1
|
Jones BP, Kozel K, Alonte AJI, Llanes KKR, Juhász A, Chaudhry U, Roose S, Geldhof P, Belizario VY, Nejsum P, Stothard JR, LaCourse EJ, van Vliet AHM, Paller VGV, Betson M. Worldwide absence of canonical benzimidazole resistance-associated mutations within β-tubulin genes from Ascaris. Parasit Vectors 2024; 17:225. [PMID: 38755679 PMCID: PMC11098727 DOI: 10.1186/s13071-024-06306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The giant roundworm Ascaris is an intestinal nematode, causing ascariasis by infecting humans and pigs worldwide. Recent estimates suggest that Ascaris infects over half a billion people, with chronic infections leading to reduced growth and cognitive ability. Ascariasis affects innumerable pigs worldwide and is known to reduce production yields via decreased growth and condemnation of livers. The predominant anthelminthic drugs used to treat ascariasis are the benzimidazoles. Benzimidazoles interact with β-tubulins and block their function, and several benzimidazole resistance-associated mutations have been described in the β-tubulins of ruminant nematodes. Recent research on ascarids has shown that these canonical benzimidazole resistance-associated mutations are likely not present in the β-tubulins of Ascaris, Ascaridia or Parascaris, even in phenotypically resistant populations. METHODS To further determine the putative absence of key β-tubulin polymorphisms, we screened two β-tubulin isotypes of Ascaris, highly expressed in adult worms. Using adult and egg samples of Ascaris obtained from pigs and humans worldwide, we performed deep amplicon sequencing to look for canonical resistance-associated mutations in Ascaris β-tubulins. Subsequently, we examined these data in closer detail to study the population dynamics of Ascaris and genetic diversity within the two isotypes and tested whether genotypes appeared to partition across human and pig hosts. RESULTS In the 187 isolates, 69 genotypes were found, made up of eight haplotypes of β-tubulin isotype A and 20 haplotypes of isotype B. Single nucleotide polymorphisms were seen at 14 and 37 positions for β-tubulin isotype A and isotype B, respectively. No evidence of any canonical benzimidazole resistance-associated mutations was found in either human- or pig-derived Ascaris isolates. There was, however, a difference in the genetic diversity of each isotype and distribution of β-tubulin genotypes between human- and pig-derived Ascaris. Statistical tests of population differentiation show significant differences (p < 0.001) between pig- and human-derived worms; however, more diversity was seen between worms from different populations than worms from different hosts. CONCLUSIONS Our work suggests an absence of canonical β-tubulin mutations within Ascaris, but alternative modes of anthelminthic resistance may emerge necessitating continued genetic scrutiny alongside monitoring of drug efficacy.
Collapse
Affiliation(s)
- Ben P Jones
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, UK
| | - Kezia Kozel
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, UK
| | - Allen Jethro I Alonte
- Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Kennesa Klariz R Llanes
- Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Alexandra Juhász
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Umer Chaudhry
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, UK
- School of Veterinary Medicine, St. George's University, True Blue, West Indies, Grenada
| | - Sara Roose
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Peter Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Vicente Y Belizario
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - E James LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Arnoud H M van Vliet
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, UK
| | - Vachel Gay V Paller
- Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Martha Betson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, UK.
| |
Collapse
|
2
|
Gupta H, Sharma S, Gilyazova I, Satyamoorthy K. Molecular tools are crucial for malaria elimination. Mol Biol Rep 2024; 51:555. [PMID: 38642192 DOI: 10.1007/s11033-024-09496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
The eradication of Plasmodium parasites, responsible for malaria, is a daunting global public health task. It requires a comprehensive approach that addresses symptomatic, asymptomatic, and submicroscopic cases. Overcoming this challenge relies on harnessing the power of molecular diagnostic tools, as traditional methods like microscopy and rapid diagnostic tests fall short in detecting low parasitaemia, contributing to the persistence of malaria transmission. By precisely identifying patients of all types and effectively characterizing malaria parasites, molecular tools may emerge as indispensable allies in the pursuit of malaria elimination. Furthermore, molecular tools can also provide valuable insights into parasite diversity, drug resistance patterns, and transmission dynamics, aiding in the implementation of targeted interventions and surveillance strategies. In this review, we explore the significance of molecular tools in the pursuit of malaria elimination, shedding light on their key contributions and potential impact on public health.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Sonal Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, 450054, Russia
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| |
Collapse
|
3
|
Fola AA, He Q, Xie S, Thimmapuram J, Bhide KP, Dorman J, Ciubotariu II, Mwenda MC, Mambwe B, Mulube C, Hawela M, Norris DE, Moss WJ, Bridges DJ, Carpi G. Genomics reveals heterogeneous Plasmodium falciparum transmission and selection signals in Zambia. COMMUNICATIONS MEDICINE 2024; 4:67. [PMID: 38582941 PMCID: PMC10998850 DOI: 10.1038/s43856-024-00498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Genomic surveillance is crucial for monitoring malaria transmission and understanding parasite adaptation to interventions. Zambia lacks prior nationwide efforts in malaria genomic surveillance among African countries. METHODS We conducted genomic surveillance of Plasmodium falciparum parasites from the 2018 Malaria Indicator Survey in Zambia, a nationally representative household survey of children under five years of age. We whole-genome sequenced and analyzed 241 P. falciparum genomes from regions with varying levels of malaria transmission across Zambia and estimated genetic metrics that are informative about transmission intensity, genetic relatedness between parasites, and selection. RESULTS We provide genomic evidence of widespread within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in Zambia. Our analysis reveals country-level clustering of parasites from Zambia and neighboring regions, with distinct separation in West Africa. Within Zambia, identity by descent (IBD) relatedness analysis uncovers local spatial clustering and rare cases of long-distance sharing of closely related parasite pairs. Genomic regions with large shared IBD segments and strong positive selection signatures implicate genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Furthermore, differences in selection signatures, including drug resistance loci, are observed between eastern and western Zambian parasite populations, suggesting variable transmission intensity and ongoing drug pressure. CONCLUSIONS Our findings enhance our understanding of nationwide P. falciparum transmission in Zambia, establishing a baseline for analyzing parasite genetic metrics as they vary over time and space. These insights highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Ketaki P Bhide
- Bioinformatics Core, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Jack Dorman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Ilinca I Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Mulenga C Mwenda
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Brenda Mambwe
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Conceptor Mulube
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Moonga Hawela
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Douglas E Norris
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - William J Moss
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Brokhattingen N, Matambisso G, da Silva C, Neubauer Vickers E, Pujol A, Mbeve H, Cisteró P, Maculuve S, Cuna B, Melembe C, Ndimande N, Palmer B, García-Ulloa M, Munguambe H, Montaña-Lopez J, Nhamussua L, Simone W, Chidimatembue A, Galatas B, Guinovart C, Rovira-Vallbona E, Saúte F, Aide P, Aranda-Díaz A, Greenhouse B, Macete E, Mayor A. Genomic malaria surveillance of antenatal care users detects reduced transmission following elimination interventions in Mozambique. Nat Commun 2024; 15:2402. [PMID: 38493162 PMCID: PMC10944499 DOI: 10.1038/s41467-024-46535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Routine sampling of pregnant women at first antenatal care (ANC) visits could make Plasmodium falciparum genomic surveillance more cost-efficient and convenient in sub-Saharan Africa. We compare the genetic structure of parasite populations sampled from 289 first ANC users and 93 children from the community in Mozambique between 2015 and 2019. Samples are amplicon sequenced targeting 165 microhaplotypes and 15 drug resistance genes. Metrics of genetic diversity and relatedness, as well as the prevalence of drug resistance markers, are consistent between the two populations. In an area targeted for elimination, intra-host genetic diversity declines in both populations (p = 0.002-0.007), while for the ANC population, population genetic diversity is also lower (p = 0.0004), and genetic relatedness between infections is higher (p = 0.002) than control areas, indicating a recent reduction in the parasite population size. These results highlight the added value of genomic surveillance at ANC clinics to inform about changes in transmission beyond epidemiological data.
Collapse
Affiliation(s)
| | - Glória Matambisso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clemente da Silva
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eric Neubauer Vickers
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Arnau Pujol
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Henriques Mbeve
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sónia Maculuve
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Boaventura Cuna
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Cardoso Melembe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nelo Ndimande
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Brian Palmer
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | | | | | | | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Beatriz Galatas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | | | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- National Directorate for Public Health, Ministry of Health, Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique.
| |
Collapse
|
5
|
Mayor A, Brokhattingen N, Matambisso G, da Silva C, Vickers EN, Pujol A, Mbeve H, Cistero P, Maculuve S, Cuna B, Melembe C, Ndimande N, Palmer B, García M, Munguambe H, Lopez JM, Nhamussa L, Simone W, Chidimatembue A, Galatas B, Guinovart C, Rovira-Vallbona E, Saute F, Aide P, Aranda-Díaz A, Greenhouse B, Macete E. Genomic malaria surveillance of antenatal care users detects reduced transmission following elimination interventions in Mozambique. RESEARCH SQUARE 2023:rs.3.rs-3545903. [PMID: 38014035 PMCID: PMC10680916 DOI: 10.21203/rs.3.rs-3545903/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Routine sampling of pregnant women at first antenatal care (ANC) visits could make Plasmodium falciparum genomic surveillance more cost-efficient and convenient in sub-Saharan Africa. We compared the genetic structure of parasite populations sampled from 289 first ANC attendees and 93 children from the community in Mozambique between 2015 and 2019. Samples were amplicon sequenced targeting 165 microhaplotypes and 15 drug resistance genes. Metrics of genetic diversity and relatedness, as well as the prevalence of drug resistance markers, were consistent between the two populations. In an area targeted for elimination, intra-host genetic diversity declined in both populations (p=0.002-0.007), while for the ANC population, population genetic diversity was also lower (p=0.0004), and genetic relatedness between infections were higher (p=0.002) than control areas, indicating a recent reduction in the parasite population size. These results highlight the added value of genomic surveillance at ANC clinics to inform about changes in transmission beyond epidemiological data.
Collapse
Affiliation(s)
- Alfredo Mayor
- Barcelona Institute for Global Health / Manhiça Health Research Centre
| | | | | | | | | | - Arnau Pujol
- ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona / Centro de Investigação em Saúde da Manhiça
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Beatriz Galatas
- ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona / Centro de Investigação em Saúde da Manhiça
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Tepa AGN, Ambassa P, Ayong LS, Biapa Nya PC, Pieme CA. The Antiplasmodial Potential of Medicinal Plants Used in the Cameroonian Pharmacopoeia: An Updated Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4661753. [PMID: 36254175 PMCID: PMC9569203 DOI: 10.1155/2022/4661753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/05/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
Malaria is a real public health problem. It is the leading cause of morbidity and mortality in the world. Research in herbal medicine has so far shown that the use of plants against malaria is not to be neglected. This review aims to highlight the antiplasmodial potential of Cameroonian plants. In order to achieve this objective, we conducted a bibliographic search in April 2022 using the PubMed search engine. This research included both the published and unpublished studies. A narrative approach was used to describe the antiplasmodial potential of the various species of plants investigated. Quantitative data were analyzed using R studio 4.1.1 software and random effects model was used to estimate the effect size. The research of the antiplasmodial activity of Cameroonian plants dates back to 2000. This area of research has since provided extensive data to indicate the antiplasmodial potential of several plants, most of which originate from the central region. Despite the heterogeneity observed between the different plant families studied in Cameroon for their in vitro antiplasmodial effect, there is strong evidence that 17 active compounds from these plants would be ideal candidates for the synthesis of new antimalarial drugs. The Dacryodes edulis species could be considered as the best natural alternative in the treatment of uncomplicated malaria according to its properties. It is clear that the traditional Cameroonian pharmacopoeia has many species that contain compounds with antiplasmodial activity. More studies need to be conducted to explore the multitude of unexplored plants that are used in traditional medicine. These studies should take into account the nature of the cell model used for cytotoxicity assessment.
Collapse
Affiliation(s)
- Arnaud Gabin N. Tepa
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, P.O. Box 1364, University of Yaoundé 1, Yaounde, Cameroon
| | - Panthaleon Ambassa
- Department of Organic Chemistry, Faculty of Sciences of the University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Lawrence S. Ayong
- Public Health and Epidemiology Unit, Centre Pasteur Du Cameroun, P. O. Box 1274, Yaoundé, Cameroon
| | | | - Constant Anatole Pieme
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, P.O. Box 1364, University of Yaoundé 1, Yaounde, Cameroon
| |
Collapse
|
7
|
Mayor A, da Silva C, Rovira-Vallbona E, Roca-Feltrer A, Bonnington C, Wharton-Smith A, Greenhouse B, Bever C, Chidimatembue A, Guinovart C, Proctor JL, Rodrigues M, Canana N, Arnaldo P, Boene S, Aide P, Enosse S, Saute F, Candrinho B. Prospective surveillance study to detect antimalarial drug resistance, gene deletions of diagnostic relevance and genetic diversity of Plasmodium falciparum in Mozambique: protocol. BMJ Open 2022; 12:e063456. [PMID: 35820756 PMCID: PMC9274532 DOI: 10.1136/bmjopen-2022-063456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Genomic data constitute a valuable adjunct to routine surveillance that can guide programmatic decisions to reduce the burden of infectious diseases. However, genomic capacities remain low in Africa. This study aims to operationalise a functional malaria molecular surveillance system in Mozambique for guiding malaria control and elimination. METHODS AND ANALYSES This prospective surveillance study seeks to generate Plasmodium falciparum genetic data to (1) monitor molecular markers of drug resistance and deletions in rapid diagnostic test targets; (2) characterise transmission sources in low transmission settings and (3) quantify transmission levels and the effectiveness of antimalarial interventions. The study will take place across 19 districts in nine provinces (Maputo city, Maputo, Gaza, Inhambane, Niassa, Manica, Nampula, Zambézia and Sofala) which span a range of transmission strata, geographies and malaria intervention types. Dried blood spot samples and rapid diagnostic tests will be collected across the study districts in 2022 and 2023 through a combination of dense (all malaria clinical cases) and targeted (a selection of malaria clinical cases) sampling. Pregnant women attending their first antenatal care visit will also be included to assess their value for molecular surveillance. We will use a multiplex amplicon-based next-generation sequencing approach targeting informative single nucleotide polymorphisms, gene deletions and microhaplotypes. Genetic data will be incorporated into epidemiological and transmission models to identify the most informative relationship between genetic features, sources of malaria transmission and programmatic effectiveness of new malaria interventions. Strategic genomic information will be ultimately integrated into the national malaria information and surveillance system to improve the use of the genetic information for programmatic decision-making. ETHICS AND DISSEMINATION The protocol was reviewed and approved by the institutional (CISM) and national ethics committees of Mozambique (Comité Nacional de Bioética para Saúde) and Spain (Hospital Clinic of Barcelona). Project results will be presented to all stakeholders and published in open-access journals. TRIAL REGISTRATION NUMBER NCT05306067.
Collapse
Affiliation(s)
- Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Clemente da Silva
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
| | - Eduard Rovira-Vallbona
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | | | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Caitlin Bever
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | | | - Caterina Guinovart
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | - Simone Boene
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
- Instituto Nacional de Saúde, Maputo, Mozambique
| | | | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
| | | |
Collapse
|
8
|
Xu X, Wang JJ, Jiang JJ, Zhang T, Lv XF, Wang SQ, Liu ZJ, Li WD, Lu XC. Mass drug administration in response to vivax malaria resurgence in Anhui Province of Huanghuai Plain, China. ADVANCES IN PARASITOLOGY 2022; 116:115-152. [PMID: 35752446 DOI: 10.1016/bs.apar.2022.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This article summarizes the background, specific conditions, main measures, steps and effects of the implementation of Mass Drug Administration (MDA) to control the local P. vivax malaria epidemic in Anhui Province in central China. Distributing medicines to the designated population quickly controlled the local epidemic of P. vivax. Implementing MDA to control P. vivax ensured the correct selection of medicines, clarification of the targeted population for receipt of medicines, and assurance of a high rate of compliance through government support and health education. These results provide a reference for countries and regions experiencing similar events and planning to implement MDA in malaria control.
Collapse
Affiliation(s)
- Xian Xu
- Anhui Provincial Center for Disease Control and Prevention, Anhui, PR China
| | - Jian-Jun Wang
- Anhui Provincial Center for Disease Control and Prevention, Anhui, PR China
| | - Jing-Jing Jiang
- Anhui Provincial Center for Disease Control and Prevention, Anhui, PR China
| | - Tao Zhang
- Anhui Provincial Center for Disease Control and Prevention, Anhui, PR China
| | - Xiao-Feng Lv
- Anhui Provincial Center for Disease Control and Prevention, Anhui, PR China
| | - Shu-Qi Wang
- Anhui Provincial Center for Disease Control and Prevention, Anhui, PR China
| | - Zi-Jian Liu
- Anhui Provincial Center for Disease Control and Prevention, Anhui, PR China
| | - Wei-Dong Li
- Anhui Provincial Center for Disease Control and Prevention, Anhui, PR China.
| | - Xue-Chun Lu
- Anhui Provincial Center for Disease Control and Prevention, Anhui, PR China
| |
Collapse
|
9
|
Ndiaye YD, Hartl DL, McGregor D, Badiane A, Fall FB, Daniels RF, Wirth DF, Ndiaye D, Volkman SK. Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. Int J Parasitol Drugs Drug Resist 2021; 17:12-22. [PMID: 34333350 PMCID: PMC8342550 DOI: 10.1016/j.ijpddr.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.
Collapse
Affiliation(s)
| | | | - David McGregor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme, Senegal.
| | - Rachel F Daniels
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | | | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Simmons University, Boston, MA, USA.
| |
Collapse
|
10
|
Galatas B, Nhantumbo H, Soares R, Djive H, Murato I, Simone W, Macete E, Rabinovich NR, Alonso P, Candrinho B, Saúte F, Aide P, Munguambe K. Community acceptability to antimalarial mass drug administrations in Magude district, Southern Mozambique: A mixed methods study. PLoS One 2021; 16:e0249080. [PMID: 33755685 PMCID: PMC7987150 DOI: 10.1371/journal.pone.0249080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background This study aimed to capture the acceptability prior to, during and after the implementation of the first year of MDA rounds conducted under the Magude project, a malaria elimination project in southern Mozambique. Methods This was a mixed-methods study, consisting of focus group discussions (FGDs) prior to the implementation of MDA rounds (September 2015), non-participant observations (NPOs) conducted during the MDA rounds (November 2015 –beginning of February 2016), and semi-structured interviews (SSIs) after the second round (end of February 2016). Community leaders, women in reproductive age, general members of the community, traditional healers and health professionals were recruited to capture the opinions of all representing key members of the community. A generic outline of nodes and codes was designed to analyze FGDs and SSI separately. Qualitative and quantitative NPO information was analyzed following a content analysis approach. Findings 222 participants took part in the FGDs (n = 154), and SSIs (n = 68); and 318 household visits during the MDA underwent NPOs. The community engagement campaign emerged throughout the study stages as a crucial factor for the acceptability of MDAs. Acceptability was also fostered by the community’s general will to cooperate in any government-led activity that would reduce malaria burden, the appropriate behavior and knowledge of field workers, or the fact that the intervention was available free of charge to all. Absenteeism of heads of households was identified as the main barrier for the success of the campaign. The most commonly reported factors that negatively affected acceptability were the fear of adverse events, rumors of deaths, being unable to drink alcohol while taking DHAp, or the fear to take DHAp while in anti-retroviral treatment. Pregnancy testing and malaria testing were generally well accepted by the community. Conclusion Magude’s community generally accepted the first and second antimalarial MDA rounds, and the procedures associated to the intervention. Future implementation of antimalarial MDAs in southern Mozambique should focus on locally adapted strategies that engage the community to minimize absenteeism and refusals to the intervention.
Collapse
Affiliation(s)
- Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| | | | - Rodolfo Soares
- Center for International Studies (CEI-IUL), Lisbon, Portugal
| | - Helder Djive
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Ilda Murato
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- National Directorate of Health, Ministry of Health, Maputo, Mozambique
| | - N. Regina Rabinovich
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro Alonso
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Baltazar Candrinho
- National Malaria Control Programme (NMCP), Ministry of Health, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Khátia Munguambe
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- Faculdade de Medicina, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| |
Collapse
|
11
|
Miller JM, Eisele TP, Fraser MS, Lewis MT, Slutsker L, Chizema Kawesha E. Moving from Malaria Burden Reduction toward Elimination: An Evaluation of Mass Drug Administration in Southern Province, Zambia. Am J Trop Med Hyg 2020; 103:3-6. [PMID: 32618265 PMCID: PMC7416971 DOI: 10.4269/ajtmh.19-0669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
From December 2014 to February 2016, a cluster randomized controlled trial was carried out in 60 health facility catchment areas along Lake Kariba in Zambia's Southern Province. The trial sought to evaluate the impact of four rounds of a mass drug administration (MDA) intervention with dihydroartemisinin-piperaquine (DHAP) or focal MDA with DHAP at the household level compared with a control population that received the standard of care. This study was the first randomized controlled trial with DHAP for MDA in sub-Saharan Africa and was conducted through a collaboration between the National Malaria Elimination Programme in the Zambian Ministry of Health, the PATH Malaria Control and Elimination Partnership in Africa, and the Center for Applied Malaria Research and Evaluation at Tulane University. This article serves as an introduction to a collection of articles designed to explore different aspects of the intervention. By describing the recent history of malaria control in Zambia leading up to the trial-from the scale-up of point-of-care diagnosis and treatment, vector control, and indoor residual spraying early in the twenty-first century, to the efforts made to sustain the gains achieved with that approach-it provides a rationale for the implementation of a trial that has informed a new national strategic plan and solidified malaria elimination as Zambia's national goal.
Collapse
Affiliation(s)
- John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Thomas P Eisele
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | | | | | | | | |
Collapse
|
12
|
Steketee RW, Miller JM, Chizema Kawesha E. Implications of the MDA Trial in Southern Province, Zambia, for Malaria Control and Elimination. Am J Trop Med Hyg 2020; 103:98-101. [PMID: 32618248 PMCID: PMC7416969 DOI: 10.4269/ajtmh.19-0673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Richard W Steketee
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Elizabeth Chizema Kawesha
- National Malaria Control Centre, Zambia Ministry of Health, Chainama Hospital Grounds, Lusaka, Zambia
| |
Collapse
|