. Additionally, DAPI staining was performed to evaluate nuclear abnormalities. According to the CCK8 analysis, the IC50 value for boric acid was determined to be 3.12 mM for HMC3 cells and 532 μM for U87 cells, a finding further supported by BrdU incorporation analysis, which indicated that U87 cells were more sensitive to boric acid. Western blot and RT-PCR analyses revealed that SOX10 expression was significantly higher in U87 cells compared to HMC3 cells. Boric acid treatment led to a reduction in GSH, GPX4, and SOX10 levels in U87 cells, while inducing an increase in MDA, total ROS, ACSL4, Fe2+, and TFR levels. Moreover, microscopic analysis demonstrated that boric acid treatment induced both morphological and nuclear abnormalities in U87 cells. In conclusion, our findings demonstrate that SOX10 is involved in the ferroptosis signalling pathway and that boric acid effectively suppresses U87 cell viability by targeting the SOX10/GPX4/ACSL4 axis.
Collapse
Affiliation(s)
- Guven Kilic
- Department of NeurosurgeryDüzce University, Faculty of MedicineDüzceTürkiye
| | - Ceyhan Hacioglu
- Department of Medical BiochemistryDüzce University, Faculty of MedicineDüzceTürkiye
- Department of BiochemistryDüzce University, Faculty of PharmacyDüzceTürkiye
| | - Cengiz Tuncer
- Department of NeurosurgeryDüzce University, Faculty of MedicineDüzceTürkiye
| | - Ezgi Kar
- Department of Nutrition and DieteticsKütahya Health Sciences University, Faculty of Health ScienceKütahyaTürkiye
| | - Fatih Kar
- Department of Medical BiochemistryKütahya Health Sciences University, Faculty of MedicineKütahyaTürkiye
| | - Ahmet Taskesen
- Department of NeurosurgeryDüzce University, Faculty of MedicineDüzceTürkiye
| | - Adem Kurtulus
- Department of NeurosurgeryDüzce University, Faculty of MedicineDüzceTürkiye
| | - Onder Ipek
- Department of NeurosurgeryDüzce University, Faculty of MedicineDüzceTürkiye
| | - Oben Devin Cetiner
- Department of NeurosurgeryDüzce University, Faculty of MedicineDüzceTürkiye
| | - Cigdem Erdin
- Department of NeurosurgeryDüzce University, Faculty of MedicineDüzceTürkiye
| |
Collapse
|
2
|
Swati K, Arfin S, Agrawal K, Jha SK, Rajendran RL, Prakash A, Kumar D, Gangadaran P, Ahn BC. Deciphering FOXM1 regulation: implications for stemness and metabolic adaptations in glioblastoma. Med Oncol 2025; 42:88. [PMID: 40032774 DOI: 10.1007/s12032-025-02639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
The Forkhead box M1 (FOXM1) gene-mediated Wnt signaling pathway plays a significant role in the development and growth of glioblastoma multiforme (GBM), an exceptionally aggressive form of brain cancer. Our research explores the crucial involvement of the FOXM1 gene, a key transcription factor within the Wnt signaling pathway using bioinformatics techniques in both GBM and glioma stem cells (GSCs). Elevated FOXM1 gene expression is strongly associated with poor patient survival in GBM. Furthermore, FOXM1 gene expression is correlated with stemness-related factors, such as SOX2 and SOX9, which act as key drivers in the progression of cancer stem cells. Moreover, we specifically look into the direct associations of the FOXM1 gene with angiogenetic-related factors, metabolic genes, metastatic genes, pluripotency-related factors, immune cell infiltration, transcriptional networks, and functional category enrichment analysis, shedding light on the intricate molecular mechanisms involved in GBM initiation and progression. Additionally, our research identifies FOXM1-targeting miRNAs, revealing their potential as therapeutic candidates with implications for patient survival rates and DNA methylation patterns of the FOXM1 gene, uncovering insights into its epigenetic regulation. This knowledge contributes to a comprehensive understanding of the molecular landscape and potential avenues for developing more effective therapeutic approaches against GBM and GSCs.
Collapse
Affiliation(s)
- Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University. Motihari, Bihar, 845401, India
| | - Saniya Arfin
- School of Health Sciences and Technology, UPES, Dehradun, Uttrakhand, 248007, India
| | - Kirti Agrawal
- School of Health Sciences and Technology, UPES, Dehradun, Uttrakhand, 248007, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, 110008, India
- Centre For Himalayan Studies, University Enclave, Delhi, 110007, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University. Motihari, Bihar, 845401, India.
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES, Dehradun, Uttrakhand, 248007, India.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
3
|
Guo W, Liu X, Pang L, Kong Z, Lin Z, Ren J, Dong Z, Chen G, Liu D. DjsoxP-1 and Djsox5 are essential for tissue homeostasis and regeneration in Dugesia japonica. Cell Tissue Res 2025; 399:337-350. [PMID: 39762587 DOI: 10.1007/s00441-024-03939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/15/2024] [Indexed: 03/01/2025]
Abstract
Sox genes encode a family of transcription factors that regulate multiple biological processes during metazoan development, including embryogenesis, tissue homeostasis, nervous system specification, and stem cell maintenance. The planarian Dugesia japonica contains a reservoir of stem cells that grow and divide continuously to support cellular turnover. However, whether SOX proteins retain these conserved functions in planarians remains to be determined. In this study, three sox gene homologs, DjsoxP-1, DjsoxP-5, and Djsox5, were identified in the planarian transcriptome, and their roles were investigated. The results showed that the amino acids deduced from the three sox genes all contained high-mobility group (HMG) domain sequences, which are highly conserved in sox family members. Whole-mount in situ hybridization (WISH) and real-time quantitative PCR (RT-qPCR) results indicated that the three sox genes were mainly expressed in parenchymal tissues and regenerative blastema. Additionally, X-ray irradiation assay and dFISH suggested that the three Djsox genes were expressed in neoblasts and other cell types. Head regression in intact planarian and smaller blastemas in both head or tail fragments of regenerating planarians were exhibited with DjsoxP-1 and Djsox5 RNA interference (RNAi) compared to the control animals, suggesting that DjsoxP-1 and Djsox5 have essential roles during cellular turnover and regeneration in planarians; conversely, there was no obvious phenotypic abnormalities or regeneration defect in DjsoxP-5 RNAi animals. Knockdown of DjsoxP-1 or Djsox5 decreased neoblast proliferation and promoted cell apoptosis. In conclusion, our findings demonstrate that DjsoxP-1 and Djsox5 are involved in cellular turnover and regeneration in planarians by modulating coordination between cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Weiyun Guo
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453002, Henan, China
| | - Xiao Liu
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Lina Pang
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Zhihong Kong
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Ziyi Lin
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Jing Ren
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| |
Collapse
|
4
|
Ruggiero M, Cianciulli A, Calvello R, Lofrumento DD, Saponaro C, Filannino FM, Porro C, Panaro MA. Lactoferrin Attenuates Pro-Inflammatory Response and Promotes the Conversion into Neuronal Lineages in the Astrocytes. Int J Mol Sci 2025; 26:405. [PMID: 39796258 PMCID: PMC11720426 DOI: 10.3390/ijms26010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits. To date, many anti-inflammatory agents have been shown to reduce neuroinflammation; however, their potential to restore neuronal loss was poorly investigated. This study investigates the anti-inflammatory effects of lactoferrin on DI-TNC1 astrocyte cell line and its ability to induce astrocyte reprogramming in a context of sustained inflammation. For this purpose, astrocytes were pre-treated with lactoferrin (4 μg/mL) for 24 h, then with lipopolysaccharide (LPS) (400 ng/mL), and examined 2, 9 and 16 days from treatment. The results demonstrate that lactoferrin attenuates astrocyte reactivity by reducing Toll-like receptor 4 (TLR4), Glial fibrillary acidic protein (GFAP) and IL-6 expression, as well as by upregulating Interleukin-10 (IL-10) cytokine and NRF2 expression. Moreover, lactoferrin promotes the reprogramming of reactive astrocytes into proliferative neuroblasts by inducing the overexpression of the Sex determining region Y/SRY-box 2 (SOX2) reprogramming transcription factor. Overall, this study highlights the potential effects of lactoferrin to attenuate neuroinflammation and improve neurogenesis, suggesting a future strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, 73100 Lecce, Italy;
| | - Concetta Saponaro
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy;
| | - Francesca Martina Filannino
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| |
Collapse
|
5
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy MAF, Alsaadi SB, Abosaoda MK. A cutting-edge investigation of the multifaceted role of SOX family genes in cancer pathogenesis through the modulation of various signaling pathways. Funct Integr Genomics 2025; 25:6. [PMID: 39753912 DOI: 10.1007/s10142-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression. In brain, lung, and colorectal cancers, SOX types like SOX2, SOX3, and SOX4 promote the migration, proliferation, and angiogenesis of cancer cells. Conversely, in pancreatic, gastric, and breast cancers, SOX types, including SOX1, SOX9, and SOX17 inhibit various cancer cell activities such as proliferation and invasion. This thorough investigation enhances our understanding of the SOX family's complex role in cancer, establishing a foundation for future research and potential therapeutic strategies targeting these versatile transcription factors.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M A Farag Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
6
|
Spinelli S, Barbieri F, Averna M, Florio T, Pedrazzi M, Tremonti BF, Capraro M, De Tullio R. Expression of calpastatin hcast 3-25 and activity of the calpain/calpastatin system in human glioblastoma stem cells: possible involvement of hcast 3-25 in cell differentiation. Front Mol Biosci 2024; 11:1359956. [PMID: 39139809 PMCID: PMC11319182 DOI: 10.3389/fmolb.2024.1359956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor, characterized by cell heterogeneity comprising stem cells (GSCs) responsible for aggressiveness. The calpain/calpastatin (calp/cast) proteolytic system is involved in critical physiological processes and cancer progression. In this work we showed the expression profile of hcast 3-25 (a Type III calpastatin variant devoid of inhibitory units) and the members of the system in several patient-derived GSCs exploring the relationship between hcast 3-25 and activation/activity of calpains. Each GSC shows a peculiar calp/cast mRNA and protein expression pattern, and hcast 3-25 is the least expressed. Differentiation promotes upregulation of all the calp/cast system components except hcast 3-25 mRNA, which increased or decreased depending on individual GSC culture. Transfection of hcast 3-25-V5 into two selected GSCs indicated that hcast 3-25 effectively associates with calpains, supporting the digestion of selected calpain targets. Hcast 3-25 possibly affects the stem state promoting a differentiated, less aggressive phenotype.
Collapse
Affiliation(s)
- Sonia Spinelli
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Nephrology, Genova, Italy
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Federica Barbieri
- Department of Internal Medicine (DIMI), Section of Pharmacology, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Monica Averna
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine (DIMI), Section of Pharmacology, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Beatrice F. Tremonti
- Department of Internal Medicine (DIMI), Section of Pharmacology, University of Genova, Genova, Italy
| | - Michela Capraro
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Roberta De Tullio
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| |
Collapse
|
7
|
Sun N, Wang C, Gao P, Wang R, Zhang Y, Qi X. Multifaceted roles and functions of SOX30 in human cancer. CANCER INNOVATION 2024; 3:e107. [PMID: 38946929 PMCID: PMC11212289 DOI: 10.1002/cai2.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 07/02/2024]
Abstract
SRY-box transcription factor 30 (SOX30) participates in tumor cell apoptosis in lung cancer. The occurrence of somatic SOX30 mutations, the expression signature of SOX30 in normal and cancer tissues, the correlation of SOX30 with immune cells and immune-related genes, and the clinical significance of SOX30 in various cancers have stimulated interest in SOX30 as a potential cancer biomarker. SOX30 influences drug sensitivity and tumor immunity in specific cancer types. In this review, we have comprehensively summarized the latest research on the role of SOX30 in cancer by combining bioinformatics evidence and a literature review. We summarize recent research on SOX30 in cancer regarding somatic mutations, trials, transcriptome analysis, clinical information, and SOX30-mediated regulation of malignant phenotypes. Additionally, we report on the diagnostic value of SOX30 mRNA expression levels across different cancer types. This review on the role of SOX30 in cancer progression may provide insights into possible research directions for SOX30 in cancer and a theoretical basis for guiding future studies.
Collapse
Affiliation(s)
- Na Sun
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Cheng Wang
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Pingping Gao
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Rui Wang
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Yi Zhang
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Xiaowei Qi
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| |
Collapse
|
8
|
Marallano VJ, Ughetta ME, Tejero R, Nanda S, Ramalingam R, Stalbow L, Sattiraju A, Huang Y, Ramakrishnan A, Shen L, Wojcinski A, Kesari S, Zou H, Tsankov AM, Friedel RH. Hypoxia drives shared and distinct transcriptomic changes in two invasive glioma stem cell lines. Sci Rep 2024; 14:7246. [PMID: 38538643 PMCID: PMC10973515 DOI: 10.1038/s41598-024-56102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 07/12/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant cancer of the central nervous system. Insufficient oxygenation (hypoxia) has been linked to GBM invasion and aggression, leading to poor patient outcomes. Hypoxia induces gene expression for cellular adaptations. However, GBM is characterized by high intertumoral (molecular subtypes) and intratumoral heterogeneity (cell states), and it is not well understood to what extent hypoxia triggers patient-specific gene responses and cellular diversity in GBM. Here, we surveyed eight patient-derived GBM stem cell lines for invasion phenotypes in 3D culture, which identified two GBM lines showing increased invasiveness in response to hypoxia. RNA-seq analysis of the two patient GBM lines revealed a set of shared hypoxia response genes concerning glucose metabolism, angiogenesis, and autophagy, but also a large set of patient-specific hypoxia-induced genes featuring cell migration and anti-inflammation, highlighting intertumoral diversity of hypoxia responses in GBM. We further applied the Shared GBM Hypoxia gene signature to single cell RNA-seq datasets of glioma patients, which showed that hypoxic cells displayed a shift towards mesenchymal-like (MES) and astrocyte-like (AC) states. Interestingly, in response to hypoxia, tumor cells in IDH-mutant gliomas displayed a strong shift to the AC state, whereas tumor cells in IDH-wildtype gliomas mainly shifted to the MES state. This distinct hypoxia response of IDH-mutant gliomas may contribute to its more favorable prognosis. Our transcriptomic studies provide a basis for future approaches to better understand the diversity of hypoxic niches in gliomas.
Collapse
Affiliation(s)
- Valerie J Marallano
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary E Ughetta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rut Tejero
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sidhanta Nanda
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rohana Ramalingam
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lauren Stalbow
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anirudh Sattiraju
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yong Huang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexandre Wojcinski
- Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Tang W, Lo CWS, Ma W, Chu ATW, Tong AHY, Chung BHY. Revealing the role of SPP1 + macrophages in glioma prognosis and therapeutic targeting by investigating tumor-associated macrophage landscape in grade 2 and 3 gliomas. Cell Biosci 2024; 14:37. [PMID: 38515213 PMCID: PMC10956315 DOI: 10.1186/s13578-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Glioma is a highly heterogeneous brain tumor categorized into World Health Organization (WHO) grades 1-4 based on its malignancy. The suppressive immune microenvironment of glioma contributes significantly to unfavourable patient outcomes. However, the cellular composition and their complex interplays within the glioma environment remain poorly understood, and reliable prognostic markers remain elusive. Therefore, in-depth exploration of the tumor microenvironment (TME) and identification of predictive markers are crucial for improving the clinical management of glioma patients. RESULTS Our analysis of single-cell RNA-sequencing data from glioma samples unveiled the immunosuppressive role of tumor-associated macrophages (TAMs), mediated through intricate interactions with tumor cells and lymphocytes. We also discovered the heterogeneity within TAMs, among which a group of suppressive TAMs named TAM-SPP1 demonstrated a significant association with Epidermal Growth Factor Receptor (EGFR) amplification, impaired T cell response and unfavourable patient survival outcomes. Furthermore, by leveraging genomic and transcriptomic data from The Cancer Genome Atlas (TCGA) dataset, two distinct molecular subtypes with a different constitution of TAMs, EGFR status and clinical outcomes were identified. Exploiting the molecular differences between these two subtypes, we developed a four-gene-based prognostic model. This model displayed strong associations with an elevated level of suppressive TAMs and could be used to predict anti-tumor immune response and prognosis in glioma patients. CONCLUSION Our findings illuminated the molecular and cellular mechanisms that shape the immunosuppressive microenvironment in gliomas, providing novel insights into potential therapeutic targets. Furthermore, the developed prognostic model holds promise for predicting immunotherapy response and assisting in more precise risk stratification for glioma patients.
Collapse
Affiliation(s)
- Wenshu Tang
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Cario W S Lo
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Wei Ma
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Annie T W Chu
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Amy H Y Tong
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Brian H Y Chung
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China.
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Zeng Y, Wang F, Li S, Song B. Regulatory Network of Methyltransferase-Like 3 in Stem Cells: Mechanisms and Medical Implications. Cell Transplant 2024; 33:9636897241282792. [PMID: 39466679 PMCID: PMC11528761 DOI: 10.1177/09636897241282792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024] Open
Abstract
Stem cells have the potential to replace defective cells in several human diseases by depending on their self-renewal and differentiation capacities that are controlled by genes. Currently, exploring the regulation mechanism for stem cell capacities from the perspective of methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine modification has obtained great advance, which functions by regulating target genes post-transcriptionally. However, reviews that interpret the regulatory network of METTL3 in stem cells are still lacking. In this review, we systematically analyze the available publications that report the role and mechanisms of METTL3 in stem cells, including embryonic stem cells, pluripotent stem cells, mesenchymal stem cells, and cancer stem cells. The analysis of such publications suggests that METTL3 controls stem cell fates and is indispensable for maintaining its normal capacities. However, its dysfunction induces various pathologies, particularly cancers. To sum up, this review suggests METTL3 as a key regulator for stem cell capacities, with further exploration potential in translational and clinical fields. In conclusion, this review promotes the understanding of how METTL3 functions in stem cells, which provides a valuable reference for further fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Fengyang Wang
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Silu Li
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Bin Song
- Department of Nephrology, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| |
Collapse
|
11
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of the skeletal muscle. Skelet Muscle 2023; 13:15. [PMID: 37705115 PMCID: PMC10498607 DOI: 10.1186/s13395-023-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associating domains. Unexpectedly, Myod1Cre-driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7CreER- or Rosa26CreER- driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nick Baumann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiang Sun
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Shihuan Kuang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Hamilton DJ, Hein AE, Wuttke DS, Batey RT. The DNA binding high mobility group box protein family functionally binds RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1778. [PMID: 36646476 PMCID: PMC10349909 DOI: 10.1002/wrna.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Nucleic acid binding proteins regulate transcription, splicing, RNA stability, RNA localization, and translation, together tailoring gene expression in response to stimuli. Upon discovery, these proteins are typically classified as either DNA or RNA binding as defined by their in vivo functions; however, recent evidence suggests dual DNA and RNA binding by many of these proteins. High mobility group box (HMGB) proteins have a DNA binding HMGB domain, act as transcription factors and chromatin remodeling proteins, and are increasingly understood to interact with RNA as means to regulate gene expression. Herein, multiple layers of evidence that the HMGB family are dual DNA and RNA binding proteins is comprehensively reviewed. For example, HMGB proteins directly interact with RNA in vitro and in vivo, are localized to RNP granules involved in RNA processing, and their protein interactors are enriched in RNA binding proteins involved in RNA metabolism. Importantly, in cell-based systems, HMGB-RNA interactions facilitate protein-protein interactions, impact splicing outcomes, and modify HMGB protein genomic or cellular localization. Misregulation of these HMGB-RNA interactions are also likely involved in human disease. This review brings to light that as a family, HMGB proteins are likely to bind RNA which is essential to HMGB protein biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
|
13
|
Ravikumar V, Xu T, Al-Holou WN, Fattahi S, Rao A. Efficient Inference of Spatially-Varying Gaussian Markov Random Fields With Applications in Gene Regulatory Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2920-2932. [PMID: 37276119 PMCID: PMC10623339 DOI: 10.1109/tcbb.2023.3282028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we study the problem of inferring spatially-varying Gaussian Markov random fields (SV-GMRF) where the goal is to learn a network of sparse, context-specific GMRFs representing network relationships between genes. An important application of SV-GMRFs is in inference of gene regulatory networks from spatially-resolved transcriptomics datasets. The current work on inference of SV-GMRFs are based on the regularized maximum likelihood estimation (MLE) and suffer from overwhelmingly high computational cost due to their highly nonlinear nature. To alleviate this challenge, we propose a simple and efficient optimization problem in lieu of MLE that comes equipped with strong statistical and computational guarantees. Our proposed optimization problem is extremely efficient in practice: we can solve instances of SV-GMRFs with more than 2 million variables in less than 2 minutes. We apply the developed framework to study how gene regulatory networks in Glioblastoma are spatially rewired within tissue, and identify prominent activity of the transcription factor HES4 and ribosomal proteins as characterizing the gene expression network in the tumor peri-vascular niche that is known to harbor treatment resistant stem cells.
Collapse
|
14
|
Xu Z, Jiang J, Wang S. The Critical Role of RNA m 6A Methylation in Gliomas: Targeting the Hallmarks of Cancer. Cell Mol Neurobiol 2023; 43:1697-1718. [PMID: 36104608 PMCID: PMC11412196 DOI: 10.1007/s10571-022-01283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/04/2022] [Indexed: 11/03/2022]
Abstract
Gliomas are the most common central cancer with high aggressive-capacity and poor prognosis, remaining to be the threat of most patients. With the blood-brain barrier and highly malignant progression, the efficacy of high-intensity treatment is limited. The N6-methyladenine (m6A) modification is found in rRNA, snRNA, miRNA, lncRNA, and mRNA, influencing the metabolism and translation of these RNAs and consequently regulating the proliferation, metastasis, apoptosis, etc. of glioma cells. The key role that m6A modification in gliomas has played makes it a prospective target for diagnosis and treatment. However, with studying deeper in m6A modification and gliomas, the conclusion and mechanism are abundant and complex. This review focused on the dysregulation of m6A regulators and m6A modification of key genes and pathways in Hallmarks of gliomas. Furthermore, the potential of exploiting m6A modification for gliomas diagnosis and therapeutics was also discussed. This review will summarize the recent studies about m6A modification, revealing that m6A modification plays an important role in the malignant progression, angiogenesis, microenvironment, and genome instability in gliomas by exploring the interaction and network between m6A modification-related regulators and classical tumor-related genes. And it might provide some clue for the molecular mechanism, diagnosis, and treatment of gliomas.
Collapse
Affiliation(s)
- Zhouhan Xu
- The Second Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Jun Jiang
- Department of Neurosurgery, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Shun Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| |
Collapse
|
15
|
Elshaer SS, Abulsoud AI, Fathi D, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Elsakka EGE, Abd-Elmawla MA, Abulsoud LA, Doghish AS. miRNAs role in glioblastoma pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 246:154511. [PMID: 37178618 DOI: 10.1016/j.prp.2023.154511] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
High mortality and morbidity rates and variable clinical behavior are hallmarks of glioblastoma (GBM), the most common and aggressive primary malignant brain tumor. Patients with GBM often have a dismal outlook, even after undergoing surgery, postoperative radiation, and chemotherapy, which has fueled the search for specific targets to provide new insights into the development of contemporary therapies. The ability of microRNAs (miRNAs/miRs) to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, cell cycle, apoptosis, invasion, angiogenesis, stem cell behavior and chemo- and radiotherapy resistance makes them promising candidates as prognostic biomarkers and therapeutic targets or factors to advance GBM therapeutics. Hence, this review is like a crash course in GBM and how miRNAs related to GBM. Here, we will outline the miRNAs whose role in the development of GBM has been established by recent in vitro or in vivo research. Moreover, we will provide a summary of the state of knowledge regarding oncomiRs and tumor suppressor (TS) miRNAs in relation to GBM with an emphasis on their potential applications as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shereen Saeid Elshaer
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
16
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534956. [PMID: 37034612 PMCID: PMC10081271 DOI: 10.1101/2023.03.30.534956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transcription factors (TFs) play key roles in regulating the differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associated domains. Unexpectedly, Myod1 Cre -driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7 CreER or Rosa26 CreER driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remain to be elucidated.
Collapse
|
17
|
Regal JA, Guerra García ME, Jain V, Chandramohan V, Ashley DM, Gregory SG, Thompson EM, López GY, Reitman ZJ. Ganglioglioma deep transcriptomics reveals primitive neuroectoderm neural precursor-like population. Acta Neuropathol Commun 2023; 11:50. [PMID: 36966348 PMCID: PMC10039537 DOI: 10.1186/s40478-023-01548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components that occur in children and young adults. Gangliogliomas are often characterized by a rare population of immature astrocyte-appearing cells expressing CD34, a marker expressed in the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed to refine tumor classification and to identify therapeutic approaches. We evaluated five gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34+ neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers. Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during neuroectodermal/neural development. Developmental trajectory analyses place neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor cell niche with relative lack of vascular and immune cells. We used these high resolution results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-associated gene programs associate with gangliogliomas compared to other glial brain tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma cellular hierarchy-confirming CD34+ neuroectoderm-like tumor precursor cells, controlling transcription programs, cell signaling, and associated immune cell states. These findings may guide tumor classification, diagnosis, prognostication, and therapeutic investigations.
Collapse
Affiliation(s)
- Joshua A Regal
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
| | | | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27710, USA
| | | | - David M Ashley
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27710, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Giselle Y López
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Department of Pathology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
18
|
Quantitative Evaluation of Stem-like Markers of Human Glioblastoma Using Single-Cell RNA Sequencing Datasets. Cancers (Basel) 2023; 15:cancers15051557. [PMID: 36900348 PMCID: PMC10001303 DOI: 10.3390/cancers15051557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Targeting glioblastoma (GBM) stem-like cells (GSCs) is a common interest in both the laboratory investigation and clinical treatment of GBM. Most of the currently applied GBM stem-like markers lack validation and comparison with common standards regarding their efficiency and feasibility in various targeting methods. Using single-cell RNA sequencing datasets from 37 GBM patients, we obtained a large pool of 2173 GBM stem-like marker candidates. To evaluate and select these candidates quantitatively, we characterized the efficiency of the candidate markers in targeting the GBM stem-like cells by their frequencies and significance of being the stem-like cluster markers. This was followed by further selection based on either their differential expression in GBM stem-like cells compared with normal brain cells or their relative expression level compared with other expressed genes. The cellular location of the translated protein was also considered. Different combinations of selection criteria highlight different markers for different application scenarios. By comparing the commonly used GSCs marker CD133 (PROM1) with markers selected by our method regarding their universality, significance, and abundance, we revealed the limitations of CD133 as a GBM stem-like marker. Overall, we propose BCAN, PTPRZ1, SOX4, etc. for laboratory-based assays with samples free of normal cells. For in vivo targeting applications that require high efficiency in targeting the stem-like subtype, the ability to distinguish GSCs from normal brain cells, and a high expression level, we recommend the intracellular marker TUBB3 and the surface markers PTPRS and GPR56.
Collapse
|
19
|
Vaidya M, Sreerama S, Gonzalez-Vega M, Smith J, Field M, Sugaya K. Coculture with Neural Stem Cells May Shift the Transcription Profile of Glioblastoma Multiforme towards Cancer-Specific Stemness. Int J Mol Sci 2023; 24:ijms24043242. [PMID: 36834653 PMCID: PMC9962301 DOI: 10.3390/ijms24043242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) possesses a small but significant population of cancer stem cells (CSCs) thought to play a role in its invasiveness, recurrence, and metastasis. The CSCs display transcriptional profiles for multipotency, self-renewal, tumorigenesis, and therapy resistance. There are two possible theories regarding the origin of CSCs in the context of neural stem cells (NSCs); i.e., NSCs modify cancer cells by conferring them with cancer-specific stemness, or NSCs themselves are transformed into CSCs due to the tumor environment created by cancer cells. To test the theories and to investigate the transcriptional regulation of the genes involved in CSC formation, we cocultured NSC and GBM cell lines together. Where genes related to cancer stemness, drug efflux, and DNA modification were upregulated in GBM, they were downregulated in NSCs upon coculture. These results indicate that cancer cells shift the transcriptional profile towards stemness and drug resistance in the presence of NSCs. Concurrently, GBM triggers NSCs differentiation. Because the cell lines were separated by a membrane (0.4 µm pore size) to prevent direct contact between GBM and NSCs, cell-secreted signaling molecules and extracellular vesicles (EVs) are likely involved in reciprocal communication between NSCs and GBM, causing transcription modification. Understanding the mechanism of CSC creation will aid in the identification of precise molecular targets within the CSCs to exterminate them, which, in turn, will increase the efficacy of chemo-radiation treatment.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sandeep Sreerama
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Maxine Gonzalez-Vega
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Orlando Neurosurgery, AdventHealth Neuroscience Institute, Orlando, FL 32803, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
20
|
Sharpe MA, Baskin DS, Johnson RD, Baskin AM. Acquisition of Immune Privilege in GBM Tumors: Role of Prostaglandins and Bile Salts. Int J Mol Sci 2023; 24:3198. [PMID: 36834607 PMCID: PMC9958596 DOI: 10.3390/ijms24043198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Based on the postulate that glioblastoma (GBM) tumors generate anti-inflammatory prostaglandins and bile salts to gain immune privilege, we analyzed 712 tumors in-silico from three GBM transcriptome databases for prostaglandin and bile synthesis/signaling enzyme-transcript markers. A pan-database correlation analysis was performed to identify cell-specific signal generation and downstream effects. The tumors were stratified by their ability to generate prostaglandins, their competency in bile salt synthesis, and the presence of bile acid receptors nuclear receptor subfamily 1, group H, member 4 (NR1H4) and G protein-coupled bile acid receptor 1 (GPBAR1). The survival analysis indicates that tumors capable of prostaglandin and/or bile salt synthesis are linked to poor outcomes. Tumor prostaglandin D2 and F2 syntheses are derived from infiltrating microglia, whereas prostaglandin E2 synthesis is derived from neutrophils. GBMs drive the microglial synthesis of PGD2/F2 by releasing/activating complement system component C3a. GBM expression of sperm-associated heat-shock proteins appears to stimulate neutrophilic PGE2 synthesis. The tumors that generate bile and express high levels of bile receptor NR1H4 have a fetal liver phenotype and a RORC-Treg infiltration signature. The bile-generating tumors that express high levels of GPBAR1 are infiltrated with immunosuppressive microglia/macrophage/myeloid-derived suppressor cells. These findings provide insight into how GBMs generate immune privilege and may explain the failure of checkpoint inhibitor therapy and provide novel targets for treatment.
Collapse
Affiliation(s)
- Martyn A. Sharpe
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
| | - David S. Baskin
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ryan D. Johnson
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
| | - Alexandra M. Baskin
- Department of Natural Science, Marine Science, Hawaii Pacific University, Honolulu, HI 96801, USA
| |
Collapse
|
21
|
Stevanovic M, Lazic A, Schwirtlich M, Stanisavljevic Ninkovic D. The Role of SOX Transcription Factors in Ageing and Age-Related Diseases. Int J Mol Sci 2023; 24:851. [PMID: 36614288 PMCID: PMC9821406 DOI: 10.3390/ijms24010851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.
Collapse
Affiliation(s)
- Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | | |
Collapse
|
22
|
Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, Anbiyaee O, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101:110493. [PMID: 36228964 DOI: 10.1016/j.cellsig.2022.110493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common malignant brain tumor that develops in the glial tissue. Several studies have identified that glioma cancer stem cells (GCSCs) play important roles in tumor-initiating features in malignant gliomas. GCSCs are a small population in the brain that presents an essential role in the metastasis of glioma cells to other organs. These cells can self-renew and differentiate, which are thought to be involved in the pathogenesis of glioma. Therefore, targeting GCSCs might be a novel strategy for the treatment of glioma. Accumulating evidence revealed that several signaling pathways, including Notch, TGF-β, Wnt, STAT3, AKT, and EGFR mediated GCSC growth, proliferation, migration, and invasion. Besides, non-coding RNAs (ncRNAs), including miRNAs, circular RNAs, and long ncRNAs have been found to play pivotal roles in the regulation of GCSC pathogenesis and drug resistance. Therefore, targeting these pathways could open a new avenue for glioma management. In this review, we summarized critical signaling pathways involved in the stimulation or prevention of GCSCs tumorigenesis and invasiveness.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
23
|
Medina S, Ihrie RA, Irish JM. Learning cell identity in immunology, neuroscience, and cancer. Semin Immunopathol 2023; 45:3-16. [PMID: 36534139 PMCID: PMC9762661 DOI: 10.1007/s00281-022-00976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
Suspension and imaging cytometry techniques that simultaneously measure hundreds of cellular features are powering a new era of cell biology and transforming our understanding of human tissues and tumors. However, a central challenge remains in learning the identities of unexpected or novel cell types. Cell identification rubrics that could assist trainees, whether human or machine, are not always rigorously defined, vary greatly by field, and differentially rely on cell intrinsic measurements, cell extrinsic tissue measurements, or external contextual information such as clinical outcomes. This challenge is especially acute in the context of tumors, where cells aberrantly express developmental programs that are normally time, location, or cell-type restricted. Well-established fields have contrasting practices for cell identity that have emerged from convention and convenience as much as design. For example, early immunology focused on identifying minimal sets of protein features that mark individual, functionally distinct cells. In neuroscience, features including morphology, development, and anatomical location were typical starting points for defining cell types. Both immunology and neuroscience now aim to link standardized measurements of protein or RNA to informative cell functions such as electrophysiology, connectivity, lineage potential, phospho-protein signaling, cell suppression, and tumor cell killing ability. The expansion of automated, machine-driven methods for learning cell identity has further created an urgent need for a harmonized framework for distinguishing cell identity across fields and technology platforms. Here, we compare practices in the fields of immunology and neuroscience, highlight concepts from each that might work well in the other, and propose ways to implement these ideas to study neural and immune cell interactions in brain tumors and associated model systems.
Collapse
Affiliation(s)
- Stephanie Medina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Xiao G, Wang K, Wang Z, Dai Z, Liang X, Ye W, Luo P, Zhang J, Liu Z, Cheng Q, Peng R. Machine learning-based identification of SOX10 as an immune regulator of macrophage in gliomas. Front Immunol 2022; 13:1007461. [PMID: 36524115 PMCID: PMC9745112 DOI: 10.3389/fimmu.2022.1007461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Gliomas, originating from the glial cells, are the most lethal type of primary tumors in the central nervous system. Standard treatments like surgery have not significantly improved the prognosis of glioblastoma patients. Recently, immune therapy has become a novel and effective option. As a conserved group of transcriptional regulators, the Sry-type HMG box (SOX) family has been proved to have a correlation with numerous diseases. Based on the large-scale machine learning, we found that the SOX family, with significant immune characteristics and genomic profiles, can be divided into two distinct clusters in gliomas, among which SOX10 was identified as an excellent immune regulator of macrophage in gliomas. The high expression of SOX10 is related to a shorter OS in LGG, HGG, and pan-cancer groups but benefited from the immunotherapy. It turned out in single-cell sequencing that SOX10 is high in neurons, M1 macrophages, and neural stem cells. Also, macrophages are found to be elevated in the SOX10 high-expression group. SOX10 has a positive correlation with macrophage cytokine production and negative regulation of macrophages' chemotaxis and migration. In conclusion, our study demonstrates the outstanding cluster ability of the SOX family, indicating that SOX10 is an immune regulator of macrophage in gliomas, which can be an effective target for glioma immunotherapy.
Collapse
Affiliation(s)
- Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kaiyue Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Quan Cheng, ; Renjun Peng,
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Quan Cheng, ; Renjun Peng,
| |
Collapse
|
25
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
26
|
Mercurio S, Serra L, Pagin M, Nicolis SK. Deconstructing Sox2 Function in Brain Development and Disease. Cells 2022; 11:cells11101604. [PMID: 35626641 PMCID: PMC9139651 DOI: 10.3390/cells11101604] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.
Collapse
|
27
|
Rodriguez SMB, Staicu GA, Sevastre AS, Baloi C, Ciubotaru V, Dricu A, Tataranu LG. Glioblastoma Stem Cells-Useful Tools in the Battle against Cancer. Int J Mol Sci 2022; 23:ijms23094602. [PMID: 35562993 PMCID: PMC9100635 DOI: 10.3390/ijms23094602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma stem cells (GSCs) are cells with a self-renewal ability and capacity to initiate tumors upon serial transplantation that have been linked to tumor cell heterogeneity. Most standard treatments fail to completely eradicate GSCs, causing the recurrence of the disease. GSCs could represent one reason for the low efficacy of cancer therapy and for the short relapse time. Nonetheless, experimental data suggest that the presence of therapy-resistant GSCs could explain tumor recurrence. Therefore, to effectively target GSCs, a comprehensive understanding of their biology and the survival and developing mechanisms during treatment is mandatory. This review provides an overview of the molecular features, microenvironment, detection, and targeting strategies of GSCs, an essential information required for an efficient therapy. Despite the outstanding results in oncology, researchers are still developing novel strategies, of which one could be targeting the GSCs present in the hypoxic regions and invasive edge of the glioblastoma.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Carina Baloi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Vasile Ciubotaru
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
- Correspondence:
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
- Department 6—Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
28
|
The Dysregulation of SOX Family Correlates with DNA Methylation and Immune Microenvironment Characteristics to Predict Prognosis in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:2676114. [PMID: 35465267 PMCID: PMC9020970 DOI: 10.1155/2022/2676114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Background Due to the molecular heterogeneity of hepatocellular carcinoma (HCC), majority of patients respond poorly among various of therapy. This study is aimed at conducting a comprehensive analysis about roles of SOX family in HCC for obtaining more therapeutic targets and biomarkers which may bring new ideas for the treatment of HCC. Methods UALCAN, Kaplan Meier plotter, cBioPortal, STRING, WebGestalt, Metascape, TIMER 2.0, DiseaseMeth, MethSurv, HPA, CCLE database, and Cytoscape software were used to comprehensively analyze the bioinformatic data. Results SOX2, SOX4, SOX8, SOX10, SOX11, SOX12, SOX17, and SOX18 were significantly differentially expressed in HCC and normal tissues and were valuable for the grade and survival of HCC patients. In addition, the gene alterations of SOX family happened frequently, and SOX4 and SOX17 had the highest mutation rate. The function of SOX family on HCC may be closely correlated with the regulation of angiogenesis-related signaling pathways. Moreover, SOX4, SOX8, SOX11, SOX12, SOX17, and SOX18 were correlation with 8 types of immune cells (including CD8+ T cell, CD4+ T cell, B cell, Tregs, neutrophil, macrophage, myeloid DC, and NK cell), and we found that most types of immune cells had a positive correlation with SOX family. Notably, CD4+ T cell and macrophage were positively related with all these SOX family. NK cells were negatively related with most SOX family genes. DNA methylation levels in promoter area of SOX2, SOX4, and SOX10 were lower in HCC than normal tissues, while SOX8, SOX11, SOX17, and SOX18 had higher DNA methylation levels than normal tissues. Moreover, higher DNA methylation level of SOX12 and SOX18 demonstrated worse survival rates in patients with HCC. Conclusion SOX family genes could predict the prognosis of HCC. In addition, the regulation of angiogenesis-related signaling pathways may participate in the development of HCC. DNA methylation level and immune microenvironment characteristics (especially CD4+ T cell and macrophage immune cell infiltration) could be a novel insight for predicting prognosis in HCC.
Collapse
|
29
|
Pshennikova ES, Voronina AS. Dormancy: There and Back Again. Mol Biol 2022; 56:735-755. [PMID: 36217335 PMCID: PMC9534470 DOI: 10.1134/s0026893322050119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
Abstract
Many cells are capable of maintaining viability in a non-dividing state with minimal metabolism under unfavorable conditions. These are germ cells, adult stem cells, and microorganisms. Unfortunately, a resting state, or dormancy, is possible for tuberculosis bacilli in a latent form of the disease and cancer cells, which may later form secondary tumors (metastases) in different parts of the body. These cells are resistant to therapy that can destroy intensely dividing cells and to the host immune system. A cascade of reactions that allows cells to enter and exit dormancy is triggered by regulatory factors from the microenvironment in niches that harbor the cells. A ratio of forbidding and permitting signals dictates whether the cells become dormant or start proliferation. The only difference between the cell dormancy regulation in normal and pathological conditions is that pathogens, mycobacteria, and cancer cells can influence their own fate by changing their microenvironment. Certain mechanisms of these processes are considered in the review.
Collapse
Affiliation(s)
- E. S. Pshennikova
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - A. S. Voronina
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|