1
|
Carrillo-Aké AG, Delgado-Domínguez J, Cervantes-Sarabia RB, Ruiz-Remigio A, Zamora-Chimal J, Salaiza-Suazo N, Torres-Tapia LW, Peraza-Sánchez SR, Becker I. Topical Application of Oxylipin (3 S)-16,17-Didehydrofalcarinol in Mice Infected with Leishmania mexicana: A Possible Treatment for Localized Cutaneous Leishmaniasis. JOURNAL OF NATURAL PRODUCTS 2025; 88:959-966. [PMID: 40179055 PMCID: PMC12038837 DOI: 10.1021/acs.jnatprod.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Pentavalent antimonials are the first-line treatment for localized cutaneous leishmaniasis. However, they have disadvantages such as their elevated toxicity, high costs, and parenteral application. Plant-derived compounds may be an alternative treatment against this disease. Previous in vitro studies have shown that (3S)-16,17-didehydrofalcarinol (1), a polyacetylene oxylipin isolated from Tridax procumbens, is active against Leishmania mexicana. We have analyzed the mechanism of action of compound 1, evaluating reactive oxygen species production, apoptosis of L. mexicana, cytotoxicity in murine macrophages, and its efficacy in controlling the disease progression and parasite load when applied topically in C57BL/6 mice infected with L. mexicana. Results show that parasites incubated with 1.6 μM compound 1 significantly increased reactive oxygen species production (p ≤ 0.05). The percentage of apoptosis also increased significantly (p ≤ 0.05) and did not affect the viability of macrophages. The application of the topical formulations with 0.5% and 0.75% compound 1 for 7 weeks reduced disease progression and parasite load. We demonstrate that compound 1 generates the death of L. mexicana by apoptosis through reactive oxygen species production. We conclude that compound 1 can be used a possible alternative treatment for localized cutaneous leishmaniasis, enabling a less painful and more accessible therapy.
Collapse
Affiliation(s)
- Ana G. Carrillo-Aké
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - José Delgado-Domínguez
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Rocely Buenaventura Cervantes-Sarabia
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Adriana Ruiz-Remigio
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Jaime Zamora-Chimal
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Norma Salaiza-Suazo
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Luis W. Torres-Tapia
- Centro
de Investigación Científica de Yucatán (CICY),
Unidad de Biotecnología, Calle 43 #130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico
| | - Sergio R. Peraza-Sánchez
- Centro
de Investigación Científica de Yucatán (CICY),
Unidad de Biotecnología, Calle 43 #130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico
| | - Ingeborg Becker
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| |
Collapse
|
2
|
Menpadi N, Chandra P, Dubey VK. Molecular Mechanisms of Cell Death in Leishmania donovani Induced by Selected Steroidal Alkaloids. J Basic Microbiol 2025; 65:e2400655. [PMID: 39604153 DOI: 10.1002/jobm.202400655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
We have earlier reported novel anti-leishmanial molecules, veratramine and hupehenine, targeting dephospho-coenzyme A kinase of the parasite. In our current investigation, we assessed the efficacy of these two steroidal alkaloids, veratramine and hupehenine, in combating the parasite. Contrary to expectations, our study did not detect the typical signs of apoptosis such as mitochondrial membrane potential loss and phosphatidylserine externalization. Instead, we observed a notable increase in acidic organelle formation, suggesting a pro-survival response in promastigotes. Through diverse flow cytometric analyses and imaging methods, we conclude that the parasitic death induced by these natural compounds does not follow the apoptosis pathway but likely involves autophagy. This discovery marks the first instance of autophagy-mediated cell death in Leishmania donovani triggered by veratramine and hupehenine.
Collapse
Affiliation(s)
- Naveena Menpadi
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Sarma M, Bora K, Ranjan P, Dubey VK. Identification of novel anti-leishmanials targeting glutathione synthetase of the parasite: a drug repurposing approach. FEBS Lett 2025; 599:367-380. [PMID: 39266470 DOI: 10.1002/1873-3468.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
Drug repurposing has emerged as an effective strategy against infectious diseases such as visceral leishmaniasis. Here, we evaluated four FDA-approved drugs-valrubicin, ciclesonide, deflazacort, and telithromycin-for their anti-leishmanial activity on Leishmania donovani parasites, especially their ability to target the enzyme glutathione synthetase (LdGS), which enables parasite survival under oxidative stress in host macrophages. Valrubicin and ciclesonide exhibited superior inhibitory effects compared to deflazacort and telithromycin, inhibiting the promastigotes at very low concentrations, with IC50 values of 1.09 ± 0.09 μm and 2.09 ± 0.09 μm, respectively. Subsequent testing on amastigotes revealed the IC50 values of 1.74 ± 0.05 μm and 3.32 ± 0.21 μm for valrubicin and ciclesonide, respectively. Molecular and cellular level analysis further elucidated the mechanisms underlying the anti-leishmanial activity of valrubicin and ciclesonide.
Collapse
Affiliation(s)
- Manash Sarma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Kushal Bora
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Preeti Ranjan
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
4
|
Bora K, Sarma M, Kanaujia SP, Dubey VK. Development of novel dual-target drugs against visceral leishmaniasis and combinational study with miltefosine. Free Radic Biol Med 2024; 225:275-285. [PMID: 39388970 DOI: 10.1016/j.freeradbiomed.2024.10.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/31/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The dual-target inhibitors (ZINC000008876351 and ZINC000253403245) were identified by utilizing an advanced computational drug discovery method by targeting two critical enzymes such as FeSODA (Iron superoxide dismutase) and TryR (Trypanothione reductase) within the antioxidant defense system of Leishmania donovani (Ld). In vitro enzyme inhibition kinetics reveals that both the compound's ability to inhibit the function of enzyme LdFeSODA and LdTryR with inhibition constant (Ki) value in the low μM range. Flow cytometry analysis, specifically at IC50 and 2X IC50 doses of both the compounds, the intracellular ROS was significantly increased as compared to the untreated control. The compounds ZINC000253403245 and ZINC000008876351 exhibited strong anti-leishmanial activity in a dose-dependent manner against both the promastigote and amastigote stages of the parasite. The data indicate that these molecules hold promise as potential anti-leishmanial agents for developing new treatments against visceral leishmaniasis, specifically targeting the LdFeSODA and LdTryR enzymes. Additionally, the in vitro MTT assay shows that combining these compounds with miltefosine produces a synergistic effect compared to miltefosine alone. This suggests that the compounds can boost miltefosine's effectiveness by synergistically inhibiting the growth of L. donovani promastigotes. Given the emergence of miltefosine resistance in some Leishmania strains, these findings are particularly significant.
Collapse
Affiliation(s)
- Kushal Bora
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Manash Sarma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Ranjan P, Sarma M, Dubey VK. Biochemical and biophysical characterization of Leishmania donovani citrate synthase. Int J Biol Macromol 2024; 279:135400. [PMID: 39245106 DOI: 10.1016/j.ijbiomac.2024.135400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Citrate synthase is a crucial enzyme in the TCA cycle and represents a potential therapeutic target. However, knowledge about this enzyme in Leishmania parasites remains limited. In this study, we have successfully cloned, expressed, and purified citrate synthase from Leishmania donovani (LdCS) using a bacterial system, and characterized it through various biophysical and biochemical methods. Circular dichroism analysis at physiological pH indicates that LdCS is properly folded. Further investigation into its tertiary structure using a quencher reveals that most tryptophan residues are located within the protein's hydrophobic core. Biochemical assays show that the recombinant enzyme is catalytically active, with optimal activity at pH 7.0. Kinetic studies provided parameters such as Km and Vmax. Enzyme inhibition assays revealed that LdCS activity is competitively inhibited by FDA-approved compounds-Abemaciclib, Bazedoxifene, Vorapaxar, and Imatinib-with Ki values ranging from 2 to 3 μM, demonstrating significant binding affinity. This research paves the way for exploring LdCS as a potential drug target for treating leishmaniasis.
Collapse
Affiliation(s)
- Preeti Ranjan
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India
| | - Manash Sarma
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India.
| |
Collapse
|
6
|
Sarma M, Borkotoky S, Dubey VK. Structure-based drug designing against Leishmania donovani using docking and molecular dynamics simulation studies: exploring glutathione synthetase as a drug target. J Biomol Struct Dyn 2024; 42:7628-7636. [PMID: 37491862 DOI: 10.1080/07391102.2023.2240429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
In the pursuit of developing novel anti-leishmanial agents, we conducted an extensive computational study to screen inhibitors from the FDA-approved ZINC database against Leishmania donovani glutathione synthetase. The three-dimensional structure of Leishmania donovani glutathione synthetase was constructed by homology modeling, using the crystallographic structure of Trypanosoma brucei glutathione synthetase as a template. Subsequently, molecular docking studies were carried out for a large number of compounds using AutoDock Vina. Among the screened compounds, we selected the top five with strong binding affinity to Leishmania donovani glutathione synthetase but having a very low affinity to its human homolog. Further investigations on protein-ligand complexes were done by conducting molecular dynamics (MD) simulation and MM/PBSA analysis. The results revealed that Olysio (Simeprevir) exhibited the lowest binding energy (-89.21 kcal/mol), followed by Telithromycin (-45.34 kcal/mol). These findings showed that these compounds have the potential to act as inhibitors of glutathione synthetase. Hence, our study provides valuable insights for the development of a novel therapeutic strategy against Leishmania donovani by targeting the glutathione synthetase enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manash Sarma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Subhomoi Borkotoky
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
7
|
Bessa IA, D’Amato DL, C. Souza AB, Levita DP, Mello CC, da Silva AFM, dos Santos TC, Ronconi CM. Innovating Leishmaniasis Treatment: A Critical Chemist's Review of Inorganic Nanomaterials. ACS Infect Dis 2024; 10:2485-2506. [PMID: 39001837 PMCID: PMC11320585 DOI: 10.1021/acsinfecdis.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.
Collapse
Affiliation(s)
- Isabela
A. A. Bessa
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Dayenny L. D’Amato
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Ana Beatriz C. Souza
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Daniel P. Levita
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Camille C. Mello
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Aline F. M. da Silva
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Thiago C. dos Santos
- Instituto
de Química, Universidade Federal
do Rio de Janeiro. Av. Athos da Silveira Ramos 149, CT, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Célia M. Ronconi
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
8
|
Ranjan P, Dubey VK. Novel chemical scaffold as potential drug against Leishmania donovani: Integrated computational and experimental approaches. J Cell Biochem 2023; 124:1404-1422. [PMID: 37566640 DOI: 10.1002/jcb.30455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
In this study, we have screened a large number of Food and Drug Administration-approved compounds for novel anti-leishmanial molecules targeting the citrate synthase enzyme of the parasite. Based on their docking and molecular dynamic simulation statistics, five compounds were selected. These compounds followed Lipinski's rule of five. Additionally, in vitro, antileishmanial and cytotoxicity studies were performed. The three compounds, Abemaciclib, Bazedoxifene, and Vorapaxar, had shown effective anti-leishmanial activities with IC50 values of 0.92 ± 0.02, 0.65 ± 0.09, and 6.1 ± 0.91 against Leishmania donovani promastigote and with EC50 values of 1.52 ± 0.37, 2.11 ± 0.38, 10.4 ± 1.27 against intramacrophagic amastigote without significantly harming macrophage cells. Among them, from in silico and antileishmanial activities studies, Abemaciclib had been selected based on their less binding energy, good antileishmanial activities, and also a significant difference in their binding energy with human citrate synthase for cell death mechanistic studies using flow cytometry and a DNA fragmentation assay. The action of this compound resulted in an increased reactive oxygen species production, depolarization of mitochondrial membrane potential, DNA damage, and an increase in the sub-G1 cell population. These properties are the hallmarks of apoptosis which were further confirmed by apoptotic assay. Based on the above result, this anticancer compound Abemaciclib could be employed as a potential treatment option for leishmaniasis after further confirmation.
Collapse
Affiliation(s)
- Preeti Ranjan
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Integrated computational and experimental approach for novel anti-leishmanial molecules by targeting Dephospho-coenzyme A kinase. Int J Biol Macromol 2023; 232:123441. [PMID: 36708902 DOI: 10.1016/j.ijbiomac.2023.123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/07/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Coenzyme A acts as a necessary cofactor for many enzymes and is a part of many biochemical processes. One of the critical enzymes involved in Coenzyme A synthesis is Dephospho-coenzyme A-kinase (DPCK). In this study, we have used integrated computational and experimental approaches for promising inhibitors of DPCK using the natural products available in the ZINC database for anti-leishmanial drug development. The top hit compounds chosen after molecular docking were Veratramine, Azulene, Hupehenine, and Hederagenin. The free binding energy of Veratramine, Azulene, Hupehenine, and Hederagenin was estimated. Besides the favourable binding point, the ligands also showed good hydrogen bonding and other interactions with key residues of the enzyme's active site. The natural compounds were also experimentally investigated for their effect on the L. donovani promastigotes and murine macrophage (J774A.1). A good antileishmanial activity by the compounds on the promastigotes was observed as estimated by the MTT assay. The in-vitro experiments revealed that Hupehenine (IC50 = 7.34 ± 0.37 μM) and Veratramine (IC50 = 12.46 ± 2.28 μM) exhibited better inhibition than Hederagenin (IC50 = 23.36 ± 0.54 μM) and Azulene (IC50 = 24.42 ± 3.28 μM). This work has identified novel anti-leishmanial molecules possibly acting through the inhibition of DPCK.
Collapse
|
10
|
Synthesis and characterization of zinc derivatized 3, 5-dihydroxy 4', 7-dimethoxyflavone and its anti leishmaniasis activity against Leishmania donovani. Biometals 2022; 35:285-301. [PMID: 35141791 DOI: 10.1007/s10534-022-00364-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022]
Abstract
This study reports the synthesis and characterization of zinc derivatized 3,5-dihydroxy 4', 7- dimethoxyflavone (DHDM-Zn) compound for the development of new antileishmanial agents. The interaction studies of DHDM with zinc were carried out by UV spectra and fluorescence spectra analysis. Characterization of the complex was further accomplished by multi-spectroscopic techniques such as FTIR, Raman, HRMS, NMR, FESEM-EDX. The morphological and topographical studies of synthesized DHDM-Zn were carried out using FESEM with EDX. Further, it was demonstrated that DHDM-Zn exhibited an excellent in vitro antagonistic effect against the promastigote form of L. donovani. In addition, the possible mechanisms of promastigote L. donovani cell death, by involvement of derivatized compound in arrest of the cell cycle in the G1 phase and residual cell count reduction were investigated. Promastigote growth kinetics performed in the presence of the derivatized compound revealed a slow growth rate. The combination of growth kinetics and cell cycle analysis, made it possible to interpret and classify the cause of leishmanial cell death accurately. These results support that zinc derivatized complex (DHDM-Zn) might work as a lead compound for designing and developing a new antileishmanial drug.
Collapse
|
11
|
Rodrigues ACJ, Bortoleti BTDS, Carloto ACM, Silva TF, Concato VM, Gonçalves MD, Tomiotto-Pelissier F, Detoni MB, Diaz-Roa A, Júnior PIDS, Costa IN, Conchon-Costa I, Bidoia DL, Miranda-Sapla MM, Pavanelli WR. Larval excretion/secretion of dipters of Lucilia cuprina species induces death in promastigote and amastigote forms of Leishmania amazonensis. Pathog Dis 2021; 79:6339274. [PMID: 34347083 DOI: 10.1093/femspd/ftab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that affects millions of people around the world. Larval excretion/secretion (ES) of the larvae of flies of the Calliphoridae family has microbicidal activity against Gram-positive and Gram-negative bacteria, in addition to some species of Leishmania. Our study aimed at assessing the in vitro efficacy of Lucilia cuprina larval ES against the promastigote and amastigote forms of Leishmania amazonensis, elucidating possible microbicidal mechanisms and routes of death involved. Larval ES was able to inhibit the viability of L. amazonensis at all concentrations, induce morphological and ultrastructural changes in the parasite, retraction of the cell body, roughness of the cytoplasmic membrane, leakage of intracellular content, ROS production increase, induction of membrane depolarization, and mitochondrial swelling, the formation of cytoplasmic lipid droplets and phosphatidylserine exposure, thus indicating the possibility of apoptosis-like death. To verify the efficacy of larval ES on amastigote forms, we performed a phagocytic assay, measurement of total ROS, and NO. Treatment using larval ES reduced the percentage of infection and the number of amastigotes per macrophage of lineage J774A.1 at all concentrations, increasing the production of ROS and TNF-α, thus indicating possible pro-inflammatory immunomodulation and oxidative damage. Therefore, treatment using larval ES is effective at inducing the death of promastigotes and amastigotes of L. amazonensis even at low concentrations.
Collapse
Affiliation(s)
- Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | | | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Virgínia Márcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Manoela Daiele Gonçalves
- Biotransformation and Phytochemistry Laboratory, Department of Chemistry, Center for Exact Sciences, State University of Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pelissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, PR, Brazil
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Andrea Diaz-Roa
- Special Laboratory for Applied Toxicology, Instituto Butantan, SP, Brazil
| | | | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Danielle Lazarin Bidoia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| |
Collapse
|
12
|
Related Pentacyclic Triterpenes Have Immunomodulatory Activity in Chronic Experimental Visceral Leishmaniasis. J Immunol Res 2021; 2021:6671287. [PMID: 33681389 PMCID: PMC7906800 DOI: 10.1155/2021/6671287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by the flagellated protozoa of the genus Leishmania that affects millions of people around the world. Drugs employed in the treatment of leishmaniasis have limited efficacy and induce local and systemic side effects to the patients. Natural products are an interesting alternative to treat leishmaniasis, because some purified molecules are selective toward parasites and not to the host cells. Thus, the aim of the present study was to compare the in vitro antileishmanial activity of the triterpenes betulin (Be), lupeol (Lu), and ursolic acid (UA); analyze the physiology and morphology of affected organelles; analyze the toxicity of selected triterpenes in golden hamsters; and study the therapeutic activity of triterpenes in hamsters infected with L. (L.) infantum as well as the cellular immunity induced by studied molecules. The triterpenes Lu and UA were active on promastigote (IC50 = 4.0 ± 0.3 and 8.0 ± 0.2 μM, respectively) and amastigote forms (IC50 = 17.5 ± 0.4 and 3.0 ± 0.2 μM, respectively) of L. (L.) infantum, and their selectivity indexes (SI) toward amastigote forms were higher (≥13.4 and 14, respectively) than SI of miltefosine (2.7). L. (L.) infantum promastigotes treated with Lu and UA showed cytoplasmic degradation, and in some of these areas, cell debris were identified, resembling autophagic vacuoles, and parasite mitochondria were swelled, fragmented, and displayed membrane potential altered over time. Parasite cell membrane was not affected by studied triterpenes. Studies of toxicity in golden hamster showed that Lu did not alter blood biochemical parameters associated with liver and kidney functions; however, a slight increase of aspartate aminotransferase level in animals treated with 2.5 mg/kg of UA was detected. Lu and UA triterpenes eliminated amastigote forms in the spleen (87.5 and 95.9% of reduction, respectively) and liver of infected hamster (95.9 and 99.7% of reduction, respectively); and UA showed similar activity at eliminating amastigote forms in the spleen and liver than amphotericin B (99.2 and 99.8% of reduction). The therapeutic activity of both triterpenes was associated with the elevation of IFN-γ and/or iNOS expression in infected treated animals. This is the first comparative work showing the in vitro activity, toxicity, and therapeutic activity of Lu and UA in the chronic model of visceral leishmaniasis caused by L. (L.) infantum; additionally, both triterpenes activated cellular immune response in the hamster model of visceral leishmaniasis.
Collapse
|
13
|
Alcazar W, Alakurtti S, Padrón-Nieves M, Tuononen ML, Rodríguez N, Yli-Kauhaluoma J, Ponte-Sucre A. Leishmanicidal Activity of Betulin Derivatives in Leishmania amazonensis; Effect on Plasma and Mitochondrial Membrane Potential, and Macrophage Nitric Oxide and Superoxide Production. Microorganisms 2021; 9:320. [PMID: 33557150 PMCID: PMC7913927 DOI: 10.3390/microorganisms9020320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022] Open
Abstract
Herein, we evaluated in vitro the anti-leishmanial activity of betulin derivatives in Venezuelan isolates of Leishmania amazonensis, isolated from patients with therapeutic failure. METHODS We analyzed promastigote in vitro susceptibility as well as the cytotoxicity and selectivity of the evaluated compounds. Additionally, the activity of selected compounds was determined in intracellular amastigotes. Finally, to gain hints on their potential mechanism of action, the effect of the most promising compounds on plasma and mitochondrial membrane potential, and nitric oxide and superoxide production by infected macrophages was determined. RESULTS From the tested 28 compounds, those numbered 18 and 22 were chosen for additional studies. Both 18 and 22 were active (GI50 ≤ 2 µM, cytotoxic CC50 > 45 µM, SI > 20) for the reference strain LTB0016 and for patient isolates. The results suggest that 18 significantly depolarized the plasma membrane potential (p < 0.05) and the mitochondrial membrane potential (p < 0.05) when compared to untreated cells. Although neither 18 nor 22 induced nitric oxide production in infected macrophages, 18 induced superoxide production in infected macrophages. CONCLUSION Our results suggest that due to their efficacy and selectivity against intracellular parasites and the potential mechanisms underlying their leishmanicidal effect, the compounds 18 and 22 could be used as tools for designing new chemotherapies against leishmaniasis.
Collapse
Affiliation(s)
- Wilmer Alcazar
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, P.O. Box 50587, Caracas 1050, Venezuela; (W.A.); (M.P.-N.)
| | - Sami Alakurtti
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, FI-00014 Helsinki, Finland; (S.A.); (M.L.T.)
- VTT Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Maritza Padrón-Nieves
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, P.O. Box 50587, Caracas 1050, Venezuela; (W.A.); (M.P.-N.)
| | - Maija Liisa Tuononen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, FI-00014 Helsinki, Finland; (S.A.); (M.L.T.)
- VTT Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Noris Rodríguez
- Laboratory of Genetic Engineering, Institute of Biomedicine, Universidad Central de Venezuela, P.O. Box 4043, Caracas 1010A, Venezuela;
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, FI-00014 Helsinki, Finland; (S.A.); (M.L.T.)
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, P.O. Box 50587, Caracas 1050, Venezuela; (W.A.); (M.P.-N.)
| |
Collapse
|
14
|
Keshav P, Goyal DK, Kaur S. Promastigotes of Leishmania donovani exhibited sensitivity towards the high altitudinal plant Cicer microphyllum. ACTA ACUST UNITED AC 2021; 1:100040. [PMID: 35284854 PMCID: PMC8906067 DOI: 10.1016/j.crpvbd.2021.100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
In this study, we explored Cicer microphyllum (CM), a Trans-Himalayan plant for its chemical components by GC-MS, phytochemical quantitation, and anti-leishmanial efficacy against sensitive strain (SS) and resistant strain (RS) promastigotes of L. donovani in vitro. The hydroethanolic extract of aerial parts of CM was screened for the presence of chemical compounds and phytochemical estimation. The antileishmanial activity of CM was assessed against the promastigotes of L. donovani. The cell volume and cell viability were analyzed by flow cytometry. The generation of reactive oxygen species (ROS) and lipid bodies was determined after treatment with reference and test drug. The extract of CM is complemented with major plant secondary metabolites and the quantitative assessment for phytoconstituents showed the highest concentration of phenols followed by flavonoids and terpenoids. Different biologically active chemical compounds were identified by the GC-MS analysis. The 50% inhibitory concentrations against L. donovani sensitive strain were 14.40 μg/ml and 23.03 μg/ml whereas for resistant promastigotes these were 49.84 μg/ml and 26.77 μg/ml after SAG (sodium stibogluconate) and CM exposure, respectively. CM treatment reduced cell viability induced by loss in plasma membrane integrity. Drug treatment resulted in higher ROS generation and production of lipid bodies. GC-MS screening of the extract revealed the richness of active chemical components in CM. The presence of diverse phytochemicals, no cytotoxicity to human macrophages, and the antileishmanial action of CM depicted its potential as an alternative future drug. First report of in vitro leishmanial activity of Cicer microphyllum (CM) against SAG-resistant and SAG-sensitive strain. Chemical characterization of CM by GC-MS revealed biologically active components. CM augmented ROS production and lipid bodiesʼ formation in Leishmania parasites. Parasitic cells exhibited loss of membrane integrity upon drug treatment. No significant toxicity on THP-1 cell line was observed.
Collapse
|
15
|
Miranda-Sapla MM, Tomiotto-Pellissier F, Assolini JP, Carloto ACM, Bortoleti BTDS, Gonçalves MD, Tavares ER, Rodrigues JHDS, Simão ANC, Yamauchi LM, Nakamura CV, Verri WA, Costa IN, Conchon-Costa I, Pavanelli WR. trans-Chalcone modulates Leishmania amazonensis infection in vitro by Nrf2 overexpression affecting iron availability. Eur J Pharmacol 2019; 853:275-288. [DOI: 10.1016/j.ejphar.2019.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
|
16
|
Valenzuela-Cota DF, Buitimea-Cantúa GV, Plascencia-Jatomea M, Cinco-Moroyoqui FJ, Martínez-Higuera AA, Rosas-Burgos EC. Inhibition of the antioxidant activity of catalase and superoxide dismutase from Fusarium verticillioides exposed to a Jacquinia macrocarpa antifungal fraction. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:647-654. [PMID: 31146638 DOI: 10.1080/03601234.2019.1622978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the in vitro effect of an antifungal fraction obtained from Jacquinia macrocarpa plant (JmAF) in the generation of reactive oxygen species (ROS) and the activity of the catalase (CAT) and superoxide dismutase (SOD) enzymes from Fusarium verticillioides, as well as their influence in the viability of the fungus spores. The compounds present in the JmAF were determined by gas chromatography/quadrupole time-of-flight mass spectrometry (GC/QTOF-MS). The effect of the exposition to JmAF on the generation of ROS, as well as in the CAT and SOD activities in F. verticillioides, was determined. The main compounds detected were γ-sitosterol, stephamiersine, betulinol and oleic acid. JmAF showed very high ability in inhibiting the spore viability of F. verticillioides, and their capacity to cause oxidative stress by induction of ROS production. JmAF induced the highest ROS concentration and also inhibited CAT and SOD activities. The results obtained in this study indicate that JmAF is worthy of being considered for the fight against phytopathogenic fungi.
Collapse
Affiliation(s)
- Daniel F Valenzuela-Cota
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora , Hermosillo , Sonora , México
| | - Génesis V Buitimea-Cantúa
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA , Monterrey , México
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora , Hermosillo , Sonora , México
| | | | | | - Ema C Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora , Hermosillo , Sonora , México
| |
Collapse
|
17
|
Okada M, Suzuki K, Mawatari Y, Tabata M. Biopolyester prepared using unsaturated betulin (betulinol) extracted from outer birch bark and dicarboxylic acid dichlorides and its thermal-induced crosslinking. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kumar P, Bhadauria AS, Singh AK, Saha S. Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sci 2018; 209:24-33. [PMID: 30076920 DOI: 10.1016/j.lfs.2018.07.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 01/11/2023]
Abstract
A natural product betulinic acid (BA) has gained a huge significance in the recent years for its strong cytotoxicity. Surprisingly, in spite of being an interesting cancer protecting agent on a variety of tumor cells, the normal cells and tissues are rarely affected by BA. Betulinic acid and analogues (BAs) generally exert through the mechanisms that provokes an event of direct cell death and bypass the resistance to normal chemotherapeutics. Although the major mechanism associated with its ability to induce direct cell death is mitochondrial apoptosis, there are several other mechanisms explored recently. Importantly, mathematical modeling of apoptosis has been an important tool to explore the precise mechanism involved in mitochondrial apoptosis. Thus, this review is an endeavor to sum up the molecular mechanisms underlying the action of BA and future directions to apply mathematical modeling technique to better understand the precise mechanism of BA-induced apoptosis. The last section of the review encompasses the plausible structural modifications and formulations to enhance the therapeutic efficacy of BA.
Collapse
Affiliation(s)
- Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Archana S Bhadauria
- Department of Mathematics and Statistics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| | - Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| |
Collapse
|
19
|
Lup-20(29)-en-3β,28-di-yl-nitrooxy acetate affects MCF-7 proliferation through the crosstalk between apoptosis and autophagy in mitochondria. Cell Death Dis 2018; 9:241. [PMID: 29445224 PMCID: PMC5833777 DOI: 10.1038/s41419-017-0255-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
Betulin (BT), a pentacyclic lupine-type triterpenoid natural product, possesses antitumor activity in various types of cancers. However, its clinical development was discouraged due to its low biological activities and poor solubility. We prepared lup-20(29)-en-3β,28-di-yl-nitrooxy acetate (NBT), a derivative of BT, that was chemically modified at position 3 of ring A and C-28 by introducing a NO-releasing moiety. This study mainly explored the mechanism of NBT in treating breast cancer through the crosstalk between apoptosis and autophagy in mitochondria. NBT possessed a potent antiproliferative activity in MCF-7 cells both in vitro and in vivo. Mechanically, NBT affected cell death through the mitochondrial apoptosis pathway and autophagy. NBT induced cell cycle arrest in the G0/G1 phase by decreasing the expression of cyclin D1. It also induced mitochondrial apoptosis by increasing the expression of Bax, caspase-9, and poly(ADP-ribose) polymerase and mitochondrial membrane potential loss and leaks of cytochrome c (Cyt C) from mitochondria in MCF-7 cells and decreasing the expression of mitochondrial Bcl-2. We further demonstrated whether chloroquine (CQ), which inhibits the degradation of autophagosome induced by NBT, affects the proliferation of MCF-7 cells compared with NBT. The experiments inferred that the combination of NBT and CQ significantly promoted MCF-7 cell mitochondria to divide and Cyt C to be released from mitochondria to the cytoplasm, resulting in an increased apoptosis rate. The in vivo experiments showed that NBT inhibited the growth of MCF-7 tumor via the apoptosis pathway, and its effect was similar to 5-fluorouracil.
Collapse
|
20
|
Zhuo ZJ, Xiao MJ, Lin HR, Luo J, Wang T. Novel betulin derivative induces anti-proliferative activity by G 2/M phase cell cycle arrest and apoptosis in Huh7 cells. Oncol Lett 2017; 15:2097-2104. [PMID: 29434911 PMCID: PMC5776954 DOI: 10.3892/ol.2017.7575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Betulin (BT) has been identified to exhibit potential benefits for treating hepatocellular carcinoma (HCC). The results of the present study demonstrated that a new semisynthetic derivative of BT, 3,28-di-(2-nitroxy-acetyl)-oxy-BT, may effectively decrease the viability of Huh7 cells. Mechanistic studies revealed that 3,28-di-(2-nitroxy-acetyl)-oxy-BT inhibited the transition between G2 and M phase of the cell cycle by regulating cell cycle regulatory proteins. Additional study revealed that 3,28-di-(2-nitroxy-acetyl)-oxy-BT may trigger Huh7 cells to undergo caspase-dependent apoptosis as an increased proportion of cells were identified in the sub-G1 phase, which may be a result of poly(ADP-ribose) polymerase cleavage and caspase activation. Furthermore, 3,28-di-(2-nitroxy-acetyl)-oxy-BT-induced apoptosis was mitochondrion-mediated. The results of the present study demonstrated that Bcl-2-associated X protein translocated to the mitochondria from the cytosol following 3,28-di-(2-nitroxy-acetyl)-oxy-BT treatment. Notably, the phosphoinositide 3-kinase/protein kinase B signaling pathway was involved in 3,28-di-(2-nitroxy-acetyl)-oxy-BT-treated Huh7 cells. Therefore, the results of the present study demonstrated that 3,28-di-(2-nitroxy-acetyl)-oxy-BT may inhibit HCC, which may be a possible application to treat HCC.
Collapse
Affiliation(s)
- Zhen-Jian Zhuo
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China.,Guangdong Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Min-Jie Xiao
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hui-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Laboratory Animal Science, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Luo
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Tao Wang
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
21
|
Singh S, Kumari E, Bhardwaj R, Kumar R, Dubey VK. Molecular events leading to death of Leishmania donovani under spermidine starvation after hypericin treatment. Chem Biol Drug Des 2017; 90:962-971. [PMID: 28509385 DOI: 10.1111/cbdd.13022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 11/30/2022]
Abstract
We have previously reported that the hypericin treatment caused spermidine starvation and death of Leishmania parasite. Here, we report different molecular events under spermidine starvation and potential role of spermidine in processes other than redox homeostasis of the parasite. We have analyzed changes in expression of several genes by using quantitative gene expression analysis. Further, these changes at molecular level were also confirmed by using biochemical and cellular studies. Altered expression of several genes involved in redox metabolism, hypusine modification of eIF5A, DNA repair pathway and autophagy was observed. There was decrease in Sir2RP expression after hypericin treatment and this decrease has been found to be associated with induced ROS due to hypericin treatment as it has been rescued by either trypanothione or spermidine supplementation. Translation initiation in the parasite was decreased upon spermidine starvation. We also observed increased AMPK expression upon hypericin treatment. The increase in intracellular ATP and NAD+ levels as well as decrease in Sir2RP expression of the parasite are cytoprotective mechanism towards generated ROS due to hypericin treatment possibly by inducing autophagy as indicated by increase in autophagy related gene expression and acridine orange staining. However, the autophagy needs to be established using more rigorous methodologies.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ekta Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ruchika Bhardwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ritesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
22
|
Bhardwaj R, Das M, Singh S, Chiranjivi AK, Prabhu SV, Singh SK, Dubey VK. Evaluation of CAAX prenyl protease II of Leishmania donovani as potential drug target: Infectivity and growth of the parasite is significantly lowered after the gene knockout. Eur J Pharm Sci 2017; 102:156-160. [DOI: 10.1016/j.ejps.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 11/16/2022]
|
23
|
Methionine aminopeptidase 2 is a key regulator of apoptotic like cell death in Leishmania donovani. Sci Rep 2017; 7:95. [PMID: 28273904 PMCID: PMC5427942 DOI: 10.1038/s41598-017-00186-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/13/2017] [Indexed: 01/11/2023] Open
Abstract
We investigate the role of methionine aminopeptidase 2 (MAP2) in miltefosine induced programmed cell death (PCD) in promastigote form of L. donovani. We report that TNP-470, an inhibitor of MAP2, inhibits programmed cell death in miltefosine treated promastigotes. It inhibits the biochemical features of metazoan apoptosis, including caspase3/7 protease like activity, oligonucleosomal DNA fragmentation, collapse of mitochondrial transmembrane potential, and increase in cytosolic pool of calcium ions but did not prevent the cell death and phosphatidyl serine externalization. The data suggests that the MAP2 is involved in the regulation of PCD in parasite. Moreover, TNP-470 shows the leishmanicidal activity (IC50 = 15 µM) and in vitro inhibition of LdMAP2 activity (Ki = 13.5 nM). Further studies on MAP2 and identification of death signaling pathways provide valuable information that could be exploited to understand the role of non caspase proteases in PCD of L. donovani.
Collapse
|
24
|
Pandey RK, Kumbhar BV, Srivastava S, Malik R, Sundar S, Kunwar A, Prajapati VK. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. J Biomol Struct Dyn 2016; 35:141-158. [DOI: 10.1080/07391102.2015.1135298] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| |
Collapse
|
25
|
Understanding the importance of conservative hypothetical protein LdBPK_070020 in Leishmania donovani and its role in subsistence of the parasite. Arch Biochem Biophys 2016; 596:10-21. [PMID: 26926257 DOI: 10.1016/j.abb.2016.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/10/2016] [Accepted: 02/24/2016] [Indexed: 11/24/2022]
Abstract
The genome of Leishmania donovani, the causative agent of visceral leishmaniasis, codes for approximately 65% of both conserved and non-conserved hypothetical proteins. Studies on 'conserved hypothetical' proteins are expected to reveal not only new and crucial aspects of Leishmania biochemistry, but it could also lead to discovery of novel drug candidates. Conserved hypothetical protein, LdBPK_070020, is a 31.14 kDa protein, encoded by an 810 bp gene. BLAST analysis of LdBPK_070020, performed against NCBI non-redundant database, showed 80-99% similarity with conserved hypothetical proteins of Leishmania belonging to other species. Using homologues recombination method, we have performed gene knockout of LdBPK_070020 and effects of the same were investigated on the parasite. The gene knocked out strain shows significant retardation in growth with respect to wild type. Detailed biochemical studies indicated towards important role of LdBPK_070020 in the parasite survival and growth.
Collapse
|
26
|
Abstract
Conradina canescens (Lamiaceae) is an endemic evergreen shrub native to Florida, Mississippi and Alabama, with no phytochemical or biological studies registered in the literature. Thus, a phytochemical study and a toxicity analysis of the chloroform extract obtained from the leaves of C. canescens were performed for the first time. In our preliminary screening, the crude extract and its fractions were subjected to cytotoxicity, antimicrobial and antileishmanial bioassays. The crude extract showed substantial cytotoxic, antimicrobial and antileishmanial activities. A total of six compounds, namely ursolic acid (62.4%), betulin (8.4%), β-amyrin (4.6%), myrtenic acid (2.9%), n-tetracosane (1.4%), and oleanolic acid (1.1%), were isolated. The structures of the isolated compounds were established by spectroscopic studies using NMR and IR spectroscopy.
Collapse
|
27
|
Pandey RK, Sharma D, Bhatt TK, Sundar S, Prajapati VK. Developing imidazole analogues as potential inhibitor forLeishmania donovanitrypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach. J Biomol Struct Dyn 2015; 33:2541-53. [DOI: 10.1080/07391102.2015.1085904] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Saudagar P, Dubey VK. Carbon nanotube based betulin formulation shows better efficacy against Leishmania parasite. Parasitol Int 2014; 63:772-6. [DOI: 10.1016/j.parint.2014.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/15/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
29
|
Alcazar W, López AS, Alakurtti S, Tuononen ML, Yli-Kauhaluoma J, Ponte-Sucre A. Betulin derivatives impair Leishmania braziliensis viability and host–parasite interaction. Bioorg Med Chem 2014; 22:6220-6. [DOI: 10.1016/j.bmc.2014.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|