1
|
Maneein S, Sangsanont J, Limpiyakorn T, Sirikanchana K, Rattanakul S. The coagulation process for enveloped and non-enveloped virus removal in turbid water: Removal efficiencies, mechanisms and its application to SARS-CoV-2 Omicron BA.2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172945. [PMID: 38703849 DOI: 10.1016/j.scitotenv.2024.172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly‑aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.
Collapse
Affiliation(s)
- Siriwara Maneein
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
2
|
Kennedy LC, Lowry SA, Boehm AB. Temperature and particles interact to affect human norovirus and MS2 persistence in surface water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:71-81. [PMID: 38078556 DOI: 10.1039/d3em00357d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Modeling the fate and transport of viruses and their genetic material in surface water is necessary to assess risks associated with contaminated surface waters and to inform environmental surveillance efforts. Temperature has been identified as a key variable affecting virus persistence in surface waters, but the effects of the presence of biological and inert particles and of their interaction with temperature have not been well characterized. We assessed these effects on the persistence of human norovirus (HuNoV) genotype II.4 purified from stool and MS2 in surface water. Raw or filter-sterilized creek water microcosms were inoculated and incubated in the dark at 10 °C, 15 °C, and 20 °C. HuNoV (i.e., genome segments and intact capsids) and MS2 (i.e., infectious MS2, genome segments, and intact capsids) concentrations were followed over 36 days. The range in positive, significant first-order decay rate constants for HuNoV in this study was 0.14 to 0.69 day-1 compared with 0.026 to 0.71 day-1 for that of MS2. Decay rate constants for HuNoV genome segments and infectious MS2 were largest in creek water that included biological and inert particles and incubated at higher temperatures. In addition, for HuNoV and MS2 incubated in raw or filter-sterilized creek water at 15 °C, capsid damage was not identified as a dominant inactivation mechanism. Environmental processes and events that affect surface water biological and inert particles, temperature, or both could lead to variable virus decay rate constants. Incorporating the effects of particles, temperature, and their interaction could enhance models of virus fate and transport in surface water.
Collapse
Affiliation(s)
- Lauren C Kennedy
- Department of Civil and Environmental Engineering, Stanford University, Y2E2 Room 189, Stanford, CA 94305, USA.
| | - Sarah A Lowry
- Department of Civil and Environmental Engineering, Stanford University, Y2E2 Room 189, Stanford, CA 94305, USA.
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Y2E2 Room 189, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Kennedy L, Costantini VP, Huynh KA, Loeb SK, Jennings WC, Lowry S, Mattioli MC, Vinjé J, Boehm AB. Persistence of Human Norovirus (GII) in Surface Water: Decay Rate Constants and Inactivation Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3671-3679. [PMID: 36812385 PMCID: PMC9996820 DOI: 10.1021/acs.est.2c09637] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Human norovirus (HuNoV) is an important cause of acute gastroenteritis and can be transmitted by water exposures, but its persistence in water is not well understood. Loss of HuNoV infectivity in surface water was compared with persistence of intact HuNoV capsids and genome segments. Surface water from a freshwater creek was filter-sterilized, inoculated with HuNoV (GII.4) purified from stool, and incubated at 15 or 20 °C. We measured HuNoV infectivity via the human intestinal enteroid system and HuNoV persistence via reverse transcription-quantitative polymerase chain reaction assays without (genome segment persistence) or with (intact viral capsid persistence) enzymatic pretreatment to digest naked RNA. For infectious HuNoV, results ranged from no significant decay to a decay rate constant ("k") of 2.2 day-1. In one creek water sample, genome damage was likely a dominant inactivation mechanism. In other samples from the same creek, loss of HuNoV infectivity could not be attributed to genome damage or capsid cleavage. The range in k and the difference in the inactivation mechanism observed in water from the same site could not be explained, but variable constituents in the environmental matrix could have contributed. Thus, a single k may be insufficient for modeling virus inactivation in surface waters.
Collapse
Affiliation(s)
- Lauren
C. Kennedy
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Veronica P. Costantini
- Division
of Viral Diseases, Centers for Disease Control
and Prevention, Atlanta, Georgia 30329, United States
| | - Kimberly A. Huynh
- Division
of Viral Diseases, Centers for Disease Control
and Prevention, Atlanta, Georgia 30329, United States
| | - Stephanie K. Loeb
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Civil Engineering, McGill University, 817 Rue Sherbrooke Ouest, Montreal, QB H3A
0C3, Canada
| | - Wiley C. Jennings
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Sarah Lowry
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Mia C. Mattioli
- Division
of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, United States
| | - Jan Vinjé
- Division
of Viral Diseases, Centers for Disease Control
and Prevention, Atlanta, Georgia 30329, United States
| | - Alexandria B. Boehm
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Parsa SM. Mega-scale desalination efficacy (Reverse Osmosis, Electrodialysis, Membrane Distillation, MED, MSF) during COVID-19: Evidence from salinity, pretreatment methods, temperature of operation. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100217. [PMID: 37521749 PMCID: PMC9744688 DOI: 10.1016/j.hazadv.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
The unprecedented situation of the COVID-19 pandemic heavily polluted water bodies whereas the presence of SARS-CoV-2, even in treated wastewater in every corner of the world is reported. The main aim of the present study is to show the effectiveness and feasibility of some well-known desalination technologies which are reverse osmosis (RO), Electrodialysis (ED), Membrane Distillation (MD), multi effect distillation (MED), and multi stage flashing (MSF) during the COVID-19 pandemic. Systems' effectiveness against the novel coronavirus based on three parameters of nasopharynx/nasal saline-irrigation, temperature of operation and pretreatment methods are evaluated. First, based on previous clinical studies, it showed that using saline solution (hypertonic saline >0.9% concentration) for gargling/irrigating of nasal/nasopharynx/throat results in reducing and replication of the viral in patients, subsequently the feed water of desalination plants which has concentration higher than 3.5% (35000ppm) is preventive against the SARS-CoV-2 virus. Second, the temperature operation of thermally-driven desalination; MSF and MED (70-120°C) and MD (55-85°C) is high enough to inhibit the contamination of plant structure and viral survival in feed water. The third factor is utilizing various pretreatment process such as chlorination, filtration, thermal/precipitation softening, ultrafiltration (mostly for RO, but also for MD, MED and MSF), which are powerful treatment methods against biologically-contaminated feed water particularly the SARS-CoV-2. Eventually, it can be concluded that large-scale desalination plants during COVID-19 and similar situation are completely reliable for providing safe drinking water.
Collapse
Affiliation(s)
- Seyed Masoud Parsa
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Lowther JA, Cross L, Stapleton T, Gustar NE, Walker DI, Sills M, Treagus S, Pollington V, Lees DN. Use of F-Specific RNA Bacteriophage to Estimate Infectious Norovirus Levels in Oysters. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:247-258. [PMID: 31115869 DOI: 10.1007/s12560-019-09383-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Contamination of bivalve shellfish, particularly oysters, with norovirus is recognised as a significant food safety risk. Methods for quantification of norovirus in oysters using the quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) are well established, and various studies using RT-qPCR have detected norovirus in a considerable proportion of oyster samples, both in the UK and elsewhere. However, RT-qPCR detects viral genome, and by its nature is unable to discriminate between positive results caused by infectious viruses and those caused by non-infectious remnants including damaged virus particles and naked RNA. As a result, a number of alternative or complementary approaches to RT-qPCR testing have been proposed, including the use of infectious viral indicator organisms, most frequently F-specific RNA bacteriophage (F-RNA phage). In this study, we investigated the relationships between F-RNA phage and norovirus in digestive tissues from two sets of oyster samples, one randomly collected at retail (630 samples), and one linked to suspected norovirus illness outbreaks (nine samples). A positive association and correlation between PCR-detectable levels of genogroup II F-RNA bacteriophage (associated with human faecal contamination) and norovirus was found in both sets of samples, with more samples positive for genogroup II phage, at generally higher levels than norovirus. Levels of both viruses were higher in outbreak-related than retail samples. Infectious F-RNA phage was detected in 47.8% of all retail samples, and for a subset of 224 samples where characterisation of phage was carried out, infectious GII phage was detected in 30.4%. Infectious GII phage was detected in all outbreak-related samples. Determination of infectivity ratios by comparing levels of PCR-detectable (copies/g) and infectious GII phage (pfu/g) revealed that in the majority of cases less than 10% of virus detected by RT-qPCR was infectious. Application of these ratios to estimate infectious norovirus levels indicated that while 77.8% of outbreak-related samples contained > 5 estimated infectious norovirus/g, only 13.7% of retail samples did. Use of a combination of levels of PCR-detectable norovirus and infectious F-RNA phage showed that while only 7.0% of retail samples contained both > 100 copies/g norovirus and > 10 pfu/g F-RNA phage, these combined levels were present in 77.8% of outbreak-related samples, and 75.9% of retail samples with > 5 estimated infectious norovirus/g. We therefore suggest that combining RT-qPCR testing with a test for infectious F-RNA phage has the potential to better estimate health risks, and to better predict the presence of infectious norovirus than RT-qPCR testing alone.
Collapse
Affiliation(s)
- J A Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.
| | - L Cross
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - T Stapleton
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - N E Gustar
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - D I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - M Sills
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - S Treagus
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - V Pollington
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - D N Lees
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| |
Collapse
|
6
|
Abstract
The European Commission requested scientific technical assistance for the analysis of a European Union coordinated monitoring programme on the prevalence of norovirus in raw oysters. A total of 2,180 valid samples were taken from production areas and 2,129 from dispatch centres, taken over two consecutive years, ensuring the precision and the confidence desired in the estimation. The prevalence at production areas was estimated to be 34.5% (CI: 30.1-39.1%), while for batches from dispatch centres it was 10.8% (CI: 8.2-14.4%). The analyses show a strong seasonal effect, with higher contamination in the period November to April, as well as lower contamination for Class A areas than other classes. These associations were observed in both production areas and batches from dispatch centres. The results for both genogroups were above the respective limit of quantification (LOQ) in less than 10% of the samples taken. The simple substitution of not-detected and positive samples below the LOQ, by half of the limit of detection and half of the LOQ, respectively, produced estimates of the proportion of samples above or equal to 300 copies per gram (cpg) comparable to the statistical model. The current bacteriological microbiological criteria applicable to live bivalve molluscs might be complemented by a norovirus criterion. The analyses of the substitution approach show that selection of a potential limit within a microbiological criterion close to or lower than the LOQ (for example, less than 300 cpg, given the current test used in this survey) would be difficult to apply. This survey only assessed thresholds from the perspective of the analytical capability and not that of human health risk.
Collapse
|
7
|
Fischer JR, Zapata F, Dubelman S, Mueller GM, Uffman JP, Jiang C, Jensen PD, Levine SL. Aquatic fate of a double-stranded RNA in a sediment---water system following an over-water application. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:727-734. [PMID: 27530554 DOI: 10.1002/etc.3585] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/08/2016] [Accepted: 08/13/2016] [Indexed: 05/20/2023]
Abstract
Determining the rate of biodegradation of double-stranded RNA (dsRNA) in the environment is an essential element of a comprehensive risk assessment of an RNA-based agricultural product. This information is used during problem formulation to define relevant routes and durations of environmental exposure for in planta-expressed dsRNA. Although exposure to biotechnology-derived crops expressing dsRNA traits in the aquatic environment is predicted to be minimal, little is known regarding the fate of dsRNA in these environments. To assess exposure to aquatic environments, a study was conducted to measure the rate of biodegradation of DvSnf7 dsRNA in aerobic water-sediment systems. Aquatic systems containing natural water and sediments that varied in physical and chemical characteristics were treated with dsRNA by applying DvSnf7 dsRNA directly to the water column. In the present study, DvSnf7 dsRNA dissipated rapidly from the water phase and was undetectable within 7 d as measured by QuantiGene (Affymetrix) and a sensitive insect bioassay in these diverse systems. Degradation kinetics estimated a half-life (time to 50% dissipation [DT50]) of less than 3 d and a time to 90% dissipation of approximately 4 d. Further analysis indicated that DvSnf7 dsRNA had DT50 values of less than 6 d in both sediment-free systems containing natural water and systems with only sediment. Taken together, the results of the present study indicate that dsRNA-based agricultural products rapidly degrade and consequently are unlikely to persist in aquatic environments. Environ Toxicol Chem 2017;36:727-734. © 2016 SETAC.
Collapse
Affiliation(s)
| | - Fatima Zapata
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Samuel Dubelman
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | | | - Joshua P Uffman
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Changjian Jiang
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Peter D Jensen
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Steven L Levine
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Lunestad BT, Maage A, Roiha IS, Myrmel M, Svanevik CS, Duinker A. An Outbreak of Norovirus Infection from Shellfish Soup Due to Unforeseen Insufficient Heating During Preparation. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:231-234. [PMID: 27216466 DOI: 10.1007/s12560-016-9245-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Norovirus causes large outbreaks involving all age groups and are considered the most common cause of infectious foodborne diseases worldwide. The aim of this study was to describe a norovirus outbreak connected to insufficient heat treatment during preparation of a shellfish soup in serving portions, during a company Christmas celebration in Norway, December 2013. A questionnaire sent to the employees, showed that 67 % (n = 43) of the celebration participants, reported gastrointestinal symptoms including stomach pain, vomiting, diarrhoea and light fever in the period between 24 and 48 h post celebration. Several dishes were served, including shellfish soup made with carpet shell clams (Tapes rhomboides) in porcelain cups. Consuming this soup, was the only significant risk factor for infection. Norovirus GI and GII were detected in the remaining raw shellfish. To mimic the time and temperature obtained during bivalve soup preparation, raw chopped shellfish tissue and raw cepa onion were added in porcelain cups tempered to 20 °C. To each of these cups, boiling soup base was added. The temperature in the shellfish tissue was continuously recorded, and showed a maximum of 49 °C in the period between 3 and 7 min after adding the boiling soup base. After 1 h the temperature was 30 °C. This time and temperature combination was obviously not sufficient for inactivation of norovirus present in the shellfish tissue. In conclusion, the heat-absorbing capacity of cold ingredients, utensils and table wear porcelain should not be underestimated during food production. Consumers who want to avoid eating raw shellfish, should not assume that the shellfish tissue in preparation as described in our study is adequately heat treated.
Collapse
Affiliation(s)
- Bjørn Tore Lunestad
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, 5817, Nordnes, Bergen, Norway.
| | - Amund Maage
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, 5817, Nordnes, Bergen, Norway
| | - Irja Sunde Roiha
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, 5817, Nordnes, Bergen, Norway
| | - Mette Myrmel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P.O. Box 8147 Dep., 0033, Oslo, Norway
| | - Cecilie Smith Svanevik
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, 5817, Nordnes, Bergen, Norway
| | - Arne Duinker
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, 5817, Nordnes, Bergen, Norway
| |
Collapse
|
9
|
Winterbourn JB, Clements K, Lowther JA, Malham SK, McDonald JE, Jones DL. Use of Mytilus edulis biosentinels to investigate spatial patterns of norovirus and faecal indicator organism contamination around coastal sewage discharges. WATER RESEARCH 2016; 105:241-250. [PMID: 27619500 DOI: 10.1016/j.watres.2016.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 05/20/2023]
Abstract
Bivalve shellfish have the capacity to accumulate norovirus (NoV) from waters contaminated with human sewage. Consequently, shellfish represent a major vector for NoV entry into the human food chain, leading to gastrointestinal illness. Identification of areas suitable for the safe cultivation of shellfish requires an understanding of NoV behaviour upon discharge of municipal-derived sewage into coastal waters. This study exploited the potential of edible mussels (Mytilus edulis) to accumulate NoV and employed the ISO method for quantification of NoV within mussel digestive tissues. To evaluate the spatial spread of NoV from an offshore sewage discharge pipe, mesh cages of mussels were suspended from moorings deployed in a 9 km2 grid array around the outfall. Caged mussels were retrieved after 30 days and NoV (GI and GII), total coliforms and E. coli enumerated. The experimentally-derived levels of NoV GI and GII in mussels were similar with total NoV levels ranging from 7 × 101 to 1.6 × 104 genome copies g-1 shellfish digestive gland (ΣGI + GII). NoV spread from the outfall showed a distinct plume which matched very closely to predictions from the tidally-driven effluent dispersal model MIKE21. A contrasting spatial pattern was observed for coliforms (range 1.7 × 102 to 2.1 × 104 CFU 100 g-1 shellfish tissue) and E. coli (range 0-1.2 × 103 CFU 100 g-1 shellfish tissue). These data demonstrate that hydrodynamic models may help inform effective exclusion zones for bivalve harvesting, whilst coliform/E. coli concentrations do not accurately reflect viral dispersal in marine waters and contamination of shellfish by sewage-derived viral pathogens.
Collapse
Affiliation(s)
- James B Winterbourn
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Katie Clements
- School of Ocean Sciences, Bangor University, Bangor, Gwynedd, LL59 5AB, UK
| | - James A Lowther
- CEFAS, The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Bangor, Gwynedd, LL59 5AB, UK
| | - James E McDonald
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
10
|
Relevance of F-Specific RNA Bacteriophages in Assessing Human Norovirus Risk in Shellfish and Environmental Waters. Appl Environ Microbiol 2016; 82:5709-19. [PMID: 27422833 DOI: 10.1128/aem.01528-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoVs) are the main cause of shellfish-borne gastroenteritis outbreaks. In the absence of routine technical approaches allowing infectious particles to be detected, this viral pathogen is currently targeted by genome research, leading to difficult interpretations. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as fecal and viral contamination indicators in shellfish and water from a local harvesting area. FRNAPH were also used as microbial source tracking tools. Constraints imposed by detection limits are illustrated here by the detection of infectious FRNAPH in several samples in the absence of FRNAPH genomes. The opposite situation was also observed, likely explained by the persistence of the genomes being greater than infectivity. Similar considerations may be applied to HuNoVs, suggesting that HuNoV genome targeting is of limited relevance in assessing infectious risks. While FRNAPH did not provide any benefits compared to Escherichia coli as fecal pollution indicators in water, novel observations were made in shellfish: contrary to E. coli, a seasonal trend of infectious FRNAPH concentrations was observed. These concentrations were higher than those found in water, confirming bioaccumulation in shellfish. This study also underlines a relationship between the presence of HuNoV genomes and those of human-specific FRNAPH subgroup II (FRNAPH-II) in shellfish collected throughout Europe. Further research should be undertaken to evaluate FRNAPH potential as an indicator of the presence of infectious HuNoVs. To this end, shellfish involved in HuNoV-caused gastroenteritis outbreaks should be analyzed for the presence of infectious FRNAPH-II. IMPORTANCE This work provides new data about the use of F-specific RNA phages (FRNAPH) as a tool for evaluating fecal or viral contamination, especially in shellfish. In our case study, FRNAPH did not provide any benefits compared to E. coli as fecal pollution indicators in water but were found to be very useful in shellfish. Their concentrations in shellfish were higher than those found in the surrounding water, confirming bioaccumulation. This study also underlines a relationship between the presence of human norovirus genomes (HuNoVs) and those of FRNAPH subgroup II (FRNAPH-II). Considering that the two virus types have similar behaviors and since FRNAPH infectivity can be investigated, the specific detection of infectious FRNAPH-II could be regarded as an indication of the presence of infectious HuNoVs. The contribution of infectious human FRNAPH targeting for assessing the viral risk associated with HuNoVs in shellfish should thus be investigated.
Collapse
|
11
|
Cook N, Knight A, Richards GP. Persistence and Elimination of Human Norovirus in Food and on Food Contact Surfaces: A Critical Review. J Food Prot 2016; 79:1273-94. [PMID: 27357051 DOI: 10.4315/0362-028x.jfp-15-570] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This critical review addresses the persistence of human norovirus (NoV) in water, shellfish, and processed meats; on berries, herbs, vegetables, fruits, and salads; and on food contact surfaces. The review focuses on studies using NoV; information from studies involving only surrogates is not included. It also addresses NoV elimination or inactivation by various chemical, physical, or processing treatments. In most studies, persistence or elimination was determined by detection and quantification of the viral genome, although improved methods for determining infectivity have been proposed. NoV persisted for 60 to 728 days in water, depending on water source. It also persisted on berries, vegetables, and fruit, often showing <1-log reduction within 1 to 2 weeks. NoV was resilient on carpets, Formica, stainless steel, polyvinyl chloride, and ceramic surfaces; during shellfish depuration; and to repeated freeze-thaw cycles. Copper alloy surfaces may inactivate NoV by damaging viral capsids. Disinfection was achieved for some foods or food contact surfaces using chlorine, calcium or sodium hypochlorite, chlorine dioxide, high hydrostatic pressure, high temperatures, pH values >8.0, freeze-drying, and UV radiation. Ineffective disinfectants included hydrogen peroxide, quaternary ammonium compounds, most ethanol-based disinfectants, and antiseptics at normally used concentrations. Thorough washing of herbs and produce was effective in reducing, but not eliminating, NoV in most products. Washing hands with soap generally reduced NoV by <2 log. Recommendations for future research needs are provided.
Collapse
Affiliation(s)
- Nigel Cook
- Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK
| | - Angus Knight
- Leatherhead Food Research, Leatherhead, Surrey, KT22 7RY, UK
| | - Gary P Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware 19901, USA.
| |
Collapse
|
12
|
Polo D, Álvarez C, Díez J, Darriba S, Longa Á, Romalde JL. Viral elimination during commercial depuration of shellfish. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Ceuppens S, Li D, Uyttendaele M, Renault P, Ross P, Ranst MV, Cocolin L, Donaghy J. Molecular Methods in Food Safety Microbiology: Interpretation and Implications of Nucleic Acid Detection. Compr Rev Food Sci Food Saf 2014; 13:551-577. [DOI: 10.1111/1541-4337.12072] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractBecause of increasing demand for rapid results, molecular techniques are now applied for the detection of microorganisms in foodstuffs. However, interpretation problems can arise for the results generated by molecular methods in relation to the associated public health risk. Discrepancies between results obtained by molecular and conventional culture methods stem from the difference in target, namely nucleic acids instead of actively growing microorganisms. Nucleic acids constitute 5% to 15% of the dry weight of all living cells and are relatively stable, even after cell death, so they may be present in a food matrix after the foodborne microorganisms have been inactivated. Therefore, interpretation of the public health significance of positive results generated by nucleic acid detection methods warrants some additional consideration. This review discusses the stability of nucleic acids in general and highlights the persistence of microbial nucleic acids after diverse food‐processing techniques based on data from the scientific literature. Considerable amounts of DNA and RNA (intact or fragmented) persist after inactivation of bacteria and viruses by most of the commonly applied treatments in the food industry. An overview of the existing adaptations for molecular assays to cope with these problems is provided, including large fragment amplification, flotation, (enzymatic) pretreatment, and various binding assays. Finally, the negligible risks of ingesting free microbial nucleic acids are discussed and this review ends with the future perspectives of molecular methods such as next‐generation sequencing in diagnostic and source attribution food microbiology.
Collapse
Affiliation(s)
- Siele Ceuppens
- Faculty of Bioscience Engineering Laboratory of Food Microbiology and Food Preservation (LFMFP) Dept. of Food Safety and Food Quality Ghent Univ. Ghent Belgium
| | - Dan Li
- Faculty of Bioscience Engineering Laboratory of Food Microbiology and Food Preservation (LFMFP) Dept. of Food Safety and Food Quality Ghent Univ. Ghent Belgium
| | - Mieke Uyttendaele
- Faculty of Bioscience Engineering Laboratory of Food Microbiology and Food Preservation (LFMFP) Dept. of Food Safety and Food Quality Ghent Univ. Ghent Belgium
| | - Pierre Renault
- Inst. Scientifique de Recherche Agronomique (INRA) France
| | - Paul Ross
- Moorepark Biotechnology Centre Teagasc Moorepark Fermoy Co. Cork Ireland
| | | | - Luca Cocolin
- Dept. of Agricultural Forest and Food Sciences Univ. of Torino Grugliasco Torino Italy
| | - John Donaghy
- Food Safety Microbiology Group Nestle Research Center Lausanne Switzerland
| |
Collapse
|
14
|
Dubelman S, Fischer J, Zapata F, Huizinga K, Jiang C, Uffman J, Levine S, Carson D. Environmental fate of double-stranded RNA in agricultural soils. PLoS One 2014; 9:e93155. [PMID: 24676387 PMCID: PMC3968063 DOI: 10.1371/journal.pone.0093155] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/02/2014] [Indexed: 11/18/2022] Open
Abstract
A laboratory soil degradation study was conducted to determine the biodegradation potential of a DvSnf7 dsRNA transcript derived from a Monsanto genetically modified (GM) maize product that confers resistance to corn rootworm (CRW; Diabrotica spp.). This study provides new information to improve the environmental assessment of dsRNAs that become pesticidal through an RNAi process. Three agricultural soils differing in their physicochemical characteristics were obtained from the U.S., Illinois (IL; silt loam), Missouri (MO; loamy sand) and North Dakota (ND; clay loam), and exposed to the target dsRNA by incorporating insect-protected maize biomass and purified (in vitro-transcribed) DvSnf7 RNA into soil. The GM and control (non-GM maize) materials were added to each soil and incubated at ca. 22°C for 48 hours (h). Samples were collected at 12 time intervals during the incubation period, extracted, and analyzed using QuantiGene molecular analysis and insect bioassay methods. The DT50 (half-life) values for DvSnf7 RNA in IL, MO, and ND soils were 19, 28, and 15 h based on QuantiGene, and 18, 29, and 14 h based on insect bioassay, respectively. Furthermore, the DT90 (time to 90% degradation) values for DvSnf7 RNA in all three soils were <35 h. These results indicate that DvSnf7 RNA was degraded and biological activity was undetectable within approximately 2 days after application to soil, regardless of texture, pH, clay content and other soil differences. Furthermore, soil-incorporated DvSnf7 RNA was non-detectable in soil after 48 h, as measured by QuantiGene, at levels ranging more than two orders of magnitude (0.3, 1.5, 7.5 and 37.5 µg RNA/g soil). Results from this study indicate that the DvSnf7 dsRNA is unlikely to persist or accumulate in the environment. Furthermore, the rapid degradation of DvSnf7 dsRNA provides a basis to define relevant exposure scenarios for future RNA-based agricultural products.
Collapse
Affiliation(s)
- Samuel Dubelman
- Regulatory Division, Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail:
| | - Joshua Fischer
- Regulatory Division, Monsanto Company, St. Louis, Missouri, United States of America
| | - Fatima Zapata
- Regulatory Division, Monsanto Company, St. Louis, Missouri, United States of America
| | - Kristin Huizinga
- Regulatory Division, Monsanto Company, St. Louis, Missouri, United States of America
| | - Changjian Jiang
- Regulatory Division, Monsanto Company, St. Louis, Missouri, United States of America
| | - Joshua Uffman
- Regulatory Division, Monsanto Company, St. Louis, Missouri, United States of America
| | - Steven Levine
- Regulatory Division, Monsanto Company, St. Louis, Missouri, United States of America
| | - David Carson
- Regulatory Division, Monsanto Company, St. Louis, Missouri, United States of America
| |
Collapse
|
15
|
Butot S, Zuber S, Baert L. Sample preparation prior to molecular amplification: complexities and opportunities. Curr Opin Virol 2014; 4:66-70. [PMID: 24441295 DOI: 10.1016/j.coviro.2013.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 02/01/2023]
Abstract
Molecular amplification using Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR) is currently considered as the gold standard to detect enteric human pathogenic viruses such as norovirus and hepatitis A virus in food and water. However, the molecular-based detection requires an adequate sampling strategy and a sample preparation specific for viruses. Sampling for enteric human viruses in water and food should not necessarily follow bacterial sampling plans. The development of a reference detection method including sample preparation as proposed in ISO/TS 15216 represents a milestone to facilitate the evaluation of the performance and eventually validation of future virus detection methods. The potential viral infectivity linked to a positive PCR result is a remaining issue and pretreatments allowing the differentiation of infectious viruses would be useful for future risk assessments.
Collapse
Affiliation(s)
- Sophie Butot
- Food Safety and Quality Competence Pillar, Nestlé Research Centre, Vers-chez-les-Blanc, Box 44, 1000 Lausanne 26, Switzerland.
| | - Sophie Zuber
- Food Safety and Quality Competence Pillar, Nestlé Research Centre, Vers-chez-les-Blanc, Box 44, 1000 Lausanne 26, Switzerland
| | - Leen Baert
- Food Safety and Quality Competence Pillar, Nestlé Research Centre, Vers-chez-les-Blanc, Box 44, 1000 Lausanne 26, Switzerland
| |
Collapse
|
16
|
Knight A, Li D, Uyttendaele M, Jaykus LA. A critical review of methods for detecting human noroviruses and predicting their infectivity. Crit Rev Microbiol 2012; 39:295-309. [DOI: 10.3109/1040841x.2012.709820] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Two-year systematic study to assess norovirus contamination in oysters from commercial harvesting areas in the United Kingdom. Appl Environ Microbiol 2012; 78:5812-7. [PMID: 22685151 DOI: 10.1128/aem.01046-12] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contamination of bivalve shellfish with norovirus from human fecal sources is recognized as an important human health risk. Standardized quantitative methods for the detection of norovirus in molluscan shellfish are now available, and viral standards are being considered in the European Union and internationally. This 2-year systematic study aimed to investigate the impact of the application of these methods to the monitoring of norovirus contamination in oyster production areas in the United Kingdom. Twenty-four monthly samples of oysters from 39 United Kingdom production areas, chosen to represent a range of potential contamination risk, were tested for norovirus genogroups I and II by using a quantitative real-time reverse transcription (RT)-PCR method. Norovirus was detected in 76.2% (643/844) of samples, with all sites returning at least one positive result. Both prevalences (presence or absence) and norovirus levels varied markedly between sites. However, overall, a marked winter seasonality of contamination by both prevalence and quantity was observed. Correlations were found between norovirus contamination and potential risk indicators, including harvesting area classifications, Escherichia coli scores, and environmental temperatures. A predictive risk score for norovirus contamination was developed by using a combination of these factors. In summary, this study, the largest of its type undertaken to date, provides a systematic analysis of norovirus contamination in commercial oyster production areas in the United Kingdom. The data should assist risk managers to develop control strategies to reduce the risk of human illness resulting from norovirus contamination of bivalve molluscs.
Collapse
|
18
|
Lowther JA, Gustar NE, Hartnell RE, Lees DN. Comparison of norovirus RNA levels in outbreak-related oysters with background environmental levels. J Food Prot 2012; 75:389-93. [PMID: 22289603 DOI: 10.4315/0362-028x.jfp-11-360] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Norovirus is the principal agent of bivalve shellfish-associated gastroenteric illness worldwide. Numerous studies using PCR have demonstrated norovirus contamination in a significant proportion of both oyster and other bivalve shellfish production areas and ready-to-eat products. By comparison, the number of epidemiologically confirmed shellfish-associated outbreaks is relatively low. This suggests that factors other than the simple presence or absence of virus RNA are important contributors to the amount of illness reported. This study compares norovirus RNA levels in oyster samples strongly linked to norovirus or norovirus-type illness with the levels typically found in commercial production areas (non-outbreak-related samples). A statistically significant difference between norovirus levels in the two sets of samples was observed. The geometric mean of the levels in outbreak samples (1,048 copies per g) was almost one order of magnitude higher than for positive non-outbreak-related samples (121 copies per g). Further, while none of the outbreak-related samples contained fewer than 152 copies per g, the majority of positive results for non-outbreak-related samples was below this level. These observations support the concept of a dose-response for norovirus RNA levels in shellfish and could help inform the establishment of threshold criteria for risk management.
Collapse
Affiliation(s)
- James A Lowther
- Centre for Environment, Fisheries and Aquaculture Science, European Union Reference Laboratory for Monitoring Bacteriological and Viral Contamination of Bivalve Molluscs, Weymouth DT4 8UB, UK.
| | | | | | | |
Collapse
|
19
|
Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Appl Environ Microbiol 2011; 77:5476-82. [PMID: 21705552 DOI: 10.1128/aem.02801-10] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contamination of oysters with human noroviruses (HuNoV) constitutes a human health risk and may lead to severe economic losses in the shellfish industry. There is a need to identify a technology that can inactivate HuNoV in oysters. In this study, we conducted a randomized, double-blinded clinical trial to assess the effect of high hydrostatic pressure processing (HPP) on Norwalk virus (HuNoV genogroup I.1) inactivation in virus-seeded oysters ingested by subjects. Forty-four healthy, positive-secretor adults were divided into three study phases. Subjects in each phase were randomized into control and intervention groups. Subjects received Norwalk virus (8FIIb, 1.0 × 10(4) genomic equivalent copies) in artificially seeded oysters with or without HPP treatment (400 MPa at 25°C, 600 MPa at 6°C, or 400 MPa at 6°C for 5 min). HPP at 600 MPa, but not 400 MPa (at 6° or 25°C), completely inactivated HuNoV in seeded oysters and resulted in no HuNoV infection among these subjects, as determined by reverse transcription-PCR detection of HuNoV RNA in subjects' stool or vomitus samples. Interestingly, a white blood cell (granulocyte) shift was identified in 92% of the infected subjects and was significantly associated with infection (P = 0.0014). In summary, these data suggest that HPP is effective at inactivating HuNoV in contaminated whole oysters and suggest a potential intervention to inactivate infectious HuNoV in oysters for the commercial shellfish industry.
Collapse
|