1
|
Nguyen TV, Ngwe Tun MM, Cao MT, Dao HM, Luong CQ, Huynh TKL, Nguyen TTT, Hoang TND, Morita K, Le TQM, Pham QD, Takamatsu Y, Hasebe F. Serological and Molecular Epidemiology of Chikungunya Virus Infection in Vietnam, 2017-2019. Viruses 2023; 15:2065. [PMID: 37896842 PMCID: PMC10611313 DOI: 10.3390/v15102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Chikungunya fever is an acute febrile illness caused by the chikungunya virus (CHIKV), which is transmitted by Aedes mosquitoes. Since 1965, only a few studies with limited scope have been conducted on CHIKV in Vietnam. Thus, this study aimed to determine the seroprevalence and molecular epidemiology of CHIKV infection among febrile patients in Vietnam from 2017 to 2019. A total of 1063 serum samples from 31 provinces were collected and tested for anti-CHIKV IgM and IgG ELISA. The 50% focus reduction neutralization test (FRNT50) was used to confirm CHIKV-neutralizing antibodies. Quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the presence of the CHIKV genome. The results showed that 15.9% (169/1063) of the patients had anti-CHIKV IgM antibodies, 20.1% (214/1063) had anti-CHIKV IgG antibodies, 10.4% (111/1063) had CHIKV-neutralizing antibodies, and 27.7% (130/469) of the samples were positive in RT-qPCR analysis. The E1 CHIKV genome sequences were detected among the positive RT-qPCR samples. Our identified sequences belonged to the East/Central/South/African (ECSA) genotype, which has been prevalent in Vietnam previously, suggesting CHIKV has been maintained and is endemic in Vietnam. This study demonstrates a high prevalence of CHIKV infection in Vietnam and calls for an annual surveillance program to understand its impact.
Collapse
Affiliation(s)
- Thanh Vu Nguyen
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (T.V.N.); (K.M.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (T.V.N.); (K.M.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan
| | - Minh Thang Cao
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Huy Manh Dao
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Chan Quang Luong
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Thi Kim Loan Huynh
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Thi Thanh Thuong Nguyen
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Thi Nhu Dao Hoang
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (T.V.N.); (K.M.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| | - Thi Quynh Mai Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam;
| | - Quang Duy Pham
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (T.V.N.); (K.M.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
2
|
Ngwe Tun MM, Kyaw AK, Nwe KM, Myaing SS, Win YT, Inoue S, Takamatsu Y, Urano T, Thu HM, Hmone SW, Thant KZ, Morita K. Burden of Chikungunya Virus Infection during an Outbreak in Myanmar. Viruses 2023; 15:1734. [PMID: 37632076 PMCID: PMC10459206 DOI: 10.3390/v15081734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is a re-emerging arboviral disease with no approved vaccine, although numerous options are in development. Before vaccine implementation, disease burden, affected age group, and hospitalization rate information should be documented. In 2019, a sizeable outbreak of the East Central South African genotype of CHIKV occurred in Myanmar, and during this period, a cross-sectional study was conducted in two regions, Mandalay and Yangon, to examine the molecular and seropositivity rate of the CHIKV infection. The participants (1124) included dengue-suspected pediatric patients, blood donors, and healthy volunteers, who were assessed using molecular assays (quantitative real-time RT-PCR), serological tests (anti-CHIKV IgM capture and IgG indirect enzyme-linked immunosorbent assays), and neutralization tests. The tests confirmed the following positivity rates: 11.3% (127/1124) for the molecular assay, 12.4% (139/1124) for the anti-CHIKV IgM Ab, 44.5% (500/1124) for the anti-CHIKV IgG Ab, and 46.3% (520/1124) for the CHIKV neutralizing Ab. The highest rate for the molecular test occurred with the dengue-suspected pediatric patients. The seroprevalence rate through natural infection was higher in the healthy volunteers and blood donors than that in the pediatric patients. The results of this study will help stakeholders determine the criteria for choosing appropriate recipients when a CHIKV vaccine is introduced in Myanmar.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Aung Kyaw Kyaw
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar; (A.K.K.); (S.S.M.); (H.M.T.)
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
| | - Su Su Myaing
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar; (A.K.K.); (S.S.M.); (H.M.T.)
| | - Ye Thu Win
- 550-Bedded Children Hospital (Mandalay), Department of Medical Services, Ministry of Health, Mandalay City 05021, Myanmar;
| | - Shingo Inoue
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Hlaing Myat Thu
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar; (A.K.K.); (S.S.M.); (H.M.T.)
| | - Saw Wutt Hmone
- Department of Pathology, University of Medicine-1, Ministry of Health, Yangon 11131, Myanmar;
| | - Kyaw Zin Thant
- Myanmar Academy of Medical Science, Yangon 11201, Myanmar;
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Luvai EAC, Kyaw AK, Sabin NS, Yu F, Hmone SW, Thant KZ, Inoue S, Morita K, Ngwe Tun MM. Evidence of Chikungunya virus seroprevalence in Myanmar among dengue-suspected patients and healthy volunteers in 2013, 2015, and 2018. PLoS Negl Trop Dis 2021; 15:e0009961. [PMID: 34851949 PMCID: PMC8635363 DOI: 10.1371/journal.pntd.0009961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/01/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Chikungunya virus (CHIKV) is a mosquito-borne virus known to cause acute febrile illness associated with debilitating polyarthritis. In 2019, several institutions in Myanmar reported a CHIKV outbreak. There are no official reports of CHIKV cases between 2011 and 2018. Therefore, this study sought to determine the seroprevalence of CHIKV infection before the 2019 outbreak. METHODS A total of 1,544 serum samples were collected from healthy volunteers and patients with febrile illnesses in Yangon, Mandalay, and the Myeik district in 2013, 2015, and 2018. Participants ranged from one month to 65 years of age. Antibody screening was performed with in-house anti-CHIKV IgG and IgM ELISA. A neutralization assay was used as a confirmatory test. RESULTS The seroprevalence of anti-CHIKV IgM and anti-CHIKV IgG was 8.9% and 28.6%, respectively, with an overall seropositivity rate of 34.5%. A focus reduction neutralization assay confirmed 32.5% seroprevalence of CHIKV in the study population. Age, health status, and region were significantly associated with neutralizing antibodies (NAbs) and CHIKV seropositivity (p < 0.05), while gender was not (p = 0.9). Seroprevalence in 2013, 2015, and 2018 was 32.1%, 28.8%, and 37.3%, respectively. Of the clinical symptoms observed in participants with fevers, arthralgia was mainly noted in CHIKV-seropositive patients. CONCLUSION The findings in this study reveal the circulation of CHIKV in Myanmar's Mandalay, Yangon, and Myeik regions before the 2019 CHIKV outbreak. As no treatment or vaccine for CHIKV exists, the virus must be monitored through systematic surveillance in Myanmar.
Collapse
Affiliation(s)
- Elizabeth Ajema Chebichi Luvai
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Sciences and Technology, School of Health and Biomedical Sciences, The Technical University of Kenya, Nairobi, Kenya
| | - Aung Kyaw Kyaw
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Nundu Sabiti Sabin
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Fuxun Yu
- Guizhou Provincial People’s Hospital, Guiyang City, Guizhou Province, China
| | - Saw Wut Hmone
- Department of Pathology, University of Medicine-1, Lanmadaw township, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Manandhar KD, McCauley M, Gupta BP, Kurmi R, Adhikari A, Nguyen AV, Elong Ngono A, Zompi S, Sessions OM, Shresta S. Whole Genome Sequencing of Dengue Virus Serotype 2 from Two Clinical Isolates and Serological Profile of Dengue in the 2015-2016 Nepal Outbreak. Am J Trop Med Hyg 2021; 104:115-120. [PMID: 33073748 DOI: 10.4269/ajtmh.20-0163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue virus (DENV) is the cause of one of the most prevalent neglected tropical diseases, and up to half of the world's population is at risk for infection. Recent results from clinical trials have shown that DENV vaccination can induce the development of severe dengue disease and/or prolong hospitalization after natural infection in certain naive populations. Thus, it is crucial that vaccine development takes into account the history of DENV exposure in the targeted population. In Nepal, DENV infection was first documented in 2004, and despite the increasing prevalence of DENV infection, the population remains relatively naive. However, it is not known which of the four DENV serotypes circulate in Nepal or whether there is evidence of repeated exposure to DENV in the Nepali population. To address this, we studied 112 patients who presented with symptomology suspicious for DENV infection at clinics throughout Nepal during late 2015 and early 2016. Of the 112 patients examined, 39 showed serological and/or genetic evidence of primary or secondary DENV infection: 30 were positive for DENV exposure by IgM/IgG ELISA, two by real-time reverse-transcription PCR (RT-PCR), and seven by both methods. Dengue virus 1-3, but not DENV4, serotypes were detected by RT-PCR. Whole genome sequencing of two DENV2 strains isolated from patients with primary and secondary infections suggests that DENV was introduced into Nepal through India, with which it shares a porous border. Further study is needed to better define the DENV epidemic in Nepal, a country with limited scientific resources and infrastructure.
Collapse
Affiliation(s)
- Krishna Das Manandhar
- 1Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California.,2Central Department of Biotechnology, Tribhuvan University, Kirtipur, Nepal
| | - Melanie McCauley
- 1Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California.,3Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Birendra Prasad Gupta
- 1Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California.,2Central Department of Biotechnology, Tribhuvan University, Kirtipur, Nepal
| | | | - Anurag Adhikari
- 2Central Department of Biotechnology, Tribhuvan University, Kirtipur, Nepal
| | - Anh-Viet Nguyen
- 1Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California
| | - Annie Elong Ngono
- 1Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California
| | - Simona Zompi
- 5Department of Experimental Medicine, School of Medicine, University of California San Francisco, California
| | - October M Sessions
- 6Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,7Department of Pharmacy, National University of Singapore, Singapore.,8Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sujan Shresta
- 1Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California.,3Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
5
|
Phuyal P, Kramer IM, Klingelhöfer D, Kuch U, Madeburg A, Groneberg DA, Wouters E, Dhimal M, Müller R. Spatiotemporal Distribution of Dengue and Chikungunya in the Hindu Kush Himalayan Region: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6656. [PMID: 32932665 PMCID: PMC7560004 DOI: 10.3390/ijerph17186656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
The risk of increasing dengue (DEN) and chikungunya (CHIK) epidemics impacts 240 million people, health systems, and the economy in the Hindu Kush Himalayan (HKH) region. The aim of this systematic review is to monitor trends in the distribution and spread of DEN/CHIK over time and geographically for future reliable vector and disease control in the HKH region. We conducted a systematic review of the literature on the spatiotemporal distribution of DEN/CHIK in HKH published up to 23 January 2020, following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. In total, we found 61 articles that focused on the spatial and temporal distribution of 72,715 DEN and 2334 CHIK cases in the HKH region from 1951 to 2020. DEN incidence occurs in seven HKH countries, i.e., India, Nepal, Bhutan, Pakistan, Bangladesh, Afghanistan, and Myanmar, and CHIK occurs in four HKH countries, i.e., India, Nepal, Bhutan, and Myanmar, out of eight HKH countries. DEN is highly seasonal and starts with the onset of the monsoon (July in India and June in Nepal) and with the onset of spring (May in Bhutan) and peaks in the postmonsoon season (September to November). This current trend of increasing numbers of both diseases in many countries of the HKH region requires coordination of response efforts to prevent and control the future expansion of those vector-borne diseases to nonendemic areas, across national borders.
Collapse
Affiliation(s)
- Parbati Phuyal
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, 60590 Frankfurt am Main, Germany; (I.M.K.); (D.K.); (U.K.); (A.M.); (D.A.G.); (M.D.); (R.M.)
- Institute of Environment and Sustainable Development, University of Antwerp, 2000 Antwerp, Belgium
| | - Isabelle Marie Kramer
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, 60590 Frankfurt am Main, Germany; (I.M.K.); (D.K.); (U.K.); (A.M.); (D.A.G.); (M.D.); (R.M.)
| | - Doris Klingelhöfer
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, 60590 Frankfurt am Main, Germany; (I.M.K.); (D.K.); (U.K.); (A.M.); (D.A.G.); (M.D.); (R.M.)
| | - Ulrich Kuch
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, 60590 Frankfurt am Main, Germany; (I.M.K.); (D.K.); (U.K.); (A.M.); (D.A.G.); (M.D.); (R.M.)
| | - Axel Madeburg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, 60590 Frankfurt am Main, Germany; (I.M.K.); (D.K.); (U.K.); (A.M.); (D.A.G.); (M.D.); (R.M.)
| | - David A. Groneberg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, 60590 Frankfurt am Main, Germany; (I.M.K.); (D.K.); (U.K.); (A.M.); (D.A.G.); (M.D.); (R.M.)
| | - Edwin Wouters
- Department of Sociology, University of Antwerp, 2000 Antwerp, Belgium;
| | - Meghnath Dhimal
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, 60590 Frankfurt am Main, Germany; (I.M.K.); (D.K.); (U.K.); (A.M.); (D.A.G.); (M.D.); (R.M.)
- Health Research Section, Nepal Health Research Council, Ramshah Path, Kathmandu 44600, Nepal
| | - Ruth Müller
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, 60590 Frankfurt am Main, Germany; (I.M.K.); (D.K.); (U.K.); (A.M.); (D.A.G.); (M.D.); (R.M.)
- Unit Entomology, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| |
Collapse
|
6
|
Izumida M, Hayashi H, Tanaka A, Kubo Y. Cathepsin B Protease Facilitates Chikungunya Virus Envelope Protein-Mediated Infection via Endocytosis or Macropinocytosis. Viruses 2020; 12:v12070722. [PMID: 32635194 PMCID: PMC7412492 DOI: 10.3390/v12070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an enveloped virus that enters host cells and transits within the endosomes before starting its replication cycle, the precise mechanism of which is yet to be elucidated. Endocytosis and endosome acidification inhibitors inhibit infection by CHIKV, murine leukemia virus (MLV), or SARS-coronavirus, indicating that these viral entries into host cells occur through endosomes and require endosome acidification. Although endosomal cathepsin B protease is necessary for MLV, Ebola virus, and SARS-CoV infections, its role in CHIKV infection is unknown. Our results revealed that endocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in 293T cells but not in TE671 cells. In contrast, macropinocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in TE671 cells but not in 293T cells, suggesting that CHIKV host cell entry occurs via endocytosis or macropinocytosis, depending on the cell lines used. Cathepsin B inhibitor and knockdown by an shRNA suppressed CHIKV-pseudotyped MLV vector infection both in 293T and TE671 cells. These results show that cathepsin B facilitates CHIKV infection regardless of the entry pathway.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| |
Collapse
|
7
|
Ghimire TR, Regmi GR, Huettmann F. When Micro Drives the Macro: A Fresh Look at Disease and its Massive Contributions in the Hindu Kush-Himalaya. HINDU KUSH-HIMALAYA WATERSHEDS DOWNHILL: LANDSCAPE ECOLOGY AND CONSERVATION PERSPECTIVES 2020. [PMCID: PMC7197387 DOI: 10.1007/978-3-030-36275-1_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outbreaks of emerging and reemerging diseases have a high impact on the human and animal health because they are the underlying causes of disability, death, and long-term illness. For many regions those details are not, or just poorly known. Here we present on the morbidity and mortality in faunal diversities including domestic and wild species caused by various viral, bacterial, parasitic, and fungal diseases prevalent in Nepal and relevant for the wider Hindu Kush Himalaya. In addition, we provide details how antibiotic resistivity, vectors, and zoonosis have resulted on a landscape-scale in the huge public and veterinary health problem has been dealt with in the context of Nepal and the wider region.
Collapse
|
8
|
Shah Y, Pandey K, Pant DK, Panta KP, Pandey BD. High Potential Risk of Zika Virus Infection Outbreak in Dengue Suspected Cases in Nepal. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Shah Y, Pandey K, Pant DK, Panta KP, Pandey BD. High Potential Risk of Zika Virus Infection Outbreak in Dengue Suspected Cases in Nepal. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Pandey K, Pandey BD, Chaurasiya RR, Thakur M, Neupane B, Shah Y, Ngwe Tun MM, Morita K. Evidence of Chikungunya virus circulation in the Terai region of Nepal in 2014 and 2015. Trans R Soc Trop Med Hyg 2018; 111:294-299. [PMID: 29165625 DOI: 10.1093/trstmh/trx059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/09/2017] [Indexed: 11/14/2022] Open
Abstract
Background Chikungunya virus (CHIKV) infection is an emerging viral disease in Nepal, with the reported by our laboratories in 2013. Because of the similarity in signs and symptoms to dengue virus (DENV) and misdiagnosis, the under-reporting of CHIKV infection in DENV-endemic areas of Nepal is very common. The aim of the present study is to identify CHIKV infection among patients with febrile illness during the 2014-2015 outbreaks. Methods A total of 219 serum samples were tested for CHIKV and DENV by using enzyme-linked immunosorbent assays (ELISAs) to detect immunoglobulin M (IgM) and IgG antibodies, with confirmation by a 50% focal reduction neutralization test (FRNT50). Results ELISA results demonstrated that for CHIKV and DENV, 20.5% and 14.2% of samples, respectively, were positive for IgG and/or IgM and 9.6% and 5.9% were positive for IgM alone. Further, FRNT50 results confirmed that 7.3% of samples possessed neutralizing anti-CHIKV antibodies. Conclusion We conclude that CHIKV infection is settling in Nepal as an endemic disease. It is highly recommended to strengthen the surveillance system for CHIKV and DENV to prevent possible outbreaks.
Collapse
Affiliation(s)
- Kishor Pandey
- Molecular Biotechnology Division, Nepal Academy of Science and Technology, Lalitpur, Nepal.,Everest International Clinic and Research Center, Kathmandu, Nepal
| | - Basu Dev Pandey
- Everest International Clinic and Research Center, Kathmandu, Nepal.,Department of Health Services, Ministry of Health, Kathmandu, Nepal
| | | | - Mahesh Thakur
- Everest International Clinic and Research Center, Kathmandu, Nepal
| | - Biswas Neupane
- Everest International Clinic and Research Center, Kathmandu, Nepal
| | - Yogendra Shah
- Everest International Clinic and Research Center, Kathmandu, Nepal
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
Adhikari R, Thapa S. Changing Trend of Infectious Diseases in Nepal. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1052:19-38. [PMID: 29785478 PMCID: PMC7122567 DOI: 10.1007/978-981-10-7572-8_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many infectious/communicable diseases (IDs) are endemic in Nepal. Until a decade and half ago, IDs were the major cause of both morbidity and mortality accounting 70% for both. However, as a result of various preventive measures implemented by both the state and non-state actors, the overall IDs have shown a changing (declining) trend. The most impressive decline has been seen in the intestinal helminth infection. Though the overall burden of IDs is decreasing, several newer infectious diseases (emerging infections) namely, dengue fever, scrub typhus, influenza (H5N1 and H1N1), and others are posing a great public health problem. On the other hand, though sporadic, outbreaks of endemic diseases together with HIV-TB coinfection and infection with drug resistance microbes during recent years have constituted a serious public health as well as medical problem. On the contrary, with the decline of IDs, noninfectious diseases (noncommunicable disease, NCD) namely, diabetes, cancer (and cancer therapy), and others are on the rise particularly in urban areas. Hence, currently Nepal is trapped in "double burden" of diseases. Risk of opportunistic infection has increased in immunocompromised person with NCD. To address the present situation, the multi-sectoral plan and strategies developed must be implemented effectively.
Collapse
Affiliation(s)
- Rameshwar Adhikari
- Research Center for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal
| | - Santosh Thapa
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas USA
| |
Collapse
|
12
|
Dhimal M, Dahal S, Dhimal ML, Mishra SR, Karki KB, Aryal KK, Haque U, Kabir MI, Guin P, Butt AM, Harapan H, Liu QY, Chu C, Montag D, Groneberg DA, Pandey BD, Kuch U, Müller R. Threats of Zika virus transmission for Asia and its Hindu-Kush Himalayan region. Infect Dis Poverty 2018; 7:40. [PMID: 29759076 PMCID: PMC5952373 DOI: 10.1186/s40249-018-0426-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/16/2018] [Indexed: 11/10/2022] Open
Abstract
Asia and its Hindu Kush Himalayan (HKH) region is particularly vulnerable to environmental change, especially climate and land use changes further influenced by rapid population growth, high level of poverty and unsustainable development. Asia has been a hotspot of dengue fever and chikungunya mainly due to its dense human population, unplanned urbanization and poverty. In an urban cycle, dengue virus (DENV) and chikungunya virus (CHIKV) are transmitted by Aedes aegypti and Ae. albopictus mosquitoes which are also competent vectors of Zika virus (ZIKV). Over the last decade, DENV and CHIKV transmissions by Ae. aegypti have extended to the Himalayan countries of Bhutan and Nepal and ZIKV could follow in the footsteps of these viruses in the HKH region. The already established distribution of human-biting Aedes mosquito vectors and a naïve population with lack of immunity against ZIKV places the HKH region at a higher risk of ZIKV. Some of the countries in the HKH region have already reported ZIKV cases. We have documented an increasing threat of ZIKV in Asia and its HKH region because of the high abundance and wide distribution of human-biting mosquito vectors, climate change, poverty, report of indigenous cases in the region, increasing numbers of imported cases and a naïve population with lack of immunity against ZIKV. An outbreak anywhere is potentially a threat everywhere. Therefore, in order to ensure international health security, all efforts to prevent, detect, and respond to ZIKV ought to be intensified now in Asia and its HKH region. To prepare for possible ZIKV outbreaks, Asia and the HKH region can also learn from the success stories and strategies adopted by other regions and countries in preventing ZIKV and associated complications. The future control strategies for DENV, CHIKV and ZIKV should be considered in tandem with the threat to human well-being that is posed by other emerging and re-emerging vector-borne and zoonotic diseases, and by the continuing urgent need to strengthen public primary healthcare systems in the region.
Collapse
Affiliation(s)
- Meghnath Dhimal
- Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal. .,Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Sushma Dahal
- Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal
| | - Mandira Lamichhane Dhimal
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.,Faculty of Social Sciences, Goethe University, Frankfurt am Main, Germany
| | | | - Khem B Karki
- Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal
| | | | - Ubydul Haque
- Department of Public Health, Baldwin Wallace University, Berea, Ohio, USA
| | - Md Iqbal Kabir
- Department of Epidemiology, National Institute of Preventive and Social Medicine, Ministry of Health and Family Welfare, Dhaka, Bangladesh
| | - Pradeep Guin
- Public Health Foundation of India, Gurgaon, Haryana, India.,Centre for Environmental Health, Gurgaon, Haryana, India
| | - Azeem Mehmood Butt
- Translational Genomics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, 45550, Pakistan
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Qi-Yong Liu
- WHO Collaborating Centre for Vector Surveillance and Management, SKLID, CCID, ICDC, China CDC, Beijing, China
| | - Cordia Chu
- Centre for Environment and Population Health, Griffith University, Nathan, Queensland, Australia
| | - Doreen Montag
- Barts and the London School of Medicine, Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| | - David Alexander Groneberg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Basu Dev Pandey
- Department of Health Services, Ministry of Health, Government of Nepal, Kathmandu, Nepal
| | - Ulrich Kuch
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ruth Müller
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Shrestha P, Roberts T, Homsana A, Myat TO, Crump JA, Lubell Y, Newton PN. Febrile illness in Asia: gaps in epidemiology, diagnosis and management for informing health policy. Clin Microbiol Infect 2018; 24:815-826. [PMID: 29581051 DOI: 10.1016/j.cmi.2018.03.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Increasing evidence is becoming available on the aetiology and management of fevers in Asia; the importance of these fevers has increased with the decline in the incidence of malaria. AIMS To conduct a narrative review of the epidemiology and management of fevers in South and South-East Asia and to highlight gaps in our knowledge that impair evidence-based health policy decisions. SOURCES A narrative review of papers published since 2012 on developments in fever epidemiology, diagnosis and treatment in South and South-East Asia. The papers that the authors felt were pivotal, from their personal perspectives, are discussed. CONTENT We identified 100 studies. Among the 30 studies (30%)-including both children and adults-that investigated three or more pathogens, the most frequently reported fever aetiology was dengue (reported by 15, 50%), followed by leptospirosis (eight, 27%), scrub typhus (seven, 23%) and Salmonella serovar Typhi (six, 20%). Among four studies investigating three or more pathogens in children, dengue and Staphylococcus aureus were the most frequent, followed by non-typhoidal Salmonella spp, Streptococcus pneumoniae, Salmonella serovar Typhi, and Orientia tsutsugamushi. Increased awareness is needed that rickettsial pathogens are common but do not respond to cephalosporins, and that alternative therapies, such as tetracyclines, are required. IMPLICATIONS Many key gaps remain, and consensus guidelines for study design are needed to aid comparative understanding of the epidemiology of fevers. More investment in developing accurate and affordable diagnostic tests for rural Asia and independent evaluation of those already on the market are needed. Treatment algorithms, including simple biomarker assays, appropriate for empirical therapy of fevers in different areas of rural Asia should be a major aim of fever research. Enhanced antimicrobial resistance (AMR) surveillance and openly accessible databases of geography-specific AMR data would inform policy on empirical and specific therapy. More investment in innovative strategies facilitating infectious disease surveillance in remote rural communities would be an important component of poverty reduction and improving public health.
Collapse
Affiliation(s)
- P Shrestha
- Infectious Diseases Data Observatory, University of Oxford, UK
| | - T Roberts
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos; Madihol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - A Homsana
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - T O Myat
- Department of Microbiology, University of Medicine 1, Yangon, Myanmar; Centre for International Health, University of Otago, Dunedin, New Zealand
| | - J A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Y Lubell
- Madihol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, UK
| | - P N Newton
- Infectious Diseases Data Observatory, University of Oxford, UK; Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos; Centre for Tropical Medicine and Global Health, University of Oxford, UK.
| |
Collapse
|