1
|
Scariot DB, Staneviciute A, Machado RRB, Yuk SA, Liu YG, Sharma S, Almunif S, Arona Mbaye EH, Nakamura CV, Engman DM, Scott EA. Efficacy of benznidazole delivery during Chagas disease nanotherapy is dependent on the nanocarrier morphology. Biomaterials 2025; 322:123358. [PMID: 40318604 DOI: 10.1016/j.biomaterials.2025.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The causative agent of Chagas disease, the protozoan Trypanosoma cruzi, is an obligate intracellular parasite that is typically treated with daily oral administration of Benznidazole (BNZ), a parasiticidal pro-drug with considerable side effects. Previously, we effectively targeted intracellular parasites using ∼100 nm diameter BNZ-loaded poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) vesicular nanocarriers (a.k.a. polymersomes) in a T. cruzi-infected mouse model, without causing the typical side effects associated with standard BNZ treatment. Here, we exploit the structural versatility of the PEG-b-PPS system to investigate the impact of nanocarrier structure on the efficacy of BNZ nanotherapy. Despite sharing the same surface chemistry and oxidation-sensitive biodegradation, solid core ∼25 nm PEG-b-PPS micelles failed to produce in vivo trypanocidal effects. By applying the Förster Resonance Energy Transfer strategy, we demonstrated that PEG-b-PPS polymersomes promoted sustained intracellular drug release and enhanced tissue accumulation, offering a significant advantage for intracellular drug delivery compared to micelles with the same surface chemistry. Our studies further revealed that the lack of parasiticidal effect in PEG-b-PPS micelles is likely due to their slower rate of accumulation into solid tissues, consistent with the prolonged circulation time of intact micelles. Considering the cardiac damage typically induced by T. cruzi infection, this study also investigated the contributions of cardiac cellular biodistribution and payload release for both nanocarriers to the treatment outcomes of BNZ delivery. Our findings emphasize the crucial role of cardiac macrophages in the parasiticidal effect of BNZ formulations and highlight the critical importance of nanobiomaterial structure during therapeutic delivery.
Collapse
Affiliation(s)
- Debora B Scariot
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Austeja Staneviciute
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Rayanne R B Machado
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biological Sciences, State University of Maringa, Parana, 87020-900, Brazil
| | - Simseok A Yuk
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Yu-Gang Liu
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Swagat Sharma
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Sultan Almunif
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Bioengineering Institute, King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - El Hadji Arona Mbaye
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Celso Vataru Nakamura
- Department of Biological Sciences, State University of Maringa, Parana, 87020-900, Brazil
| | - David M Engman
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
2
|
da Silva YB, Bedogni G, de Andrade Picanço G, de Souza JY, Nunes WS, da Costa TL, de Campos GB, Vargas Michelena L, Salomon CJ, Vinaud MC. Nanoformulated fenbendazole as an attractive approach for treating neurocysticercosis: in vitro and in vivo studies. Pharm Dev Technol 2024; 29:1093-1100. [PMID: 39508398 DOI: 10.1080/10837450.2024.2422936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE This work aimed to develop fenbendazole nanocrystals to evaluate their effects on the energetic metabolism of Taenia crassiceps cysticerci, following an intracranial inoculation in mice. METHODS Fenbendazole was nanoformulated by the antisolvent method using poloxamers 188 and 407 as stabilizers. The nanosuspensions were lyophilized without cryoprotectants and the nanocrystals were characterized in terms of particle size, zeta potential, and dissolution performance. The in vivo study was performed in infected animals treated with nanoformulated fenbendazole and raw drug and their metabolic impact was quantified by analyzing specific metabolites. RESULTS Fenbendazole samples were obtained by nanoprecipitation in > 80% yield. The average particle size of the freeze-dried samples was between 372 nm and 1600 nm. The nanosystems released a greater amount of the drug into the solution, compared to the raw drug. The in vivo studies showed that the fenbendazole-treated groups induced gluconeogenesis, partial blockage of the TCA cycle, and increased protein catabolism. As seen, the nanoformulation presented a greater effect on these parameters than the raw drug leading to remarkable modifications in the metabolism of the parasite, which in turn can influence the overall course of the infection and treatment outcomes. CONCLUSION These findings suggest that nanoformulated fenbendazole may be considered a valuable approach for an effective treatment of neurocysticercosis.
Collapse
Affiliation(s)
- Yngrid Batista da Silva
- Laboratory of Host-Parasite Relationship Studies, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goias, Brazil
| | - Giselle Bedogni
- Institute of Chemistry of Rosario (IQUIR-CONICET), Rosario, Argentina
| | | | - Jéssica Yonara de Souza
- Laboratory of Host-Parasite Relationship Studies, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goias, Brazil
| | - Waylla Silva Nunes
- Laboratory of Host-Parasite Relationship Studies, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goias, Brazil
| | - Tatiane Luiza da Costa
- Laboratory of Host-Parasite Relationship Studies, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goias, Brazil
| | - Geovana Batista de Campos
- Laboratory of Host-Parasite Relationship Studies, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goias, Brazil
| | | | - Claudio Javier Salomon
- Institute of Chemistry of Rosario (IQUIR-CONICET), Rosario, Argentina
- Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Argentina
| | - Marina Clare Vinaud
- Laboratory of Host-Parasite Relationship Studies, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goias, Brazil
- Medicine Department, Biotechnology Institute, Federal University of Catalao, Goias, Brazil
| |
Collapse
|
3
|
Taio F, Converti A, Lima ÁAND. Cyclodextrin Complexes for the Treatment of Chagas Disease: A Literature Review. Int J Mol Sci 2024; 25:9511. [PMID: 39273458 PMCID: PMC11395308 DOI: 10.3390/ijms25179511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Cyclodextrins are ring-shaped sugars used as additives in medications to improve solubility, stability, and sensory characteristics. Despite being widespread, Chagas disease is neglected because of the limitations of available medications. This study aims to review the compounds used in the formation of inclusion complexes for the treatment of Chagas disease, analyzing the incorporated compounds and advancements in related studies. The databases consulted include Scielo, Scopus, ScienceDirect, PubMed, LILACS, and Embase. The keywords used were "cyclodextrin AND Chagas AND disease" and "cyclodextrin complex against Trypanosoma cruzi". Additionally, a statistical analysis of studies on Chagas disease over the last five years was conducted, highlighting the importance of research in this area. This review focused on articles that emphasize how cyclodextrins can improve the bioavailability, therapeutic action, toxicity, and solubility of medications. Initially, 380 articles were identified with the keyword "cyclodextrin AND Chagas disease"; 356 were excluded for not being directly related to the topic, using the keyword "cyclodextrin complex against Trypanosoma cruzi". Over the last five years, a total of 13,075 studies on Chagas disease treatment were found in our literature analysis. The studies also showed interest in molecules derived from natural products and vegetable oils. Research on cyclodextrins, particularly in the context of Chagas disease treatment, has advanced significantly, with studies highlighting the efficacy of molecules in cyclodextrin complexes and indicating promising advances in disease treatment.
Collapse
Affiliation(s)
- Fabrice Taio
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa University, I-16145 Genoa, Italy
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| |
Collapse
|
4
|
Morilla MJ, Ghosal K, Romero EL. Nanomedicines against Chagas disease: a critical review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:333-349. [PMID: 38590427 PMCID: PMC11000002 DOI: 10.3762/bjnano.15.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Chagas disease (CD) is the most important endemic parasitosis in South America and represents a great socioeconomic burden for the chronically ill and their families. The only currently available treatment against CD is based on the oral administration of benznidazole, an agent, developed in 1971, of controversial effectiveness on chronically ill patients and toxic to adults. So far, conventional pharmacological approaches have failed to offer more effective and less toxic alternatives to benznidazole. Nanomedicines reduce toxicity and increase the effectiveness of current oncological therapies. Could nanomedicines improve the treatment of the neglected CD? This question will be addressed in this review, first by critically discussing selected reports on the performance of benznidazole and other molecules formulated as nanomedicines in in vitro and in vivo CD models. Taking into consideration the developmental barriers for nanomedicines and the degree of current technical preclinical efforts, a prospect of developing nanomedicines against CD will be provided. Not surprisingly, we conclude that structurally simpler formulations with minimal production cost, such as oral nanocrystals and/or parenteral nano-immunostimulants, have the highest chances of making it to the market to treat CD. Nonetheless, substantive political and economic decisions, key to facing technological challenges, are still required regarding a realistic use of nanomedicines effective against CD.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
5
|
Paiva DDF, Matos APDS, Garófalo DDA, do Nascimento T, Monteiro MSDSDB, Santos-Oliveira R, Ricci-Junior E. Use of Nanocarriers Containing Antitrypanosomal Drugs for the Treatment of Chagas Disease. Pharmaceuticals (Basel) 2023; 16:1163. [PMID: 37631078 PMCID: PMC10459817 DOI: 10.3390/ph16081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chagas disease, caused by the Trypanosoma cruzi parasitic protozoan, is a neglected tropical disease (NTD) of significant incidence in Latin America. Transmission to humans and other mammals is mainly via the vector insect from the Reduviidae family, popularly known as the kissing bug. There are other transmission means, such as through congenital transmission, blood transfusions, organ transplantations, and the consumption of contaminated food. For more than 50 years, the disease has been treated with benznidazole and nifurtimox, which are only effective during the acute phase of the disease. In addition to their low efficacy in the chronic phase, they cause many adverse effects and are somewhat selective. The use of nanocarriers has received significant attention due to their ability to encapsulate and release therapeutic agents in a controlled manner. Generally, their diameter ranges from 100 to 300 nanometers. The objective of this scoping review was to perform a search of the literature for the use of nanocarriers as an alternative for improving the treatment of Chagas disease and to suggest future research. Bibliographic searches were carried out in the Web of Science and PubMed scientific databases from January 2012 to May 2023, using the "Chagas disease and Trypanosoma cruzi and nanoparticles" keywords, seeking to gather the largest number of articles, which were evaluated using the inclusion and exclusion criteria. After analyzing the papers, the results showed that nanocarriers offer physiological stability and safety for the transport and controlled release of drugs. They can increase solubility and selectivity against the parasite. The in vitro assays showed that the trypanocidal activity of the drug was not impaired after encapsulation. In the in vivo assays, parasitemia reduction and high survival and cure rates in animals were obtained during both phases of the disease using lower doses when compared to the standard treatment. The scoping review showed that nanocarriers are a promising alternative for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Diogo de Freitas Paiva
- Laboratory of Pharmaceutical Nanotechnology, Department of Drugs and Medications, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.d.F.P.); (A.P.d.S.M.); (D.d.A.G.); (T.d.N.); (M.S.d.S.d.B.M.)
| | - Ana Paula dos Santos Matos
- Laboratory of Pharmaceutical Nanotechnology, Department of Drugs and Medications, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.d.F.P.); (A.P.d.S.M.); (D.d.A.G.); (T.d.N.); (M.S.d.S.d.B.M.)
| | - Denise de Abreu Garófalo
- Laboratory of Pharmaceutical Nanotechnology, Department of Drugs and Medications, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.d.F.P.); (A.P.d.S.M.); (D.d.A.G.); (T.d.N.); (M.S.d.S.d.B.M.)
| | - Tatielle do Nascimento
- Laboratory of Pharmaceutical Nanotechnology, Department of Drugs and Medications, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.d.F.P.); (A.P.d.S.M.); (D.d.A.G.); (T.d.N.); (M.S.d.S.d.B.M.)
| | - Mariana Sato de Souza de Bustamante Monteiro
- Laboratory of Pharmaceutical Nanotechnology, Department of Drugs and Medications, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.d.F.P.); (A.P.d.S.M.); (D.d.A.G.); (T.d.N.); (M.S.d.S.d.B.M.)
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute (IEN), University Campus of the Federal University of Rio de Janeiro, Rio de Janeiro 21941-906, Brazil;
| | - Eduardo Ricci-Junior
- Laboratory of Pharmaceutical Nanotechnology, Department of Drugs and Medications, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.d.F.P.); (A.P.d.S.M.); (D.d.A.G.); (T.d.N.); (M.S.d.S.d.B.M.)
| |
Collapse
|
6
|
Muraca G, Ruiz ME, Gambaro RC, Scioli-Montoto S, Sbaraglini ML, Padula G, Cisneros JS, Chain CY, Álvarez VA, Huck-Iriart C, Castro GR, Piñero MB, Marchetto MI, Alba Soto C, Islan GA, Talevi A. Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:804-818. [PMID: 37533841 PMCID: PMC10390827 DOI: 10.3762/bjnano.14.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
Chagas disease is a neglected endemic disease prevalent in Latin American countries, affecting around 8 million people. The first-line treatment, benznidazole (BNZ), is effective in the acute stage of the disease but has limited efficacy in the chronic stage, possibly because current treatment regimens do not eradicate transiently dormant Trypanosoma cruzi amastigotes. Nanostructured lipid carriers (NLC) appear to be a promising approach for delivering pharmaceutical active ingredients as they can have a positive impact on bioavailability by modifying the absorption, distribution, and elimination of the drug. In this study, BNZ was successfully loaded into nanocarriers composed of myristyl myristate/Crodamol oil/poloxamer 188 prepared by ultrasonication. A stable NLC formulation was obtained, with ≈80% encapsulation efficiency (%EE) and a biphasic drug release profile with an initial burst release followed by a prolonged phase. The hydrodynamic average diameter and zeta potential of NLC obtained by dynamic light scattering were approximately 150 nm and -13 mV, respectively, while spherical and well-distributed nanoparticles were observed by transmission electron microscopy. Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and small-angle X-ray scattering analyses of the nanoparticles indicated that BNZ might be dispersed in the nanoparticle matrix in an amorphous state. The mean size, zeta potential, polydispersity index, and %EE of the formulation remained stable for at least six months. The hemolytic effect of the nanoparticles was insignificant compared to that of the positive lysis control. The nanoparticle formulation exhibited similar performance in vitro against T. cruzi compared to free BNZ. No formulation-related cytotoxic effects were observed on either Vero or CHO cells. Moreover, BNZ showed a 50% reduction in CHO cell viability at 125 µg/mL, whereas NLC-BNZ and non-loaded NLC did not exert a significant effect on cell viability at the same concentration. These results show potential for the development of new nanomedicines against T. cruzi.
Collapse
|
7
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Arrua EC, Hartwig O, Loretz B, Murgia X, Ho DK, Bastiat G, Lehr CM, Salomón CJ. Formulation of benznidazole-lipid nanocapsules: Drug release, permeability, biocompatibility, and stability studies. Int J Pharm 2023:123120. [PMID: 37307960 DOI: 10.1016/j.ijpharm.2023.123120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Benznidazole, a poorly soluble in water drug, is the first-line medication for the treatment of Chagas disease, but long treatment periods at high dosages cause several adverse effects with insufficient activity in the chronic phase. According to these facts, there is a serious need for novel benznidazole formulations for improving the chemotherapy of Chagas disease. Thus, this work aimed to incorporate benznidazole into lipid nanocapsules for improving its solubility, dissolution rate in different media, and permeability. Lipid nanocapsules were prepared by the phase inversion technique and were fully characterized. Three formulations were obtained with a diameter of 30, 50, and 100 nm and monomodal size distribution with a low polydispersity index and almost neutral zeta potential. Drug encapsulation efficiency was between 83 and 92% and the drug loading was between 0.66 and 1.04%. Loaded formulations were stable under storage for one year at 4 °C. Lipid nanocapsules were found to protect benznidazole in simulated gastric fluid and provide a sustained release platform for the drug in a simulated intestinal fluid containing pancreatic enzymes. The small size and the almost neutral surface charge of these lipid nanocarriers improved their penetration through mucus and such formulations showed a reduced chemical interaction with gastric mucin glycoproteins. LNCs. The incorporation of benznidazole in lipid nanocapsules improved the drug permeability across intestinal epithelium by 10-fold compared with the non-encapsulated drug while the exposure of the cell monolayers to these nanoformulations did not affect the integrity of the epithelium.
Collapse
Affiliation(s)
- Eva C Arrua
- Institute of Chemistry, IQUIR-CONICET, National Council Research, Suipacha 531, 2000 Rosario, Argentina
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany; Pharmacy Department, Faculty of Pharmaceutical and Biochemical Sciences, National University of Rosario, Suipacha, 531, 2000 Rosario, Argentina
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany
| | - Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany
| | - Guillaume Bastiat
- LUNAM Université, Micro et Nanomédecines Biomimétiques, F-49933, Angers, France and Inserm, U1066 IBS-CHU, 4 rue Larrey, F-49933 Angers Cédex 9, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| | - Claudio J Salomón
- Institute of Chemistry, IQUIR-CONICET, National Council Research, Suipacha 531, 2000 Rosario, Argentina; Pharmacy Department, Faculty of Pharmaceutical and Biochemical Sciences, National University of Rosario, Suipacha, 531, 2000 Rosario, Argentina.
| |
Collapse
|
9
|
Dutra da Silva A, Fracasso M, Bottari NB, Gundel S, Ourique AF, Assmann CE, Ferreira DASP, Castro MFV, Reichert KP, de Souza LAF, da Veiga ML, da Rocha MIUM, Monteiro SG, Morsch VM, Chitolina Schetinger MR, da Silva AS. Trypanosoma cruzi: Does the intake of nanoencapsulated benznidazole control acute infections? Exp Parasitol 2023; 249:108520. [PMID: 37001581 DOI: 10.1016/j.exppara.2023.108520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Chagas Disease (CD) affects around eight million people worldwide. It is considered a neglected disease that presents few treatment options with efficacy only in the acute phase. Nanoparticles have many positive qualities for treating parasite infections and may be effectively and widely employed in clinical medicine. This research aimed to evaluate the nanoencapsulated benznidazole treatment in animals experimentally infected with Trypanosoma cruzi. To analyze the treatment efficacy, we evaluated survival during thirty days, parasitemia, genotoxicity, and heart and liver histopathology. Thirty-five female Swiss mice were organized into seven groups characterizing a dose curve: A - Negative control (uninfected animals), B - Positive control (infected animals), C - Benznidazole (BNZ) 100 mg/kg (infected animals), D - 5 mg/kg Benznidazole nanocapsules (NBNZ) (infected animals), E - 10 mg/kg Benznidazole nanocapsules (infected animals), F - 15 mg/kg Benznidazole nanocapsules (infected animals), G - 20 mg/kg Benznidazole nanocapsules (infected animals). The animals were infected with the Y strain of T. cruzi intraperitoneally. The treatment was administered for eight days by oral gavage. It was possible to observe that the treatment with the highest NBNZ dose presented efficacy similar to the standard benznidazole drug. The 20 mg/kg NBNZ dose was able to reduce parasitemia, increase survival, and drastically reduce heart and liver tissue damage compared to the 100 mg/kg BNZ dose. Moreover, it showed a lower DNA damage index than the BNZ treatment. In conclusion, the nanoencapsulation of BNZ promotes an improvement in parasite proliferation control with a five times smaller dose relative to the standard dose of free BNZ, thus demonstrating to be a potential innovative therapy for CD.
Collapse
Affiliation(s)
- Aniélen Dutra da Silva
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Mateus Fracasso
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Nathieli B Bottari
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Samanta Gundel
- Ciências das Saúde, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline F Ourique
- Ciências das Saúde, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | - Charles E Assmann
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Danielle A S P Ferreira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Milagros F V Castro
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Karine P Reichert
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Marcelo L da Veiga
- Departamento de Morfologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Izabel U M da Rocha
- Departamento de Morfologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Silvia G Monteiro
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vera M Morsch
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aleksandro S da Silva
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Departamento de Zootecnia, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil.
| |
Collapse
|
10
|
Arrua EC, Hartwig O, Loretz B, Goicoechea H, Murgia X, Lehr CM, Salomon CJ. Improving the oral delivery of benznidazole nanoparticles by optimizing the formulation parameters through a design of experiment and optimization strategy. Colloids Surf B Biointerfaces 2022; 217:112678. [PMID: 35816885 DOI: 10.1016/j.colsurfb.2022.112678] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Chagas disease is a neglected tropical disease affecting the American continent and also some regions of Europe. Benznidazole, approved by FDA, is a drug of choice but its poor aqueous solubility may lead to a low bioavailability and efficacy. Therefore, the aim of this study was to formulate nanoparticles of benznidazole for improving its solubility, dissolution and permeability. A Plackett-Burman design was applied to identify the effect of 5 factors over 4 responses. Then, a Central Composite design was applied to estimate the values of the most important factors leading to the best compromise between highest nanoprecipitation efficiency, drug solubility and lower particle size. The optimized nanoparticles were evaluated for in vitro drug release in biorelevant media, stability studies and transmission electron microscopy. Biocompatibility and permeability of nanoparticles were evaluated on the Caco-2 cell line. The findings of the optimization process indicated that concentration of drug and stabilizer influenced significantly the particle size while concentration of stabilizer and organic/water phase volume ratio mainly influenced the drug solubility. Stability studies suggested that benznidazole nanoparticles were stable after 12 months at different temperatures. Minimal interactions of those nanoparticles and mucin glycoproteins suggested favorable properties to address the intestinal mucus barrier. Cell viability studies confirmed the safety profile of the optimized formulation and showed an increased permeation through the Caco-2 cells. Thus, this study confirmed the suitability of the design of experiment and optimization approach to elucidate critical parameters influencing the quality of benznidazole nanoparticles, which could lead to a more efficient management of Chagas disease by oral route.
Collapse
Affiliation(s)
- Eva C Arrua
- Instituto de Química de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Suipacha 570, 2000 Rosario, Argentina
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Héctor Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Claudio J Salomon
- Instituto de Química de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Suipacha 570, 2000 Rosario, Argentina; Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
11
|
Alves Cunha EL, Vieira da Silva Torchelsen FK, da Silva Fonseca K, Dutra Sousa LR, Abreu Vieira PM, Carneiro CM, Mauro de Castro Pinto K, Torres RM, de Lana M. Benznidazole, itraconazole, and their combination for the treatment of chronic experimental Chagas disease in dogs. Exp Parasitol 2022; 238:108266. [PMID: 35490799 DOI: 10.1016/j.exppara.2022.108266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Treatment for Chagas disease has limited efficacy in the chronic phase. We evaluated benznidazole (BZ) and itraconazole (ITZ) individually and in association in dogs 16 months after infection with a BZ-resistant Trypanosoma cruzi strain. Four study groups (20 animals) were evaluated and treated for 60 days with BZ, ITZ, or BZ + ITZ, and maintained in parallel to control group infected and not treated (INT). All dogs were evaluated in the first, sixth, 12th, 18th and 24th months of study. Polymerase chain reaction (PCR) was negative in 2 of 3 animals in the BZ + ITZ group, 2 of 5 in the BZ group, and 4 of 5 in the ITZ group. Hemoculture performed in the 24th month was negative in all groups. Enzyme-linked immunoassay remained reactive in all treated animals. Echocardiography differentiated treated animals from control animals. Quantitative PCR analysis of cardiac tissue was negative in the BZ + ITZ and BZ groups, positive in 2 of 5 dogs in the ITZ group and in 2 of 3 dogs in the control group, but negative in colon tissue in all groups. Inflammation was significantly reduced in the right atrium and left ventricle of dogs treated with BZ + ITZ and BZ compared with those receiving ITZ alone. Fibrosis was absent in most dogs treated with BZ + ITZ, mild in those treated with BZ or ITZ alone, and intense in the control group. Parasitological and histopathological evaluations showed that BZ + ITZ treatment improved or stabilized the clinical condition of the dogs.
Collapse
Affiliation(s)
- Eleonora Lima Alves Cunha
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Ouro Preto (UFOP), CEP: 35400-000, Ouro Preto, MG, Brazil.
| | | | - Kátia da Silva Fonseca
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Lucas Resende Dutra Sousa
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Paula Melo Abreu Vieira
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Cláudia Martins Carneiro
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), CEP: 35400-000, Ouro Preto, MG, Brazil.
| | | | - Rosália Morais Torres
- Faculdade de Medicina, Departmento de Clínica Médica, Universidade de Minas Gerais (UFMG), Av. Alfredo Balena, 900, CEP: 30130-100, Funcionários, Belo Horizonte, MG, Brazil.
| | - Marta de Lana
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Ouro Preto (UFOP), CEP: 35400-000, Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), CEP: 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
12
|
Jackson Y, Wyssa B, Chappuis F. Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas' disease. J Antimicrob Chemother 2021; 75:690-696. [PMID: 31754690 PMCID: PMC7021088 DOI: 10.1093/jac/dkz473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Current options for Chagas' disease treatment are restricted to benznidazole and nifurtimox. To the best of our knowledge, no study has ever compared their tolerance in adults in a non-endemic country. OBJECTIVES To compare the completion rates and drug tolerance in a cohort of patients treated according to current guidelines. PATIENTS AND METHODS We analysed the medical records of all Chagas' disease patients aged 18 years or over who started antiparasitic treatment at the Geneva University Hospitals, Switzerland, from 2008 to 2016. We recorded treatment duration and all adverse events. RESULTS We included 176 patients, 92 and 84 of whom received benznidazole or nifurtimox, respectively. The overall treatment completion rate was 62.5%, without a significant difference between the groups (P=0.436). Most patients (89.8%) suffered at least one adverse event. Those receiving nifurtimox had more events (6.2 versus 3.5, P<0.001). Mucocutaneous symptoms predominated in the benznidazole group, whereas digestive symptoms were most frequent with nifurtimox. Neuropsychiatric events frequently occurred in both groups, most notably in patients receiving nifurtimox. Arthralgia, dyspnoea, sensitive neuropathy and pruritus were independent predictors of treatment interruption. CONCLUSIONS Currently recommended drug regimens for Chagas' disease are not well tolerated and entail frequent treatment discontinuation irrespective of the drug used. This highlights the need to improve treatment tolerance in adults with Chagas' disease with new therapeutic options.
Collapse
Affiliation(s)
- Yves Jackson
- Division of Primary Care Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle Perret Gentil 6, 1211 Geneva 14, Switzerland
| | - Baptiste Wyssa
- School of Medicine, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - François Chappuis
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle Perret Gentil 6, 1211 Geneva 14, Switzerland
| |
Collapse
|
13
|
New Trimethoprim-Like Molecules: Bacteriological Evaluation and Insights into Their Action. Antibiotics (Basel) 2021; 10:antibiotics10060709. [PMID: 34204647 PMCID: PMC8231229 DOI: 10.3390/antibiotics10060709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
This work reports a detailed characterization of the antimicrobial profile of two trimethoprim-like molecules (compounds 1a and 1b) identified in previous studies. Both molecules displayed remarkable antimicrobial activity, particularly when combined with sulfamethoxazole. In disk diffusion assays on Petri dishes, compounds 1a and 1b showed synergistic effects with colistin. Specifically, in combinations with low concentrations of colistin, very large increases in the activities of compounds 1a and 1b were determined, as demonstrated by alterations in the kinetics of bacterial growth despite only slight changes in the fractional inhibitory concentration index. The effect of colistin may be to increase the rate of antibiotic entry while reducing efflux pump activity. Compounds 1a and 1b were susceptible to extrusion by efflux pumps, whereas the inhibitor phenylalanine arginyl β-naphthylamide (PAβN) exerted effects similar to those of colistin. The interactions between the target enzyme (dihydrofolate reductase), the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH), and the studied molecules were explored using enzymology tools and computational chemistry. A model based on docking results is reported.
Collapse
|
14
|
Tambjamines and Prodiginines: Biocidal Activity against Trypanosoma cruzi. Pharmaceutics 2021; 13:pharmaceutics13050705. [PMID: 34065993 PMCID: PMC8151848 DOI: 10.3390/pharmaceutics13050705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/04/2022] Open
Abstract
The aim of this work was to explore new therapeutic options against Chagas disease by the in vitro analysis of the biocidal activities of several tambjamine and prodiginine derivatives, against the Trypanosoma cruzi CLB strain (DTU TcVI). The compounds were initially screened against epimastigotes. The five more active compounds were assayed in intracellular forms. The tambjamine MM3 and both synthetic and natural prodigiosins displayed the highest trypanocidal profiles, with IC50 values of 4.52, 0.46, and 0.54 µM for epimastigotes and 1.9, 0.57, and 0.1 µM for trypomastigotes/amastigotes, respectively. Moreover, the combination treatment of these molecules with benznidazole showed no synergism. Finally, oxygen consumption inhibition determinations performed using high-resolution respirometry, revealed a potent effect of prodigiosin on parasite respiration (73% of inhibition at ½ IC50), suggesting that its mode of action involves the mitochondria. Moreover, its promising selectivity index (50) pointed out an interesting trypanocidal potential and highlighted the value of prodigiosin as a new candidate to fight Chagas disease.
Collapse
|
15
|
Li X, Yi S, Scariot DB, Martinez SJ, Falk BA, Olson CL, Romano PS, Scott EA, Engman DM. Nanocarrier-enhanced intracellular delivery of benznidazole for treatment of Trypanosoma cruzi infection. JCI Insight 2021; 6:145523. [PMID: 33986194 PMCID: PMC8262286 DOI: 10.1172/jci.insight.145523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Chagas disease is caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi), an intracellular pathogen that causes significant morbidity and death among millions in the Americas from Canada to Argentina. Current therapy involves oral administration of the nitroimidazole benznidazole (BNZ), which has serious side effects that often necessitate cessation of treatment. To both avoid off-target side effects and reduce the necessary dosage of BNZ, we packaged the drug within poly(ethylene glycol)-block-poly(propylene sulfide) polymersomes (BNZ-PSs). We show that these vesicular nanocarriers enhanced intracellular delivery to phagocytic cells and tested this formulation in a mouse model of T. cruzi infection. BNZ-PS is not only nontoxic but also significantly more potent than free BNZ, effectively reducing parasitemia, intracellular infection, and tissue parasitosis at a 466-fold lower dose of BNZ. We conclude that BNZ-PS was superior to BNZ for treatment of T. cruzi infection in mice and that further modifications of this nanocarrier formulation could lead to a wide range of custom controlled delivery applications for improved treatment of Chagas disease in humans.
Collapse
Affiliation(s)
- Xiaomo Li
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
| | - Sijia Yi
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, Illinois, USA
| | - Débora B. Scariot
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, Illinois, USA
| | - Santiago J. Martinez
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Institute of Histology and Embryology, “Dr. Mario H. Burgos”, IHEM-CONICET, National University of Cuyo, Mendoza, Argentina
| | - Ben A. Falk
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Cheryl L. Olson
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
| | - Patricia S. Romano
- Institute of Histology and Embryology, “Dr. Mario H. Burgos”, IHEM-CONICET, National University of Cuyo, Mendoza, Argentina
| | - Evan A. Scott
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, Illinois, USA
| | - David M. Engman
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
Rial MS, Seremeta KP, Esteva MI, Búa J, Salomon CJ, Fichera LE. In vitro studies and preclinical evaluation of benznidazole microparticles in the acute Trypanosoma cruzi murine model. Parasitology 2021; 148:566-575. [PMID: 33298212 PMCID: PMC10950374 DOI: 10.1017/s0031182020002310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 01/28/2023]
Abstract
Chagas disease is a serious parasitic infection caused by Trypanosoma cruzi. Unfortunately, the current chemotherapeutic tools are not enough to combat the infection. The aim of this study was to evaluate the trypanocidal activity of benznidazole-loaded microparticles during the acute phase of Chagas infection in an experimental murine model. Microparticles were prepared by spray-drying using copolymers derived from esters of acrylic and methacrylic acids as carriers. Dissolution efficiency of the formulations was up to 3.80-fold greater than that of raw benznidazole. Stability assay showed no significant difference (P > 0.05) in the loading capacity of microparticles for 3 years. Cell cultures showed no visible morphological changes or destabilization of the cell membrane nor haemolysis was observed in defibrinated human blood after microparticles treatment. Mice with acute lethal infection survived 100% after 30 days of treatment with benznidazole microparticles (50 mg kg-1 day-1). Furthermore, no detectable parasite load measured by quantitative polymerase chain reaction and lower levels of T. cruzi-specific antibodies by enzyme-linked immunosorbent assay were found in those mice. A significant decrease in the inflammation of heart tissue after treatment with these microparticles was observed, in comparison with the inflammatory damage observed in both infected mice treated with raw benznidazole and untreated infected mice. Therefore, these polymeric formulations are an attractive approach to treat Chagas disease.
Collapse
Affiliation(s)
- Marcela S. Rial
- Instituto Nacional de Parasitología Dr M. Fatala Chaben, ANLIS CG Malbrán, Ministerio de Salud, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina
| | - Katia P. Seremeta
- Departamento de Ciencias Básicas y Aplicadas, Universidad Nacional del Chaco Austral, Cte. Fernández 755, 3700, Pcia. Roque Sáenz Peña, Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mónica I. Esteva
- Instituto Nacional de Parasitología Dr M. Fatala Chaben, ANLIS CG Malbrán, Ministerio de Salud, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina
| | - Jacqueline Búa
- Instituto Nacional de Parasitología Dr M. Fatala Chaben, ANLIS CG Malbrán, Ministerio de Salud, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudio J. Salomon
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, 2000, Rosario, Argentina
- Área Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura E. Fichera
- Instituto Nacional de Parasitología Dr M. Fatala Chaben, ANLIS CG Malbrán, Ministerio de Salud, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
J B, M BM, Chanda K. An Overview on the Therapeutics of Neglected Infectious Diseases-Leishmaniasis and Chagas Diseases. Front Chem 2021; 9:622286. [PMID: 33777895 PMCID: PMC7994601 DOI: 10.3389/fchem.2021.622286] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Neglected tropical diseases (NTDs) as termed by WHO include twenty different infectious diseases that are caused by bacteria, viruses, and parasites. Among these NTDs, Chagas disease and leishmaniasis are reported to cause high mortality in humans and are further associated with the limitations of existing drugs like severe toxicity and drug resistance. The above hitches have rendered researchers to focus on developing alternatives and novel therapeutics for the treatment of these diseases. In the past decade, several target-based drugs have emerged, which focus on specific biochemical pathways of the causative parasites. For leishmaniasis, the targets such as nucleoside analogs, inhibitors targeting nucleoside phosphate kinases of the parasite’s purine salvage pathway, 20S proteasome of Leishmania, mitochondria, and the associated proteins are reviewed along with the chemical structures of potential drug candidates. Similarly, in case of therapeutics for Chagas disease, several target-based drug candidates targeting sterol biosynthetic pathway (C14-ademethylase), L-cysteine protease, heme peroxidation, mitochondria, farnesyl pyrophosphate, etc., which are vital and unique to the causative parasite are discussed. Moreover, the use of nano-based formulations towards the therapeutics of the above diseases is also discussed.
Collapse
Affiliation(s)
- Brindha J
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Balamurali M M
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
18
|
Barbosa JMC, Nicoletti CD, da Silva PB, Melo TG, Futuro DO, Ferreira VF, Salomão K. Characterization and trypanocidal activity of a β-lapachone-containing drug carrier. PLoS One 2021; 16:e0246811. [PMID: 33661933 PMCID: PMC7932091 DOI: 10.1371/journal.pone.0246811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of Chagas disease (CD), a neglected parasitic condition caused by Trypanosoma cruzi, is still based on only two drugs, nifurtimox (Nif) and benznidazole (Bz), both of which have limited efficacy in the late chronic phase and induce severe side effects. This scenario justifies the continuous search for alternative drugs, and in this context, the natural naphthoquinone β-lapachone (β-Lap) and its derivatives have demonstrated important trypanocidal activities. Unfortunately, the decrease in trypanocidal activity in the blood, high toxicity to mammalian cells and low water solubility of β-Lap limit its systemic administration and, consequently, clinical applications. For this reason, carriers as drug delivery systems can strategically maximize the therapeutic effects of this drug, overcoming the above mentioned restrictions. Accordingly, the aim of this study is to investigate the in vitro anti-T. cruzi effects of β-Lap encapsulated in2-hydroxypropyl-β-cyclodextrin (2HP-β-CD) and its potential toxicity to mammalian cells.
Collapse
Affiliation(s)
- Juliana M. C. Barbosa
- Laboratório de Biologia Celular Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline D. Nicoletti
- Laboratório de Síntese Orgânica Aplicada, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Patrícia B. da Silva
- Laboratório de Biologia Celular Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana G. Melo
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora O. Futuro
- Laboratório de Síntese Orgânica Aplicada, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Vitor F. Ferreira
- Laboratório de Síntese Orgânica Aplicada, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
19
|
Muraca G, Berti IR, Sbaraglini ML, Fávaro WJ, Durán N, Castro GR, Talevi A. Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Front Chem 2020; 8:601151. [PMID: 33324615 PMCID: PMC7726426 DOI: 10.3389/fchem.2020.601151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatid-caused conditions (African trypanosomiasis, Chagas disease, and leishmaniasis) are neglected tropical infectious diseases that mainly affect socioeconomically vulnerable populations. The available therapeutics display substantial limitations, among them limited efficacy, safety issues, drug resistance, and, in some cases, inconvenient routes of administration, which made the scenarios with insufficient health infrastructure settings inconvenient. Pharmaceutical nanocarriers may provide solutions to some of these obstacles, improving the efficacy-safety balance and tolerability to therapeutic interventions. Here, we overview the state of the art of therapeutics for trypanosomatid-caused diseases (including approved drugs and drugs undergoing clinical trials) and the literature on nanolipid pharmaceutical carriers encapsulating approved and non-approved drugs for these diseases. Numerous studies have focused on the obtention and preclinical assessment of lipid nanocarriers, particularly those addressing the two currently most challenging trypanosomatid-caused diseases, Chagas disease, and leishmaniasis. In general, in vitro and in vivo studies suggest that delivering the drugs using such type of nanocarriers could improve the efficacy-safety balance, diminishing cytotoxicity and organ toxicity, especially in leishmaniasis. This constitutes a very relevant outcome, as it opens the possibility to extended treatment regimens and improved compliance. Despite these advances, last-generation nanosystems, such as targeted nanocarriers and hybrid systems, have still not been extensively explored in the field of trypanosomatid-caused conditions and represent promising opportunities for future developments. The potential use of nanotechnology in extended, well-tolerated drug regimens is particularly interesting in the light of recent descriptions of quiescent/dormant stages of Leishmania and Trypanosoma cruzi, which have been linked to therapeutic failure.
Collapse
Affiliation(s)
- Giuliana Muraca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Wagner J. Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
20
|
Cucurbit[7]uril as a possible nanocarrier for the antichagasic benznidazole: a computational approach. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01014-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Martínez-Peinado N, Cortes-Serra N, Losada-Galvan I, Alonso-Vega C, Urbina JA, Rodríguez A, VandeBerg JL, Pinazo MJ, Gascon J, Alonso-Padilla J. Emerging agents for the treatment of Chagas disease: what is in the preclinical and clinical development pipeline? Expert Opin Investig Drugs 2020; 29:947-959. [PMID: 32635780 DOI: 10.1080/13543784.2020.1793955] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Chagas disease treatment relies on the lengthy administration of benznidazole and/or nifurtimox, which have frequent toxicity associated. The disease, caused by the parasite Trypanosoma cruzi, is mostly diagnosed at its chronic phase when life-threatening symptomatology manifest in approximately 30% of those infected. Considering that both available drugs have variable efficacy by then, and there are over 6 million people infected, there is a pressing need to find safer, more efficacious drugs. AREAS COVERED We provide an updated view of the path to achieve the aforementioned goal. From state-of-the-art in vitro and in vivo assays based on genetically engineered parasites that have allowed high throughput screenings of large chemical collections, to the unfulfilled requirement of having treatment-response biomarkers for the clinical evaluation of drugs. In between, we describe the most promising pre-clinical hits and the landscape of clinical trials with new drugs or new regimens of existing ones. Moreover, the use of monkey models to reduce the pre-clinical to clinical attrition rate is discussed. EXPERT OPINION In addition to the necessary research on new drugs and much awaited biomarkers of treatment efficacy, a key step will be to generalize access to diagnosis and treatment and maximize efforts to impede transmission.
Collapse
Affiliation(s)
- Nieves Martínez-Peinado
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Nuria Cortes-Serra
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Irene Losada-Galvan
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Cristina Alonso-Vega
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Julio A Urbina
- Venezuelan Institute for Scientific Research , Caracas, Venezuela
| | - Ana Rodríguez
- Department of Microbiology, New York University School of Medicine , New York, NY, USA
| | - John L VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, and Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley , Brownsville/Harlingen/Edinburg, TX, USA
| | - Maria-Jesus Pinazo
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Joaquim Gascon
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Julio Alonso-Padilla
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| |
Collapse
|
22
|
Rial MS, Arrúa EC, Natale MA, Bua J, Esteva MI, Prado NG, Laucella SA, Salomon CJ, Fichera LE. Efficacy of continuous versus intermittent administration of nanoformulated benznidazole during the chronic phase of Trypanosoma cruzi Nicaragua infection in mice. J Antimicrob Chemother 2020; 75:1906-1916. [DOI: 10.1093/jac/dkaa101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Benznidazole and nifurtimox are effective drugs used to treat Chagas’ disease; however, their administration in patients in the chronic phase of the disease is still limited, mainly due to their limited efficacy in the later chronic stage of the disease and to the adverse effects related to these drugs.
Objectives
To evaluate the effect of low doses of nanoformulated benznidazole using a chronic model of Trypanosoma cruzi Nicaragua infection in C57BL/6J mice.
Methods
Nanoformulations were administered in two different schemes: one daily dose for 30 days or one dose every 7 days, 13 times.
Results
Both treatment schemes showed promising outcomes, such as the elimination of parasitaemia, a reduction in the levels of T. cruzi-specific antibodies and a reduction in T. cruzi-specific IFN-γ-producing cells, as well as an improvement in electrocardiographic alterations and a reduction in inflammation and fibrosis in the heart compared with untreated T. cruzi-infected animals. These results were also compared with those from our previous work on benznidazole administration, which was shown to be effective in the same chronic model.
Conclusions
In this experimental model, intermittently administered benznidazole nanoformulations were as effective as those administered continuously; however, the total dose administered in the intermittent scheme was lower, indicating a promising therapeutic approach to Chagas’ disease.
Collapse
Affiliation(s)
- M S Rial
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - E C Arrúa
- Area Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - M A Natale
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J Bua
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M I Esteva
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - N G Prado
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - S A Laucella
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - C J Salomon
- Area Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - L E Fichera
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Gadade DD, Pekamwar SS. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Adv Pharm Bull 2020; 10:166-183. [PMID: 32373486 PMCID: PMC7191229 DOI: 10.34172/apb.2020.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colloidal nanoparticulate technology has been described in the literature as a versatile drug delivery system. But it possesses some inherent lacunae in their formulation. Cyclodextrins (CDs) have been extensively reported for the solubility enhancement of poorly water-soluble drugs. The CDs can cause intervention in aspects related to nanoparticles (NPs) that include improving drug loading in nano-system, improving stability, site-specific/targeted drug delivery, improving solubility profile and absorption of the drug in nanosystem with consequent improvement in bioavailability, with the possibility of controlled release, safety and efficacy. They find application in for simultaneous diagnosis and therapeutics for better treatment procedures. The current communication is focused on the application of CDs to overcome troubles in nanoparticulate formulation and enhancement of their performance. It also envisages the theranostic aspects of CDs.
Collapse
Affiliation(s)
- Dipak Dilip Gadade
- Department of Pharmaceutics, Shri Bhagwan College of Pharmacy, CIDCO, N-6, Dr. Y.S. Khedkar Marg, Aurangabad-431001, India.,School of Pharmacy, SRTM University,Vishnupuri, Nanded- 431606, India
| | | |
Collapse
|
24
|
Rudilla H, Pérez-Guillén I, Rabanal F, Sierra JM, Vinuesa T, Viñas M. Novel synthetic polymyxins kill Gram-positive bacteria. J Antimicrob Chemother 2019; 73:3385-3390. [PMID: 30215733 DOI: 10.1093/jac/dky366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/06/2018] [Indexed: 01/11/2023] Open
Abstract
Background Staphylococcus aureus, including 'superbug' MRSA, is a major cause of nosocomial infections. In the European Union, up to 171 200 new nosocomial MRSA infections are acquired annually, and in the USA S. aureus causes more deaths than HIV/AIDS and tuberculosis combined. MRSA is also the first group of pathogens that infect the pulmonary tract in young patients with cystic fibrosis. Objectives We describe two newly developed and synthesized colistin (polymyxin E)-inspired molecules. Methods A collection of several isolates of S. aureus [including MRSA and vancomycin-resistant S. aureus (VRSA)] was tested. To check the antimicrobial activity, we performed time-kill curves, growth curves, biofilm eradication, toxicity and isothermal titration calorimetry. Results Both peptides showed high antimicrobial activities (MIC 4 mg/L) and low relative toxicities (selectivity index close to 23). Conclusions Successful production of polymyxin-scaffold molecules active against S. aureus, both MRSA and VRSA, opens up new approaches to the treatment of these complicated infections.
Collapse
Affiliation(s)
- Héctor Rudilla
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus Bellvitge, University of Barcelona, Barcelona, Spain
| | - Isabel Pérez-Guillén
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus Bellvitge, University of Barcelona, Barcelona, Spain
| | - Francesc Rabanal
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, 08907 Hospitalet, Barcelona, Spain
| | - Josep María Sierra
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus Bellvitge, University of Barcelona, Barcelona, Spain
| | - Teresa Vinuesa
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus Bellvitge, University of Barcelona, Barcelona, Spain
| | - Miguel Viñas
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus Bellvitge, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Arrúa EC, Seremeta KP, Bedogni GR, Okulik NB, Salomon CJ. Nanocarriers for effective delivery of benznidazole and nifurtimox in the treatment of chagas disease: A review. Acta Trop 2019; 198:105080. [PMID: 31299283 DOI: 10.1016/j.actatropica.2019.105080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of infectious diseases prevalent in countries with tropical and subtropical climate that affect the poorest individuals and produce high chronic disability associated with serious problems for the health system and socioeconomic development. Chagas disease or American trypanosomiasis is included on the NTDs list. However, even though this disease affects more than 10 million people, mostly in Latin America, causing the death of over 10,000 people every year, only two drugs are approved for its treatment, benznidazole and nifurtimox. These antiparasitic agents were developed almost half a century ago and present several biopharmaceutical disadvantages such as low aqueous solubility and permeability limiting their bioavailability. In addition, both therapeutic agents are available only as tablets and a liquid pediatric formulation is still lacking. Therefore, novel pharmaceutical strategies to optimize the pharmacotherapy of Chagas disease are urgently required. In this regard, nanotechnological approaches may be a crucial alternative for the delivery of both drugs ensuring an effective pharmacotherapy although the successful bench-to-bedside translation remains a major challenge. The present work reviews in detail the formulation and in-vitro/in-vivo analysis of different nanoformulations of nifurtimox and benznidazole in order to enhance their solubility, dissolution, bioavailability and trypanocidal activity.
Collapse
|
26
|
Herráez R, Mur A, Merlos A, Viñas M, Vinuesa T. Using prodigiosin against some gram-positive and gram-negative bacteria and Trypanosoma cruzi. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190001. [PMID: 31210760 PMCID: PMC6553799 DOI: 10.1590/1678-9199-jvatitd-2019-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/02/2019] [Indexed: 07/31/2023] Open
Abstract
Background This work aimed to explore the action of natural prodigiosin on both bacterial organisms and Trypanosoma cruzi cells. Methods Natural prodigiosin pigment was extracted and purified from cultures of Serratia marcescens. Two media, peanut broth and peptone glycerol broth, both recommended in the literature for prodigiosin production, were compared. The prodigiosin obtained was employed to explore its antimicrobial properties against both bacteria and Trypanosoma cruzi cells. Results Peanut broth yielded four times more prodigiosin. The prodigiosin showed remarkable activity (minimal inhibitory concentrations in the range of 2-8 µM for bacteria and half maximal inhibitory concentration of 0.6 µM for Trypanosoma cruzi). In fact, the prodigiosin concentration required to inhibit parasite growth was as low as 0.25 mg/l versus 4.9 mg/l of benznidazole required. Furthermore, atomic force microscopy revealed marked morphological alterations in treated epimastigote forms, although no pore-formation activity was detected in protein-free environments. Conclusions This work demonstrates the potential usefulness of prodigiosin against some gram-positive and gram-negative bacteria and Trypanosoma cruzi although further studies must be done in order to assess its value as a candidate molecule.
Collapse
Affiliation(s)
- Rocío Herráez
- Department of Pathology and Experimental Therapeutics, Medical School and IDIBELL, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Mur
- Department of Pathology and Experimental Therapeutics, Medical School and IDIBELL, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alexandra Merlos
- Department of Pathology and Experimental Therapeutics, Medical School and IDIBELL, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Viñas
- Department of Pathology and Experimental Therapeutics, Medical School and IDIBELL, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Vinuesa
- Department of Pathology and Experimental Therapeutics, Medical School and IDIBELL, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
27
|
dos Santos Silva AM, de Caland LB, de Melo Doro PN, de S. L. Oliveira ALC, de Araújo-Júnior RF, Fernandes-Pedrosa MF, do Egito EST, da Silva-Junior AA. Hydrophilic and hydrophobic polymeric benznidazole-loaded nanoparticles: Physicochemical properties and in vitro antitumor efficacy. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Volpedo G, Costa L, Ryan N, Halsey G, Satoskar A, Oghumu S. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J Venom Anim Toxins Incl Trop Dis 2019; 25:e144118. [PMID: 31130996 PMCID: PMC6483407 DOI: 10.1590/1678-9199-jvatitd-1441-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Neglected Tropical Diseases (NTDs) comprise of a group of seventeen infectious
conditions endemic in many developing countries. Among these diseases are three
of protozoan origin, namely leishmaniasis, Chagas disease, and African
trypanosomiasis, caused by the parasites Leishmania spp.,
Trypanosoma cruzi, and Trypanosoma brucei
respectively. These diseases have their own unique challenges which are
associated with the development of effective prevention and treatment methods.
Collectively, these parasitic diseases cause more deaths worldwide than all
other NTDs combined. Moreover, many current therapies for these diseases are
limited in their efficacy, possessing harmful or potentially fatal side effects
at therapeutic doses. It is therefore imperative that new treatment strategies
for these parasitic diseases are developed. Nanoparticulate drug delivery
systems have emerged as a promising area of research in the therapy and
prevention of NTDs. These delivery systems provide novel mechanisms for targeted
drug delivery within the host, maximizing therapeutic effects while minimizing
systemic side effects. Currently approved drugs may also be repackaged using
these delivery systems, allowing for their potential use in NTDs of protozoan
origin. Current research on these novel delivery systems has provided insight
into possible indications, with evidence demonstrating their improved ability to
specifically target pathogens, penetrate barriers within the host, and reduce
toxicity with lower dose regimens. In this review, we will examine current
research on these delivery systems, focusing on applications in the treatment of
leishmaniasis, Chagas disease, and African trypanosomiasis. Nanoparticulate
systems present a unique therapeutic alternative through the repositioning of
existing medications and directed drug delivery.
Collapse
Affiliation(s)
- Greta Volpedo
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Lourena Costa
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Infectologia e Medicina Tropical, Belo Horizonte, MG, Brasil
| | - Nathan Ryan
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Gregory Halsey
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Abhay Satoskar
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Steve Oghumu
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| |
Collapse
|
29
|
Development and characterization of benznidazole nano- and microparticles: A new tool for pediatric treatment of Chagas disease? Colloids Surf B Biointerfaces 2019; 177:169-177. [PMID: 30731393 DOI: 10.1016/j.colsurfb.2019.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
Benznidazole (BNZ) is the drug of choice for the treatment of Chagas disease in many countries. However, its low water solubility produces low and/or variable oral bioavailability. Thus, the aim of this work was to formulate micro- and nanoparticles based on Eudragit® RS PO and Eudragit® RL PO as a convenient approach to increase the dissolution rate of BNZ. The microparticles were obtained by means of spray-drying process while the nanoparticles were prepared through the nanoprecipitation technique and further freeze-drying. The results indicated that nanoparticles were obtained in 86% yield while microparticles were obtained in 68% yield. In both cases, the encapsulation efficiency of particles was greater than 78% while drug loading capacity was nearly 24% w/w and 18% w/w, after spray-drying and freeze-drying procedures, respectively. Images of scanning electron microscopy showed that the particles obtained by spray-drying and freeze-drying were in the micrometer and nanometer scale, respectively. FT-IR spectra of BNZ-loaded particles obtained by both methods showed characteristic bands of BNZ confirming that part of drug remained on their surface. Thermal analysis revealed that the drug crystallinity after both methods decreased. Physical stability evaluation of the nanoparticles confirmed that Pluronic® F68 was suitable to keep the particles size in a range of 300 nm after 70 days storage at 4 ± 2 °C. In-vitro release studies showed increased dissolution rate of drug from the particles obtained by both methods respect to untreated BNZ. The kinetics of drug release in acid media followed the Higuchi kinetics indicating drug diffusion mechanism from particles.
Collapse
|
30
|
Rudilla H, Merlos A, Sans-Serramitjana E, Fusté E, Sierra JM, Zalacaín A, Vinuesa T, Viñas M. New and old tools to evaluate new antimicrobial peptides. AIMS Microbiol 2018; 4:522-540. [PMID: 31294231 PMCID: PMC6604946 DOI: 10.3934/microbiol.2018.3.522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/24/2018] [Indexed: 12/16/2022] Open
Abstract
The emergence of antimicrobial resistance due to the overuse of antimicrobials together with the existence of naturally untreatable infections well demonstrates the need for new instruments to fight microbes. Antimicrobial peptides (AMPs) are a promising family of molecules in this regard, because they abundantly occur in nature and the results of preliminary studies of their clinical potential have been encouraging. However, further progress will benefit from the standardization of research methods to assess the antimicrobial properties of AMPs. Here we review the diverse methods used to study the antimicrobial power of AMPs and recommend a pathway to explore new molecules. The use of new methodologies to quantitatively evaluate the physical effect on bacterial biofilms such as force spectroscopy and surface cell damage evaluation, constitute novel approaches to study new AMPs.
Collapse
Affiliation(s)
- Hector Rudilla
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Alexandra Merlos
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Eulàlia Sans-Serramitjana
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Ester Fusté
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Josep M Sierra
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Antonio Zalacaín
- Department of Clinical Sciences, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Teresa Vinuesa
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Miguel Viñas
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| |
Collapse
|