1
|
Bane S, Rosenke K, Feldmann F, Meade-White K, Diawara S, Keita M, Maiga O, Diakite M, Safronetz D, Doumbia S, Sogoba N, Feldmann H. Seroprevalence of Arboviruses in a Malaria Hyperendemic Area in Southern Mali. Am J Trop Med Hyg 2024; 111:107-112. [PMID: 38834052 PMCID: PMC11229645 DOI: 10.4269/ajtmh.23-0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/12/2024] [Indexed: 06/06/2024] Open
Abstract
Diagnostics for febrile illnesses other than malaria are not readily available in rural sub-Saharan Africa. This study assessed exposure to three mosquito-borne arboviruses-dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV)-in southern Mali. Seroprevalence for DENV, CHIKV, and ZIKV was analyzed by detection of IgG antibodies and determined to be 77.2%, 31.2%, and 25.8%, respectively. Among study participants, 11.3% were IgG-positive for all three arboviruses. DENV had the highest seroprevalence rate at all sites; the highest seroprevalence of CHIKV and ZIKV was observed in Bamba. The seroprevalence for all three arboviruses increased with age, and the highest seroprevalence was observed among adults older than 50 years. The prevalence of Plasmodium spp. in the cohort was analyzed by microscopy and determined to be 44.5% (N = 600) with Plasmodium falciparum representing 95.1% of all infections. This study demonstrates the co-circulation of arboviruses in a region hyperendemic for malaria and highlights the needs for arbovirus diagnostics in rural sub-Saharan Africa.
Collapse
Affiliation(s)
- Sidy Bane
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Sory Diawara
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Keita
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ousmane Maiga
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou Diakite
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Seydou Doumbia
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nafomon Sogoba
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
2
|
Tinto B, Bicaba B, Kagoné TS, Kayiwa J, Rabe I, Merle CSC, Zango A, Ayouba A, Salinas S, Kania D, Simonin Y. Co-circulation of two Alphaviruses in Burkina Faso: Chikungunya and O'nyong nyong viruses. PLoS Negl Trop Dis 2024; 18:e0011712. [PMID: 38870214 PMCID: PMC11206941 DOI: 10.1371/journal.pntd.0011712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/26/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) and O'nyong nyong virus (ONNV) are phylogenetically related alphaviruses in the Semliki Forest Virus (SFV) antigenic complex of the Togaviridae family. There are limited data on the circulation of these two viruses in Burkina Faso. The aim of our study was to assess their circulation in the country by determining seroprevalence to each of the viruses in blood donor samples and by retrospective molecular and serological testing of samples collected as part of national measles and rubella surveillance. METHODOLOGY/PRINCIPAL FINDINGS All blood donor samples were analyzed on the Luminex platform using CHIKV and ONNV E2 antigens. Patient samples collected during national measles-rubella surveillance were screened by an initial ELISA for CHIKV IgM (CHIKjj Detect IgM ELISA) at the national laboratory. The positive samples were then analyzed by a second ELISA test for CHIKV IgM (CDC MAC-ELISA) at the reference laboratory. Finally, samples that had IgM positive results for both ELISA tests and had sufficient residual volume were tested by plaque reduction neutralization testing (PRNT) for CHIKV and ONNV. These same patient samples were also analyzed by rRT-PCR for CHIKV. Among the blood donor specimens, 55.49% of the samples were positive for alphaviruses including both CHIKV and ONNV positive samples. Among patient samples collected as part of national measles and rubella surveillance, 3.09% were IgM positive for CHIKV, including 2.5% confirmed by PRNT. PRNT failed to demonstrate any ONNV infections in these samples. No samples tested by RT-qPCR. had detectable CHIKV RNA. CONCLUSIONS/SIGNIFICANCE Our results suggest that CHIKV and ONNV have been circulating in the population of Burkina Faso and may have been confused with malaria, dengue fever or other febrile diseases such as measles or rubella. Our study underscores the necessity to enhance arbovirus surveillance systems in Burkina Faso.
Collapse
Affiliation(s)
- Bachirou Tinto
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Montpellier, France
- Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Brice Bicaba
- Centre des Opérations de Réponse aux Urgences Sanitaires, Ouagadougou, Burkina Faso
| | | | - John Kayiwa
- Uganda Virus Research Institute, Republic of Uganda
| | - Ingrid Rabe
- Special programme for research and training in Tropical disease (TDR), World Health Organization, Geneva, Switzerland
| | - Corinne Simone Collette Merle
- Special programme for research and training in Tropical disease (TDR), World Health Organization, Geneva, Switzerland
| | - Alidou Zango
- Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Ahidjo Ayouba
- Recherches translationnelles sur le VIH et maladies infectieuses, Université de Montpellier, IRD, Inserm, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Montpellier, France
| | - Dramane Kania
- Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Kang H, Auzenbergs M, Clapham H, Maure C, Kim JH, Salje H, Taylor CG, Lim A, Clark A, Edmunds WJ, Sahastrabuddhe S, Brady OJ, Abbas K. Chikungunya seroprevalence, force of infection, and prevalence of chronic disability after infection in endemic and epidemic settings: a systematic review, meta-analysis, and modelling study. THE LANCET. INFECTIOUS DISEASES 2024; 24:488-503. [PMID: 38342105 DOI: 10.1016/s1473-3099(23)00810-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Chikungunya is an arboviral disease transmitted by Aedes aegypti and Aedes albopictus mosquitoes with a growing global burden linked to climate change and globalisation. We aimed to estimate chikungunya seroprevalence, force of infection (FOI), and prevalence of related chronic disability and hospital admissions in endemic and epidemic settings. METHODS In this systematic review, meta-analysis, and modelling study, we searched PubMed, Ovid, and Web of Science for articles published from database inception until Sept 26, 2022, for prospective and retrospective cross-sectional studies that addressed serological chikungunya virus infection in any geographical region, age group, and population subgroup and for longitudinal prospective and retrospective cohort studies with data on chronic chikungunya or hospital admissions in people with chikungunya. We did a systematic review of studies on chikungunya seroprevalence and fitted catalytic models to each survey to estimate location-specific FOI (ie, the rate at which susceptible individuals acquire chikungunya infection). We performed a meta-analysis to estimate the proportion of symptomatic patients with laboratory-confirmed chikungunya who had chronic chikungunya or were admitted to hospital following infection. We used a random-effects model to assess the relationship between chronic sequelae and follow-up length using linear regression. The systematic review protocol is registered online on PROSPERO, CRD42022363102. FINDINGS We identified 60 studies with data on seroprevalence and chronic chikungunya symptoms done across 76 locations in 38 countries, and classified 17 (22%) of 76 locations as endemic settings and 59 (78%) as epidemic settings. The global long-term median annual FOI was 0·007 (95% uncertainty interval [UI] 0·003-0·010) and varied from 0·0001 (0·00004-0·0002) to 0·113 (0·07-0·20). The highest estimated median seroprevalence at age 10 years was in south Asia (8·0% [95% UI 6·5-9·6]), followed by Latin America and the Caribbean (7·8% [4·9-14·6]), whereas median seroprevalence was lowest in the Middle East (1·0% [0·5-1·9]). We estimated that 51% (95% CI 45-58) of people with laboratory-confirmed symptomatic chikungunya had chronic disability after infection and 4% (3-5) were admitted to hospital following infection. INTERPRETATION We inferred subnational heterogeneity in long-term average annual FOI and transmission dynamics and identified both endemic and epidemic settings across different countries. Brazil, Ethiopia, Malaysia, and India included both endemic and epidemic settings. Long-term average annual FOI was higher in epidemic settings than endemic settings. However, long-term cumulative incidence of chikungunya can be similar between large outbreaks in epidemic settings with a high FOI and endemic settings with a relatively low FOI. FUNDING International Vaccine Institute.
Collapse
Affiliation(s)
- Hyolim Kang
- London School of Hygiene and Tropical Medicine, London, UK; Seoul National University College of Medicine School, Seoul, South Korea.
| | | | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Clara Maure
- International Vaccine Institute, Seoul, South Korea
| | | | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge, UK
| | | | - Ahyoung Lim
- London School of Hygiene and Tropical Medicine, London, UK
| | - Andrew Clark
- London School of Hygiene and Tropical Medicine, London, UK
| | - W John Edmunds
- London School of Hygiene and Tropical Medicine, London, UK; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Sushant Sahastrabuddhe
- International Vaccine Institute, Seoul, South Korea; Centre International de Recherche en Infectiologie, Université Jean Monnet, Université Claude Bernard Lyon, INSERM, Saint-Etienne, France
| | - Oliver J Brady
- London School of Hygiene and Tropical Medicine, London, UK
| | - Kaja Abbas
- London School of Hygiene and Tropical Medicine, London, UK; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Ateutchia-Ngouanet S, Nanfack-Minkeu F, Mavridis K, Wanji S, Demanou M, Vontas J, Djouaka R. Monitoring Aedes populations for arboviruses, Wolbachia, insecticide resistance and its mechanisms in various agroecosystems in Benin. Acta Trop 2024; 253:107178. [PMID: 38461924 DOI: 10.1016/j.actatropica.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Aedes mosquitoes are the main vectors of arboviruses in Benin. Cases of dengue have been reported in Benin with all four serotypes of the virus actively circulating in this region. Some agricultural settings are known to harbor Aedes vectors responsible for the transmission of arboviruses. The massive use of certain insecticides in agricultural settings has probably contributed to insecticide resistance in these vectors. In Benin, the susceptibility of arbovirus vectors to insecticides is poorly studied. In addition, the distribution of Wolbachia spp., which is used against some arboviruses is unknown. Moreover, there is limited information regarding the vectors responsible for the transmission of arboviruses in Benin. This present study monitored the species composition, arboviruses, and Wolbachia symbiont status, as well as the phenotypic and molecular insecticide resistance profile of Aedes populations from three agroecosystems in Benin. Aedes species identification was performed morphologically and confirmed using qPCR. (RT)-qPCR assay was applied for monitoring the presence of DENV, CHIKV, ZIKV, and WNV pathogens as well as for naturally occurring Wolbachia symbionts. Insecticide resistance was assessed phenotypically, by permethrin (0.75%) exposure of Adults (F0) using World Health Organization (WHO) bioassay protocols, and at the molecular level, using TaqMan (RT)-qPCR assays for assessing knock-down resistance (kdr) mutations (F1534C, V1016G/I, and S989P) and the expression levels of eight detoxification genes (P450s from the CYP9 and CYP6 families, carboxylesterases and glutathione-S-transferases). Aedes aegypti (Ae. aegypti) mosquitoes were the most abundant (93.9%) in the three agroecosystems studied, followed by Aedes albopictus (Ae. albopictus) mosquitoes (6.1%). No arboviruses were detected in the study's mosquito populations. Naturally occurring Wolbachia symbionts were present in 7 pools out of 15 pools tested. This could influence the effectiveness of vector control strategies based on exogenously introduced Wolbachia, all present in the three agroecosystems. Full susceptibility to permethrin was observed in all tested populations of Ae. albopictus. On the contrary, Ae. aegypti were found to be resistant in all three agroecosystem sites except for banana plantation sites, where full susceptibility was observed. Molecular analysis revealed that individual target site resistance kdr mutations F1534C and V1016G/I were detected in most Ae. aegypti populations. Additionally, double mutant (F1534C + V1016G/I) mosquitoes were found in some populations, and in one case, triple mutant (F1534C + V1016G/I + S989P) mosquitoes were detected. Metabolic resistance, as reflected by overexpression of three P450 genes (CYP6BB2, CYP9J26, and CYP9J32), was also detected in Ae. aegypti mosquitoes. Our study provides information that could be used to strategize future vector control strategies and highlights the importance of continuing vector surveillance. Future studies should assess the effect of piperonyl butoxide (PBO) on metabolic resistance and identify the different strains of Wolbachia spp., to choose the best vector control strategies in Benin.
Collapse
Affiliation(s)
- S Ateutchia-Ngouanet
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon.
| | - F Nanfack-Minkeu
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department of Biology, The College of Wooster, OH, USA
| | - K Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - S Wanji
- Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon
| | - M Demanou
- Regional Yellow Fever Laboratory Coordinator World Health Organization, Inter-Country Support Team West Africa, 03 PO BOX 7019 Ouagadougou 03, Burkina Faso
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece; Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens 11855, Greece
| | - R Djouaka
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin
| |
Collapse
|
5
|
Skalinski LM, Santos AES, Paixão E, Itaparica M, Barreto F, da Conceição Nascimento Costa M, Teixeira MG. Chikungunya seroprevalence in population-based studies: a systematic review and meta-analysis. Arch Public Health 2023; 81:80. [PMID: 37127721 PMCID: PMC10150504 DOI: 10.1186/s13690-023-01081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Seroprevalence studies about chikungunya infection are usually conducted after epidemics to estimate the magnitude of the attack. This study aimed to estimate the seroprevalence of CHIKV by WHO region, considering the periods of introduction of the virus in these regions and its potential to lead to epidemics. METHODS We systematically reviewed Medline/Pubmed, Embase, Lilacs, Scopus and Web of Science for original articles published up to 2020. Cohort, case-control and cross-sectional studies were eligible for inclusion, based on the results of laboratory diagnosis of previous or previous and recent infection. Those conducted with symptomatic individuals were excluded. RESULTS 596 articles were identified, 197 full-text were reviewed and 64 were included, resulting in 71 seroprevalences. Most were cross-sectional studies (92%), between 2001 and 2020 (92%), with population of all ages (55%), conducted in Kenya (10.9%), Brazil (9.4%) and French Polynesia (7.8%). The pooled estimates were 24% (95%CI 19-29; I2 = 99.7%; p < 0.00), being 21% (95%CI 13-30; I2 = 99.5%; p < 0.00) for adults, 7% (95%CI 0-23; I2 = 99.7%; p < 0.00) for children and 30% (95%CI 23-38; I2 = 99.7%; p < 0.00) for all ages. The higher seroprevalences were found in African, the Americas and South-East Asian Regions. CONCLUSIONS The great heterogeneity of seroprevalences points to the persistence of viral circulation. Even where the seroprevalence is high, the population replacement and the absence of vaccines mean that the risk of virus spread and epidemics remains. REGISTRATION PROSPERO CRD42020166227.
Collapse
Affiliation(s)
- Lacita Menezes Skalinski
- Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, s/n, Salobrinho, Ilhéus, CEP 45662-900, BA, Brasil.
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil.
| | - Aline Elena Sacramento Santos
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Enny Paixão
- London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Martha Itaparica
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Florisneide Barreto
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | | | - Maria Glória Teixeira
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| |
Collapse
|
6
|
Hien AS, Sangaré I, Ouattara ELP, Sawadogo SP, Soma DD, Maiga H, Diabaté A, Bonnet E, Ridde V, Fournet F, Hawkes FM, Kaupra C, Bouyer J, Abd-Alla AMM, Dabiré RK. Chikungunya (Togaviridae) and dengue 2 (Flaviviridae) viruses detected from Aedes aegypti mosquitoes in Burkina Faso by qRT-PCR technique: Preliminary results and perspective for molecular characterization of arbovirus circulation in vector populations. FRONTIERS IN TROPICAL DISEASES 2022; 3. [DOI: 10.3389/fitd.2022.920224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In 2016, an entomological study was carried out in a railway transect between Banfora and Ouagadougou, Burkina Faso. The objective was to assess the risk factors of arbovirus outbreaks, including vector-borne infection status within representative regions of the country. Aedes aegypti mosquitoes were collected at the larval stage from their natural rearing habitats in four study sites when estimating the main larval index, then reared until adult stage and kept in RNAlater for the detection of arbovirus RNA. In the laboratory, mosquito samples were tested for dengue virus (DENV) and Chikungunya virus (CHIKV) using a real-time qRT-PCR stage. A DENV-2 positive pool was detected in Ouagadougou with a minimum infection rate (MIR) of 16.67 and other six CHIKV-positive pools with a MIR of 66.67 in Ouagadougou, Banfora, and Boromo. This qRT-PCR approach, if validated with various samples also comprising wild blood-fed adults, is a useful tool for arbovirus circulation and disease monitoring in Burkina Faso.
Collapse
|
7
|
Kanunfre KA, Rocha MC, Malta MB, Souza RMD, Castro MC, Boscardin SB, Souza HFS, Witkin SS, Cardoso MA, Okay TS. Silent circulation of Chikungunya virus among pregnant women and newborns in the Western Brazilian Amazon before the first outbreak of chikungunya fever. Rev Inst Med Trop Sao Paulo 2022; 64:e25. [PMID: 35384956 PMCID: PMC8993149 DOI: 10.1590/s1678-9946202264025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
The prevalence of immunity to Chikungunya virus (CHIKV) in pregnant women and
newborns in the Western Brazilian Amazon was assessed at a time when previous
studies did not report chikungunya fever in the area. In 435 asymptomatic
pregnant women and 642 healthy unrelated newborns, the presence of IgM and IgG
antibodies to CHIKV were determined by a commercial ELISA. All participants were
negative to IgM anti-CHIKV. Anti-CHIKV IgG was identified in 41 (9.4%) pregnant
women and 66 (10.3%) newborns. The presence of anti-CHIKV IgG was positively
associated with the lowest socioeconomic status in pregnant women (OR 2.54, 95%
CI 1.15-5.62, p=0.021) and in the newborns’ mothers (OR 5.10, 95% CI 2.15-12.09,
p< 0.001). Anti-CHIKV IgG was also associated with maternal age in both, the
pregnant women (OR 1.06, 95% CI 1.00-1.11, p=0.037) and the newborns’mothers (OR
1.08, 95% CI 1.03-1.12, p=0.001). Pregnancy outcomes in which the mother or the
newborn was anti-CHIKV IgG positive proceeded normally. Negative CHIKV serology
was associated with being positive for DENV antibodies and having had malaria
during pregnancy. These findings showed that there was already a silent
circulation of CHIKV in this Amazon region before the first outbreak of
chikungunya fever. Furthermore, seropositivity for CHIKV was surprisingly
frequent (10%) in both, pregnant women and newborns, affecting mainly low-income
women.
Collapse
Affiliation(s)
- Kelly Aparecida Kanunfre
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Soroepidemiologia e Imunobiologia, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Imunologia (LIM 48), São Paulo, São Paulo, Brazil
| | - Mussya Cisotto Rocha
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Soroepidemiologia e Imunobiologia, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Imunologia (LIM 48), São Paulo, São Paulo, Brazil
| | - Maíra Barreto Malta
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, São Paulo, Brazil.,Universidade Católica de Santos, Programa de Pós-Graduação em Saúde Pública, Santos, São Paulo, Brazil
| | | | - Marcia Caldas Castro
- Harvard T. H. Chan School of Public Health, Department of Global Health and Population, Boston, Massachusetts, USA
| | - Silvia Beatriz Boscardin
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, São Paulo, Brazil
| | - Higo Fernando Santos Souza
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, São Paulo, Brazil
| | - Steven S Witkin
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Virologia (LIM 52), São Paulo, São Paulo, Brazil.,Weill Cornell Medicine, Obstetrics and Gynecology, New York, New York, USA
| | - Marly Augusto Cardoso
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, São Paulo, Brazil
| | - Thelma Suely Okay
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Soroepidemiologia e Imunobiologia, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Departamento de Pediatria, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Agboli E, Zahouli JBZ, Badolo A, Jöst H. Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa. Viruses 2021; 13:v13050891. [PMID: 34065928 PMCID: PMC8151702 DOI: 10.3390/v13050891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-associated viruses (MAVs), including mosquito-specific viruses (MSVs) and mosquito-borne (arbo)viruses (MBVs), are an increasing public, veterinary, and global health concern, and West Africa is projected to be the next front for arboviral diseases. As in-depth knowledge of the ecologies of both western African MAVs and related mosquitoes is still limited, we review available and comprehensive data on their diversity, abundance, and distribution. Data on MAVs’ occurrence and related mosquitoes were extracted from peer-reviewed publications. Data on MSVs, and mosquito and vertebrate host ranges are sparse. However, more data are available on MBVs (i.e., dengue, yellow fever, chikungunya, Zika, and Rift Valley fever viruses), detected in wild and domestic animals, and humans, with infections more concentrated in urban areas and areas affected by strong anthropogenic changes. Aedes aegypti, Culex quinquefasciatus, and Aedes albopictus are incriminated as key arbovirus vectors. These findings outline MAV, related mosquitoes, key knowledge gaps, and future research areas. Additionally, these data highlight the need to increase our understanding of MAVs and their impact on host mosquito ecology, to improve our knowledge of arbovirus transmission, and to develop specific strategies and capacities for arboviral disease surveillance, diagnostic, prevention, control, and outbreak responses in West Africa.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana
| | - Julien B. Z. Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouake, 27 BP 529 Abidjan 27, Cote D’Ivoire;
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Département de Recherche et Développement, 01 BP 1303 Abidjan 01, Cote D’Ivoire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, Universitée Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso;
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Buchwald AG, Hayden MH, Dadzie SK, Paull SH, Carlton EJ. Aedes-borne disease outbreaks in West Africa: A call for enhanced surveillance. Acta Trop 2020; 209:105468. [PMID: 32416077 DOI: 10.1016/j.actatropica.2020.105468] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 01/06/2023]
Abstract
Arboviruses transmitted by Aedes mosquitoes are a growing global concern; however, there remain large gaps in surveillance of both arboviruses and their vectors in West Africa. We reviewed over 50 years of data including outbreak reports, peer-reviewed literature, and prior data compilations describing Zika, dengue, and chikungunya, and their vectors in West Africa. Large outbreaks of dengue, Zika, and chikungunya have recently occurred in the region with over 27,000 cases of Aedes-borne disease documented since 2007. Recent arboviral outbreaks have become more concentrated in urban areas, and Aedes albopictus, recently documented in the region, has emerged as an important vector in several areas. Seroprevalence surveys suggest reported cases are a gross underestimate of the underlying arboviral disease burden. These findings indicate a shifting epidemiology of arboviral disease in West Africa and highlight a need for increased research and implementation of vector and disease control. Rapid urbanization and climate change may further alter disease patterns, underscoring the need for improved diagnostic capacity, and vector and disease surveillance to address this evolving health challenge.
Collapse
|
10
|
Abstract
Since the identification of chikungunya virus (CHIKV), sporadic cases and outbreaks were reported in several African countries, on the Indian subcontinent, and in south-east Asia. In the last 20 years, there is a growing number of reports of CHIKV infections from African countries, but the overall picture of its circulation at the continent level remains ill-characterized because of under-diagnosis and under-reporting. Moreover, the public health impact of the infection in Africa is generally poorly understood, especially during outbreak situations. Our work has the aim to review available data on CHIKV circulation in Africa to facilitate the understanding of underlying reasons of its increased detection in the African continent.
Collapse
Affiliation(s)
- Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Subissi
- Directorate Infectious Diseases in Humans Sciensano, Brussels, Belgium
| | - Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore Di Sanita (ISS), Rome, Italy
| |
Collapse
|
11
|
Abdullahi IN, Akande AO, Muhammed Y, Rogo LD, Oderinde BS. Prevalence Pattern of Chikungunya Virus Infection in Nigeria: A Four Decade Systematic Review and Meta-analysis. Pathog Glob Health 2020; 114:111-116. [PMID: 32191166 DOI: 10.1080/20477724.2020.1743087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Chikungunya (CHIK) is a re-emerging and myo-arthritogenic arboviral infection that has affected significant global population. However, CHIK is a neglected disease in Nigeria. This study aimed to estimate the pooled prevalence pattern of CHIK virus infection in Nigeria. A systematic review of eligible articles was conducted from "PubMed", "Scopus", "Google Scholar" and "Web of Science", between January 1980 to February 2020. Peer-reviewed articles describing CHIKV infection in cross-sectional studies were systematically reviewed. Random-effect model was used to pool the prevalence of CHIKV infection and associated sociodemographic data reported from eligible studies. In total, there were 10 published articles on CHIKV infection. Of these, 7 were cross-sectional studies, which comprised of 1347 pooled participants. The pooled anti-CHIKV IgM and IgG seroprevalence were 26.7% (95% CI: 23.2 - 30.4) and 29.3% (95% CI: 26.2 -32.6), respectively. Of the pooled studies, there were 3.8% (95% CI: 2.0-6.4) CHIKV RNA positive cases and 46.1% prevalence of CHIKV neutralizing antibodies. Of the 6 geopolitical zones in Nigeria, Northeast had the highest serological evidence of CHIKV infection. There was a significance association between the prevalence of anti-CHIKV and geopolitical zones of Nigeria (χ²= 70.04; p˂0.0001). Sex (p ˂0.0001; OR= 1.87 [1.47 - 2.38]) and level of education (p ˂0.0001; OR= 2.74 [1.89 - 3.95]) were significant risk factors for pooled anti-CHIKV IgM seropositivity. However, no significant association was found with other sociodemographic variables (p ˃0.05). Although there was paucity of data on CHIKV research in Nigeria, this meta-analysis revealed a high prevalence of CHIKV infection in the country.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria.,Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Azeez Oyebanji Akande
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Yusuf Muhammed
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Lawal Dahiru Rogo
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano, Nigeria
| | - Bamidele Soji Oderinde
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
12
|
Manu SK, Bonney JHK, Pratt D, Abdulai FN, Agbosu EE, Frimpong PO, Adiku TK. Arbovirus circulation among febrile patients at the greater Accra Regional Hospital, Ghana. BMC Res Notes 2019; 12:332. [PMID: 31186058 PMCID: PMC6560752 DOI: 10.1186/s13104-019-4378-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/07/2019] [Indexed: 01/03/2023] Open
Abstract
Objective Arboviruses, Dengue and Chikungunya have become major international public health concerns due to their epidemics and introduction in new areas. In Ghana, little is known is about Dengue and Chikungunya viruses though the country has been listed as part of the 34 countries in which the viruses are endemic. This has been attributed partly to the lack of diagnostic tools for these viruses in several health facilities and institutions across the country. The purpose of this study was to detect and characterize these viral pathogens among febrile patients in Accra Ghana. Results This hospital-based cross-sectional study enrolled 260 suspected Dengue and/or Chikungunya febrile patients who submitted their clinical specimens of serum. Out of the total number tested with both molecular and serological tools, Chikungunya and Dengue specific total antibodies were detected from 72 (27.69%) and 180 (69.23%) respectively. None of the participants tested positive for Dengue and Chikungunya by reverse transcription-polymerase chain reaction (RT-PCR) and with the Dengue-specific NS1 antigen strip kits. Our findings suggested that Dengue and Chikungunya viruses may be circulating but are being missed among febrile patients. Differential diagnosis work-up in febrile patients should be made to include Dengue and Chikungunya infections.
Collapse
Affiliation(s)
- Simon Kofi Manu
- Department of Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.,Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Joseph Humphrey Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana.
| | - Deborah Pratt
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | | | - Eudosia Esinam Agbosu
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | | | - Theophilus Korku Adiku
- Department of Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.,Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
13
|
Simo FBN, Bigna JJ, Well EA, Kenmoe S, Sado FBY, Weaver SC, Moundipa PF, Demanou M. Chikungunya virus infection prevalence in Africa: a contemporaneous systematic review and meta-analysis. Public Health 2019; 166:79-88. [PMID: 30468973 DOI: 10.1016/j.puhe.2018.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The (re)emergence of chikungunya virus (CHIKV) in Africa requires better knowledge on the epidemiology of CHIKV infection in the continent for efficient public health strategies. We aimed to describe the epidemiology of CHIKV infection in Africa, a neglected tropical disease (NTD). STUDY DESIGN This was a systematic review with meta-analysis of studies reporting CHIKV infection prevalence. We searched Embase, PubMed, Africa Journal Online and Global Index Medicus to identify observational studies published from January 2000 to September 2017. METHODS We used a random-effect model to pool the prevalence of CHIKV infections reported with their 95% confidence interval (CI). Heterogeneity was assessed via the Chi-squared test on Cochran's Q statistic. Review registration is in PROSPERO CRD42017080395. RESULTS A total of 39 studies (37,881 participants; 18 countries) were included. No study was reported from Southern Africa. Thirty-two (82.0%), seven (18.0%) and no studies had low, moderate and high risk of bias, respectively. Outside outbreak periods, the pooled immunoglobulin M (IgM) and immunoglobulin G (IgG) seroprevalence was 9.7% (95% CI 3.0-19.6; 16 studies) and 16.4% (95% CI 9.1-25.2; 23 studies), respectively. The IgM seroprevalence was lower in Northern Africa, and there was no difference for IgG prevalence across regions in Africa. The IgM and IgG seroprevalences were not different between acute and non-acute febrile participants. The seroprevalence was not associated with GPS coordinates (latitude, longitude and altitude). CONCLUSIONS Although considered a NTD, we find high prevalence of CHIKV infection in Africa. As such, chikungunya fever should deserve more attention from healthcare providers, researchers, policymakers and stakeholders from many sectors.
Collapse
Affiliation(s)
- F B N Simo
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon.
| | - J J Bigna
- Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Street 2005, P.O. Box 1274, Yaoundé, Cameroon; School of Public Health, Faculty of Medicine, University of Paris Sud, 63 Rue Gabriel Péri, 94270, Le Kremlin-Bicêtre, France.
| | - E A Well
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364, Yaoundé, Cameroon.
| | - S Kenmoe
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| | - F B Y Sado
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| | - S C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - P F Moundipa
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon.
| | - M Demanou
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| |
Collapse
|
14
|
Fritzell C, Rousset D, Adde A, Kazanji M, Van Kerkhove MD, Flamand C. Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: A scoping review. PLoS Negl Trop Dis 2018; 12:e0006533. [PMID: 30011271 PMCID: PMC6062120 DOI: 10.1371/journal.pntd.0006533] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/26/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Arboviral infections are a public health concern and an escalating problem worldwide. Estimating the burden of these diseases represents a major challenge that is complicated by the large number of unapparent infections, especially those of dengue fever. Serological surveys are thus required to identify the distribution of these diseases and measure their impact. Therefore, we undertook a scoping review of the literature to describe and summarize epidemiological practices, findings and insights related to seroprevalence studies of dengue, chikungunya and Zika virus, which have rapidly expanded across the globe in recent years. METHODOLOGY/PRINCIPAL FINDINGS Relevant studies were retrieved through a literature search of MEDLINE, WHOLIS, Lilacs, SciELO and Scopus (2000 to 2018). In total, 1389 publications were identified. Studies addressing the seroprevalence of dengue, chikungunya and/or Zika written in English or French and meeting the inclusion and exclusion criteria were included. In total, 147 studies were included, from which 185 data points were retrieved, as some studies used several different samples. Most of the studies were exclusively conducted on dengue (66.5%), but 16% were exclusively conducted on chikungunya, and 7 were exclusively conducted on Zika; the remainder were conducted on multiple arboviruses. A wide range of designs were applied, but most studies were conducted in the general population (39%) and in households (41%). Although several assays were used, enzyme-linked immunosorbent assays (ELISAs) were the predominant test used (77%). The temporal distribution of chikungunya studies followed the virus during its rapid expansion since 2004. The results revealed heterogeneity of arboviruses seroprevalence between continents and within a given country for dengue, chikungunya and Zika viruses, ranging from 0 to 100%, 76% and 73% respectively. CONCLUSIONS/SIGNIFICANCE Serological surveys provide the most direct measurement for defining the immunity landscape for infectious diseases, but the methodology remains difficult to implement. Overall, dengue, chikungunya and Zika serosurveys followed the expansion of these arboviruses, but there remain gaps in their geographic distribution. This review addresses the challenges for researchers regarding study design biases. Moreover, the development of reliable, rapid and affordable diagnosis tools represents a significant issue concerning the ability of seroprevalence surveys to differentiate infections when multiple viruses co-circulate.
Collapse
Affiliation(s)
- Camille Fritzell
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Dominique Rousset
- National Reference Laboratory for Arboviruses, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Antoine Adde
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Mirdad Kazanji
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | - Claude Flamand
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| |
Collapse
|
15
|
Wahid B, Ali A, Rafique S, Idrees M. Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis 2017; 58:69-76. [PMID: 28288924 DOI: 10.1016/j.ijid.2017.03.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that is emerging as a global threat because of the highly debilitating nature of the associated disease and unprecedented magnitude of its spread. Chikungunya originated in Africa and has since spread across the entire globe causing large numbers of epidemics that have infected millions of people in Asia, the Indian subcontinent, Europe, the Americas, and Pacific Islands. Phylogenetic analysis has identified four different genotypes of CHIKV: Asian, West African, East/Central/South African (ECSA), and Indian Ocean Lineage (IOL). In the absence of well-designed epidemiological studies, the aim of this review article was to summarize the global epidemiology of CHIKV and to provide baseline data for future research on the treatment, prevention, and control of this life-threatening disease.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University, Mansehra, Pakistan.
| |
Collapse
|