1
|
Bernier Gosselin V, Fernandez JE, Ollagnier C, Morel I, Siegenthaler R, Collaud A, Meylan M, Perreten V. Whole-genome sequencing-based antimicrobial resistance and shedding dynamics of Escherichia coli isolated from calves before and after antimicrobial group treatments. Microbiol Spectr 2024; 12:e0321423. [PMID: 38441467 PMCID: PMC10986552 DOI: 10.1128/spectrum.03214-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 04/06/2024] Open
Abstract
The fattening of calves is often associated with high antimicrobial use and the selection of antimicrobial resistance (AMR). The objective of this observational longitudinal study was to describe the AMR and strain dynamics, using whole-genome sequencing (WGS), of fecal Escherichia coli in a cohort of 22 calves. All calves received antimicrobial group treatments on Day (D) 1 (oxytetracycline, intramuscularly) and on D4 through D12 (doxycycline, in-feed). Additionally, eight calves received individual parenteral treatments between D7 and D59, including florfenicol, amoxicillin, marbofloxacin, and gamithromycin. Rectal swabs were collected from all calves on D1 (prior to treatment), D2, D9, and D82. The swabs were spread onto Enterobacterales-selective agar, and three E. coli colonies per plate were subjected to WGS. Out of 264 isolates across all calves and sampling times, 80 unique strains were identified, a majority of which harbored genes conferring resistance to tetracyclines, streptomycin, and sulfonamides. The diversity of strains decreased during the in-feed antimicrobial group treatment of the calves. On D82, 90% of isolates were strains that were not isolated at previous sampling times, and the median number per strain of AMR determinants to tetracyclines, florfenicol, β-lactams, quinolones, or macrolides decreased compared to D9. Additionally, clonal dissemination of some strains represented the main transmission route of AMR determinants. In this study, WGS revealed important variations in strain diversity and genotypic AMR of fecal E. coli over time in calves subjected to group antimicrobial treatments. IMPORTANCE The continued emergence and spread of antimicrobial resistance (AMR) determinants are serious global concerns. The dynamics of AMR spread and persistence in bacterial and animal host populations are complex and not solely driven by antimicrobial selection pressure. In calf fattening, both antimicrobial use and carriage prevalence of antimicrobial-resistant bacteria are generally recognized as high. This study provides new insights into the short-term, within-farm dynamics and transmission of AMR determinants in Escherichia coli from the dominant fecal flora of calves subjected to antimicrobial group treatments during the rearing period. The diversity of E. coli strains decreased over time, although, in contrast to previous observations in extended-spectrum β-lactamase-producing Enterobacterales, the predominance of a few clones was not observed. The spread of AMR determinants occurred through the dissemination of clonal strains among calves. The median number per strain of AMR determinants conferring resistance to selected antimicrobials decreased toward the end of the rearing period.
Collapse
Affiliation(s)
| | - Javier E. Fernandez
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Isabelle Morel
- Ruminant Nutrition and Emissions, Agroscope, Posieux, Switzerland
| | | | - Alexandra Collaud
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Mulchandani R, Zhao C, Tiseo K, Pires J, Van Boeckel TP. Predictive Mapping of Antimicrobial Resistance for Escherichia coli, Salmonella, and Campylobacter in Food-Producing Animals, Europe, 2000-2021. Emerg Infect Dis 2024; 30:96-104. [PMID: 38146995 PMCID: PMC10756390 DOI: 10.3201/eid3001.221450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
In Europe, systematic national surveillance of antimicrobial resistance (AMR) in food-producing animals has been conducted for decades; however, geographic distribution within countries remains unknown. To determine distribution within Europe, we combined 33,802 country-level AMR prevalence estimates with 2,849 local AMR prevalence estimates from 209 point prevalence surveys across 31 countries. We produced geospatial models of AMR prevalence in Escherichia coli, nontyphoidal Salmonella, and Campylobacter for cattle, pigs, and poultry. We summarized AMR trends by using the proportion of tested antimicrobial compounds with resistance >50% and generated predictive maps at 10 × 10 km resolution that disaggregated AMR prevalence. For E. coli, predicted prevalence rates were highest in southern Romania and southern/eastern Italy; for Salmonella, southern Hungary and central Poland; and for Campylobacter, throughout Spain. Our findings suggest that AMR distribution is heterogeneous within countries and that surveillance data from below the country level could help with prioritizing resources to reduce AMR.
Collapse
|
3
|
Song HJ, Moon DC, Kim SJ, Mechesso AF, Choi JH, Boby N, Kang HY, Na SH, Yoon SS, Lim SK. Antimicrobial Resistance Profiles and Molecular Characteristics of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Healthy Cattle and Pigs in Korea. Foodborne Pathog Dis 2023; 20:7-16. [PMID: 36577050 DOI: 10.1089/fpd.2022.0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial-resistant bacteria isolated from food animals pose a major health threat to the public on this planet. This study aimed to determine the susceptibility profiles of Escherichia coli isolated from cattle and pig fecal samples and investigate the molecular characteristics of extended-spectrum β-lactamase (ESBL)-producing E. coli using gene identification, conjugation, and Southern blot approach. Overall 293 E. coli were recovered from cattle (120 isolates) and pigs (173 isolates) in 7 provinces of Korea during 2017-2018. Ampicillin, chloramphenicol, streptomycin, and sulfisoxazole resistance rates were the highest in pigs' isolates (>60%, p ≤ 0.001) compared to that in cattle (3-39%). Multidrug resistance (MDR) was higher in pig isolates (73%) than in cattle (31%), and the MDR profile usually includes streptomycin, sulfisoxazole, and tetracycline. Resistance to critically important antimicrobials such as ceftiofur, colistin, and ciprofloxacin was higher in weaners than those from finishers in pigs. The qnrS gene was detected in 13% of the pig isolates. Eight isolates from pigs and one isolate from cattle were identified as ESBL-producers and ESBL genes belonged to blaCTX-M-55 (n = 4), blaCTX-M-14 (n = 3), and blaCTX-M-65 (n = 2). Notably, the blaCTX-M-65 and qnrS1 genes were found to be carried together in an identical plasmid (IncHI2) in two isolates from finisher pigs. The blaCTX-M-carrying isolates belonged to phylogenetic groups B1 (n = 4), B2 (n = 2), A (n = 2), and D (n = 1). The blaCTX-M genes and non-β-lactam resistance traits were transferred to the E. coli J53 recipient from seven blaCTX-M-positive strains isolated from pigs. The blaCTX-M genes belonged to the IncI1α, IncFII, and IncHI2 plasmids and are also associated with the ISEcp1, IS26, IS903, and orf477 elements. These findings suggested the possibility of blaCTX-M-carrying E. coli transmission to humans through direct contact with cattle and pigs or contamination of food products.
Collapse
Affiliation(s)
- Hyun-Ju Song
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Dong Chan Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea.,Division of Antimicrobial Resistance, Centre for Infectious Diseases Research, Korea Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Su-Jeong Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Abraham Fikru Mechesso
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea.,Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ji-Hyun Choi
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Naila Boby
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hee Young Kang
- Division of Antimicrobial Resistance, Centre for Infectious Diseases Research, Korea Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Seok-Hyeon Na
- Division of Antimicrobial Resistance, Centre for Infectious Diseases Research, Korea Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
4
|
Fecal Microbiome Features Associated with Extended-Spectrum β-Lactamase-Producing Enterobacterales Carriage in Dairy Heifers. Animals (Basel) 2022; 12:ani12141738. [PMID: 35883285 PMCID: PMC9311658 DOI: 10.3390/ani12141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 12/01/2022] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) are a growing public health threat, and one key human exposure point is through livestock and the food supply. Understanding microbiome factors associated with fecal ESBL carriage can help detect and ideally assist with controlling and preventing ESBL dissemination among livestock. The objective of this study was to investigate the diversity and composition of the heifer fecal microbiota in ESBL-producing Enterobacterales (ESBL-PE) carriers and noncarriers. A total of 59 fecal samples were collected from replacement heifers between 12 and 18 months old from eight dairy farms in central Israel. Genomic DNA was extracted, and 16S rRNA amplicon sequencing was performed (Illumina short reads), focusing on a comparison between 33 ESBL-PE carriers (55.9%) and 26 (44.1%) noncarriers. Samples were analyzed and compared using QIIME2 (DADA2 pipeline and taxonomic assignment with SILVA database) and associated R packages for alpha and beta diversity and taxonomic abundances. Alpha diversity (Shannon diversity) and beta diversity (unweighted UniFrac) showed no significant difference between ESBL-PE carriers and noncarriers. Heifers from farms feeding calves with pooled colostrum had higher ESBL-PE carriage rates than heifers from farms feeding with individual mother colostrum (p < 0.001). Taxonomical abundance analysis revealed that the most common bacterial phyla were Bacteroidetes (44%) and Firmicutes (38%). There was no significant difference in taxonomic composition between ESBL-PE carriers and noncarriers at the phylum and genus levels. However, LEfSe biomarker discovery analysis identified several genera which were significantly different between carriers and noncarriers. For example, Prevotellacaea, Bacteroides, Rikenellaceae, and uncultured Bacteroidales were more abundant in ESBL carriers than noncarriers. Some aspects of microbiota composition differ between ESBL carriers and noncarriers in dairy heifers, specifically the abundance of certain genera. Feeding with pooled colostrum may play a role in that assembly. These could potentially serve as markers of ESBL-PE carriage. However, further research is needed to determine whether these observed differences have a significant impact on colonization with ESBL-PE.
Collapse
|
5
|
Li M, Li Z, Zhong Q, Liu J, Han G, Li Y, Li C. Antibiotic resistance of fecal carriage of Escherichia coli from pig farms in China: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22989-23000. [PMID: 34797542 DOI: 10.1007/s11356-021-17339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Fecal carriage of bacteria is a major source of antibiotic resistance genes (ARGs) and a public health risk, but the antibiotic resistance of Escherichia coli (E. coli) in Chinese pig farms remains a major gap in the available literature. Our goal was to conduct a meta-analysis of studies reporting antibiotic resistance of fecal carriage of E. coli from pig farms in China, calculating the pooled resistance rates and summarizing factors associated with it. We searched PubMed and Web of Science for studies published in English up to February 28, 2021. We also searched bibliographic indices and corresponded with the authors. We chose ciprofloxacin, gentamicin, tetracycline, ampicillin, and florfenicol from five major types of antibiotics to comprehensively evaluate the resistance rate of E. coli. We used a random-effects model and Freeman-Tukey double arcsine transformation to calculate the resistance rate and 95% confidence interval. Among the 120 retrieved manuscripts, 16 studies (1985 E. coli isolates) were deemed eligible for our analysis. The combined resistance rate of E. coli from feces was 58.8% (95% CI: 45.3-71.7%) to ciprofloxacin, 54.3% (95% CI: 35.3-72.6%) to gentamicin, 91.0% (95% CI: 83.1-96.7%) to tetracycline, 81.4% (95% CI: 62.0-95.1%) to ampicillin, and 65.4% (95% CI: 33.9-90.9%) to florfenicol. In conclusion, fecal carriage of E. coli in Chinese pig farms shows high resistance to ciprofloxacin, gentamicin, tetracycline, ampicillin, and florfenicol. Subgroup analysis showed that the resistance of E. coli to antibiotics was closely related to the sample size and the health condition of the pigs. Specifically, ESBL-producing E. coli has a higher ratio of resistance to other antibiotics. Future collection of antibiotic resistance and other information in pig farms should be more precise and depend on local surveys.
Collapse
Affiliation(s)
- Mingyang Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhi Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Qiuming Zhong
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Junze Liu
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guofeng Han
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yansen Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chunmei Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
6
|
Waade J, Seibt U, Honscha W, Rachidi F, Starke A, Speck S, Truyen U. Multidrug-resistant enterobacteria in newborn dairy calves in Germany. PLoS One 2021; 16:e0248291. [PMID: 33711073 PMCID: PMC7954297 DOI: 10.1371/journal.pone.0248291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
We studied the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in dairy calves as part of a routine health check protocol. In addition, data regarding antimicrobial use (AMU), farm hygiene, and farm management were collected in order to identify possible risks for ESBL occurrence. Ten farms participated in the study with a median of 781 milking cows (319–1701). All calves investigated were younger than two weeks with an average age of 6.8 (±3.9) days. The farms were visited and samples were collected twice at an interval of 7–11 months. Faecal samples diluted 1:10, were plated onto BrillianceTM ESBL agar in duplicates. After 24 hours at 37°C, colonies were counted and total colony forming units (cfu)/ml calculated. Bacteria species were identified biochemically. ESBL-production was phenotypically confirmed using the MICRONAUT-S β-Lactamases system. Additionally, antimicrobial susceptibility was tested using VITEK® 2 technology. Phylotyping of E. coli isolates and screening for bla genes was performed by PCR. ESBL-producing enterobacteria were detected on all farms and 96.5% of calves investigated shed ESBL-positive bacteria. Of all ESBL-producing isolates, the majority were E. coli (92.9%), followed by Enterobacter cloacae (5.1%) and Klebsiella pneumoniae subsp. pneumoniae (2.0%). The majority of E. coli isolates was clearly assigned to phylogroup C (25.0%), followed by phylogroups A (15.2%) and E (14.1%). CTX-M group 1 was most frequently detected (80.4%). E. cloacae contained blaCTX-M and blaTEM or blaSHV. K. pneumoniae harboured blaSHV only. Besides resistance to penicillins and cephalosporins, the majority of isolates was also resistant to one or more antibiotic classes, with a high proportion being resistant against fluoroqinolones. 52.5% of isolates were further characterised as threefold multidrug resistant gram-negative bacteria (3MDR-GNB) according to the German Commission for Hospital Hygiene and Infection Prevention. None of the isolates were 4MDR-GNB, i.e. none revealed carbapenem-resistance. Penicillins were the most frequently administered antibiotics to calves on most farms and were the predominant substance class at herd level on all farms. Overall, the number of calves treated prior to sampling was rather low (11.7%). Analyses of data regarding the farm management identified weaknesses in biosecurity and cleaning and disinfection. Besides beta-lactam antibiotics being the most commonly used antibiotics no other risk factors could be identified. In summary, the prevalence of ESBL-carriers in dairy calves was exceptionally high and should be motivation to develop strategies for the reduction of multidrug-resistant bacteria in farm animals.
Collapse
Affiliation(s)
- Jil Waade
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Uwe Seibt
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, Leipzig University, Leipzig, Germany
| | - Walther Honscha
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, Leipzig University, Leipzig, Germany
| | - Fanny Rachidi
- Faculty of Veterinary Medicine, Clinic for Ruminants and Swine, Leipzig University, Leipzig, Germany
| | - Alexander Starke
- Faculty of Veterinary Medicine, Clinic for Ruminants and Swine, Leipzig University, Leipzig, Germany
| | - Stephanie Speck
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Uwe Truyen
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
7
|
Exner M, Bhattacharya S, Gebel J, Goroncy-Bermes P, Hartemann P, Heeg P, Ilschner C, Kramer A, Ling ML, Merkens W, Oltmanns P, Pitten F, Rotter M, Schmithausen RM, Sonntag HG, Steinhauer K, Trautmann M. Chemical disinfection in healthcare settings: critical aspects for the development of global strategies. GMS HYGIENE AND INFECTION CONTROL 2020; 15:Doc36. [PMID: 33520601 PMCID: PMC7818848 DOI: 10.3205/dgkh000371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chemical disinfection is an indispensable means of preventing infection. This holds true for healthcare settings, but also for all other settings where transmission of pathogens poses a potential health risk to humans and/or animals. Research on how to ensure effectiveness of disinfectants and the process of disinfection, as well as on when, how and where to implement disinfection precautions is an ongoing challenge requiring an interdisciplinary team effort. The valuable resources of active substances used for disinfection must be used wisely and their interaction with the target organisms and the environment should be evaluated and monitored closely, if we are to reliable reap the benefits of disinfection in future generations. In view of the global threat of communicable diseases and emerging and re-emerging pathogens and multidrug-resistant pathogens, the relevance of chemical disinfection is continually increasing. Although this consensus paper pinpoints crucial aspects for strategies of chemical disinfection in terms of the properties of disinfectant agents and disinfection practices in a particularly vulnerable group and setting, i.e., patients in healthcare settings, it takes a comprehensive, holistic approach to do justice to the complexity of the topic of disinfection.
Collapse
Affiliation(s)
- Martin Exner
- Institute of Hygiene and Public Health, Bonn University, Bonn, Germany
| | | | - Jürgen Gebel
- Institute of Hygiene and Public Health, Bonn University, Bonn, Germany
| | | | - Philippe Hartemann
- Departement Environnement et Santé Publique S.E.R.E.S., Faculté de Médecine, Nancy, France
| | - Peter Heeg
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Carola Ilschner
- Institute of Hygiene and Public Health, Bonn University, Bonn, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Germany
| | - Moi Lin Ling
- Infection Prevention & Control, Singapore General Hospital, Singapore
| | | | | | - Frank Pitten
- IKI – Institut für Krankenhaushygiene & Infektionskontrolle GmbH, Gießen, Germany
| | | | | | - Hans-Günther Sonntag
- Institute of Hygiene and Medical Microbiology, University of Heidelberg, Germany
| | | | | |
Collapse
|
8
|
Association of intestinal colonization of ESBL-producing Enterobacteriaceae in poultry slaughterhouse workers with occupational exposure-A German pilot study. PLoS One 2020; 15:e0232326. [PMID: 32497054 PMCID: PMC7272067 DOI: 10.1371/journal.pone.0232326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/13/2020] [Indexed: 11/19/2022] Open
Abstract
Background Bacteria that have acquired antimicrobial resistance, in particular ESBL-producing Enterobacteriaceae, are an important healthcare concern. Therefore, transmission routes and risk factors are of interest, especially for the carriage of ESBL-producing E. coli. Since there is an enhanced risk for pig slaughterhouse employees to carry ESBL-producing Enterobacteriaceae, associated with animal contact as potential risk factor, the present study investigated the occurrence of ESBL-producing Enterobacteriaceae in poultry slaughterhouse employees. Due to the higher level of resistant Enterobacteriaceae in primary poultry production than in pig production, a higher risk of intestinal colonization of poultry slaughterhouse employees was expected. Results ESBL-producing Enterobacteriaceae were detected in 5.1% (5 of 99) of the fecal samples of slaughterhouse workers. The species of these isolates was confirmed as E. coli. PCR assays revealed the presence of the genes blaCTX-M-15 (n = 2) and blaSHV-12 (n = 3) in these isolates, partly in combination with the β-lactamase gene blaTEM-135. Participants were divided into two groups according to their occupational exposure and results indicated an increased probability of colonization with ESBL-producing Enterobacteriaceae for the group of ‘higher exposure’ (OR 3.7, exact 95% CI 0.6–23.5; p = 0.4). For intestinal colonization with ESBL-producing Enterobacteriaceae, a prevalence of 10% (3/30) was observed in the group of ‘higher exposure’ versus 2.9% (2/69) in the group of ‘lower exposure’. Employees in working steps such as ‘hanging’ poultry in the process of slaughter and ‘evisceration’ seemed to have a higher risk for intestinal colonization with ESBL-producing Enterobacteriaceae compared to the group of ‘lower exposure’. Conclusion This study is the first of its kind to collect data on the occupational exposure of slaughterhouse workers to ESBL-producing Enterobacteriaceae in Europe. The results suggested that colonization with ESBL-producing Enterobacteriaceae is associated with occupational exposure in poultry slaughterhouses. However, the presence of ESBL-producing E. coli isolates in only 5.1% (5/99) of the tested employees in poultry slaughterhouses suggests a lower transmission risk than in pig slaughterhouses.
Collapse
|
9
|
Livestock Manure as Potential Reservoir of CTX-M Type Extended-spectrum β-lactamase Producing Escherichia coli and Klebsiella pneumoniae Associated with Carbapenemase Production. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Nisha KV, Veena SA, Rathika SD, Vijaya SM, Avinash SK. Antimicrobial susceptibility, risk factors and prevalence of bla cefotaximase, temoneira, and sulfhydryl variable genes among Escherichia coli in community-acquired pediatric urinary tract infection. J Lab Physicians 2020; 9:156-162. [PMID: 28706384 PMCID: PMC5496292 DOI: 10.4103/0974-2727.208262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The emergence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli has become an important challenge among pediatric patients with community-acquired urinary tract infection (UTI). OBJECTIVES The aim of this study was to assess the antimicrobial susceptibility patterns, associated risk factors and to survey the frequency of bla cefotaximase (CTX-M), bla temoneira (TEM), and bla sulfhydryl variable (SHV) genotypes in ESBL-producing E. coli isolated from children with community-acquired UTI. METHODS This was a prospective study conducted from November 2012 to March 2016 in a tertiary care center. E. coli isolated in urine cultures from children aged ≤18 years was identified and confirmed for ESBL production. ESBL-positive strains were screened for ESBL encoding genes. Chi-square test and Fisher's exact test were used to compare the difference in antibiotic susceptibility with respect to ESBL positive and negative, and binary logistic regression was used to identify the risk factors associated with ESBL production. RESULTS Among 523 E. coli isolates, 196 (37.5%) were ESBL positive, >90% were resistant to cephalosporins, and 56% were resistant to fluoroquinolones. Least resistance was observed for imipenem, netilmicin, and nitrofurantoin (2%, 8.6%, 15.3%). Association between ESBL production and drug resistance was significant for ceftazidime (P < 0.001), cefixime (P < 0.001), cefotaxime (P = 0.010), ceftazidime-clavulanic acid (P < 0.001), levofloxacin (P = 0.037), and gentamicin (P = 0.047) compared to non-ESBL E. coli. CTX-M gene was the most prevalent (87.5%), followed by TEM (68.4%) and SHV (3.1%). Previous history of UTI and intake of antibiotics were the common risk factors. CONCLUSION ESBL-producing E. coli from community-acquired pediatric UTI carries more than one type of beta-lactamase coding genes correlating their increased antibiotic resistance. Aggressive infection control policy, routine screening for detecting ESBL isolates in clinical samples, and antimicrobial stewardship are the keys to prevent their dissemination in community settings.
Collapse
Affiliation(s)
- Kallyadan V Nisha
- Department of Microbiology, Century International Institute of Dental Sciences and Research Centre, Kasaragod, Kerala, India
| | - Shetty A Veena
- Department of Microbiology and Pediatrics, K.S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Shenoy D Rathika
- Department of Microbiology and Pediatrics, K.S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Shenoy M Vijaya
- Department of Microbiology and Pediatrics, K.S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Shetty K Avinash
- Department of Pediatrics, School of Medicine, Wake Forest University, USA
| |
Collapse
|
11
|
Dantas Palmeira J, Ferreira HMN. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Heliyon 2020; 6:e03206. [PMID: 32042963 PMCID: PMC7002838 DOI: 10.1016/j.heliyon.2020.e03206] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/01/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023] Open
Abstract
Food producing animal is a global challenge in terms of antimicrobial resistance spread. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are relevant opportunistic pathogens that may spread in many ecological niches of the One Health approach as human, animal and environment due to intestinal selection of antimicrobial resistant commensals in food production animals. Cattle production is a relevant ecological niche for selection of commensal bacteria with antimicrobial resistance from microbiota. Enterobacteriaceae show importance in terms of circulation of resistant-bacteria and antimicrobial resistance genes via food chain creating a resistance reservoir, setting up a threat for colonization of humans and consequent health risk. ESBL-producing Enterobacteriaceae are a threat in terms of human health responsible for life threatening outbreaks and silent enteric colonization of community populations namely the elder population. Food associated colonization is a risk difficult to handle and control. In a time of globalization of food trading, population intestinal colonization is a mirror of food production and in that sense this work aims to make a picture of ESBL-producing Enterobacteriaceae in animal production for food over the world in order to make some light in this reality of selection of resistant threats in food producing animal.
Collapse
Affiliation(s)
- Josman Dantas Palmeira
- Microbiology - Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal.,UCIBIO - Research Unit on Applied Molecular Biosciences, REQUIMTE, Portugal
| | - Helena Maria Neto Ferreira
- Microbiology - Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal.,UCIBIO - Research Unit on Applied Molecular Biosciences, REQUIMTE, Portugal
| |
Collapse
|
12
|
Lee S, Mir RA, Park SH, Kim D, Kim HY, Boughton RK, Morris JG, Jeong KC. Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. Crit Rev Microbiol 2020; 46:1-14. [PMID: 31976793 DOI: 10.1080/1040841x.2020.1715339] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effectiveness of antibiotics has been challenged by the increasing frequency of antimicrobial resistance (AR), which has emerged as a major threat to global health. Despite the negative impact of AR on health, there are few effective strategies for reducing AR in food-producing animals. Of the antimicrobial resistant microorganisms (ARMs), extended-spectrum β-lactamases (ESBLs)-producing Enterobacteriaceae are an emerging global threat due to their increasing prevalence in livestock, even in animals raised without antibiotics. Many reviews are available for the positive selection of AR associated with antibiotic use in livestock, but less attention has been given to how other factors including soil, water, manure, wildlife, and farm workers, are associated with the emergence of ESBL-producing bacteria. Understanding of antibiotic resistance genes and bacteria transfer at the interfaces of livestock and other potential reservoirs will provide insights for the development of mitigation strategies for AR.
Collapse
Affiliation(s)
- Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Raies A Mir
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, School of Biological Sciences, and Korean Genomics Industrialization and Commercialization Center, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung-Hee University, Yongin, Korea
| | - Raoul K Boughton
- Range Cattle Research and Education Center, Department of Wildlife Ecology and Conservation, University of Florida, Ona, FL, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung-Hee University, Yongin, Korea
| |
Collapse
|
13
|
Gundran RS, Cardenio PA, Salvador RT, Sison FB, Benigno CC, Kreausukon K, Pichpol D, Punyapornwithaya V. Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. Microb Drug Resist 2019; 26:160-168. [PMID: 31532307 DOI: 10.1089/mdr.2019.0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek® 2 and combined disk test. PCR amplifications were carried out in all isolates targeting blaCTX-M and its five major groupings, blaTEM, and blaSHV. The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of blaCTX-M gene was 91.67% (95% CI = 80.02-97.68). All major blaCTX-M-groups except blaCTX-M-25group were detected. The blaCTX-M-1 was the most prevalent blaCTX-M gene, 75.0% (95% CI = 60.40-86.36). The prevalence of blaTEM and blaSHV genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different blaCTX-M, blaTEM, and blaSHV genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment.
Collapse
Affiliation(s)
- Romeo S Gundran
- College of Veterinary Science and Medicine, Central Luzon State University, Science City of Munoz, Nueva Ecija, Philippines
| | - Paul A Cardenio
- College of Veterinary Science and Medicine, Central Luzon State University, Science City of Munoz, Nueva Ecija, Philippines
| | - Roderick T Salvador
- College of Veterinary Science and Medicine, Central Luzon State University, Science City of Munoz, Nueva Ecija, Philippines
| | - Fredelon B Sison
- College of Veterinary Science and Medicine, Central Luzon State University, Science City of Munoz, Nueva Ecija, Philippines
| | - Carolyn C Benigno
- Philippine College of Veterinary Epidemiologists and PHILVET Health Services, Inc., Quezon City, Philippines
| | | | - Duangporn Pichpol
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
14
|
Egli A, Koch D, Danuser J, Hendriksen RS, Driesen S, Schmid DC, Neher R, Mäusezahl M, Seth-Smith HMB, Bloemberg G, Tschudin-Sutter S, Endimiani A, Perreten V, Greub G, Schrenzel J, Stephan R. Symposium report: One Health meets sequencing. Microbes Infect 2019; 22:1-7. [PMID: 31401354 DOI: 10.1016/j.micinf.2019.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Adrian Egli
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Applied Microbiology Research, University of Basel, Basel, Switzerland.
| | - Daniel Koch
- Federal Office of Public Health, Liebefeld, Switzerland
| | - Jürg Danuser
- Federal Food Safety and Veterinary Office, Bern, Switzerland
| | | | | | | | - Richard Neher
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland; Biozentrum, University of Basel, Basel, Switzerland
| | | | - Helena M B Seth-Smith
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Applied Microbiology Research, University of Basel, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Guido Bloemberg
- National Center for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Sarah Tschudin-Sutter
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Jacques Schrenzel
- Bacteriology and Genomics Research Laboratories, University Hospital Geneva, Geneva, Switzerland
| | - Roger Stephan
- Institute for Food Safety and -hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Ceccarelli D, Kant A, van Essen-Zandbergen A, Dierikx C, Hordijk J, Wit B, Mevius DJ, Veldman KT. Diversity of Plasmids and Genes Encoding Resistance to Extended Spectrum Cephalosporins in Commensal Escherichia coli From Dutch Livestock in 2007-2017. Front Microbiol 2019; 10:76. [PMID: 30778339 PMCID: PMC6369715 DOI: 10.3389/fmicb.2019.00076] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL) and plasmid-mediated AmpC β-lactamase (pAmpC) genes confer resistance to extended spectrum cephalosporin’s. The spread of these genes is mostly facilitated by plasmid-mediated horizontal transfer. National surveillance activities to detect ESBL/pAmpC-producers in commensal bacteria from livestock are in place in the Netherlands since several years. This study aimed at reporting gene and plasmid diversity of commensal ESBL/pAmpC-producing Escherichia coli isolated from healthy animals during surveillance activities between 2007 and 2017. A collection of 2304 extended-spectrum cephalosporin-resistant (ESC-R) E. coli isolated from feces of broilers, dairy cattle, slaughter pigs, turkeys, ducks, and veal calves was investigated and ESBL/pAmpC genes were determined. Gene location of a selection of 473 E. coli isolates was determined and typing of plasmids linked to the ESBL/pAmpC genes was performed. Twenty-two different ESBL/pAmpC genes were identified with blaCTX-M-1 being the most prevalent gene in livestock (43.7%), followed by blaCMY -2 and blaSHV -12, independent of the animal source. Prevalence of typically human associated blaCTX-M-15 was highest in cattle. Less than 10% E. coli isolates owed their ESC-R phenotype to promoter mutations of the chromosomal ampC gene. Majority (92%) of ESBL/pAmpC genes analyzed were plasmid located, with IncI1α being the most represented plasmid family in isolates from all animals, followed by IncF (veal calves, dairy cattle and slaughter pigs), IncK (broilers and laying hens), IncX1 in broilers, and emerging IncX3 in broilers and dairy cattle. Prevalence and molecular diversity of ESC-R E. coli isolated from livestock over an 11-year period revealed a composite scenario of gene-plasmid combinations.
Collapse
Affiliation(s)
- Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Arie Kant
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | | | - Cindy Dierikx
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Joost Hordijk
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Ben Wit
- Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, Netherlands
| | - Dik J Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Kees T Veldman
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| |
Collapse
|
16
|
Biasino W, De Zutter L, Garcia-Graells C, Uyttendaele M, Botteldoorn N, Gowda T, Van Damme I. Quantification, distribution and diversity of ESBL/AmpC-producing Escherichia coli on freshly slaughtered pig carcasses. Int J Food Microbiol 2018; 281:32-35. [PMID: 29807289 DOI: 10.1016/j.ijfoodmicro.2018.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
This study quantified cefotaxime-resistant E. coli (CREC) on nine different carcass areas of 104 freshly slaughtered pig carcasses. In 49% [95% confidence interval (95% CI): 29-69%] of the carcasses CREC could be isolated and enumerated (using Tryptone Bile Agar with X-Glucuronide supplemented with 1 mg/L cefotaxime). Proportions of positive samples varied between carcass areas from 1% [95% CI: 0-10%] (loin) to 23% [95% CI: 10-44%] (head). Maximum concentrations on positive samples ranged between -0.6 log10 CFU/cm2 (loin, elbow before evisceration) and 1.7 log10 CFU/cm2 (head). The head was significantly more frequently contaminated than the loin (p = 0.027) and ham (3% [95% CI: 1-15%]). The foreleg was significantly more frequently contaminated (20% [95% CI: 13-30%]) than the ham. Combination disk diffusion assays revealed that 81% of the CREC isolates were extended-spectrum beta-lactamases (ESBL) producers, 13% were AmpC cephalosporinases (AmpC) producers and 2% ESBL and AmpC co-producers. Genotyping denoted blaCTX-M-gr1 (63%) and blaTEM (40%) as most present antibiotic resistance genes. Multiple gene combinations in one isolate and multiple combinations of genotypes and phenotypes among isolates of one sample were observed. These quantitative data can be used for intervention strategies to lower human exposure to CREC.
Collapse
Affiliation(s)
- W Biasino
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - L De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - C Garcia-Graells
- Scientific Institute of Public Health, Service Food-Borne Pathogens, 14 Juliette Wytsman, 1050 Brussels, Belgium
| | - M Uyttendaele
- Department of Food Safety & Food Quality, Faculty of Bio-Science Engineering, Ghent University, Coupure Links 653, 9000, B-9000 Ghent, Belgium
| | - N Botteldoorn
- Scientific Institute of Public Health, Service Food-Borne Pathogens, 14 Juliette Wytsman, 1050 Brussels, Belgium
| | - T Gowda
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - I Van Damme
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
17
|
Collineau L, Carmo LP, Endimiani A, Magouras I, Müntener C, Schüpbach-Regula G, Stärk KDC. Risk Ranking of Antimicrobial-Resistant Hazards Found in Meat in Switzerland. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2018; 38:1070-1084. [PMID: 28973821 DOI: 10.1111/risa.12901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Human exposure to bacteria resistant to antimicrobials and transfer of related genes is a complex issue and occurs, among other pathways, via meat consumption. In a context of limited resources, the prioritization of risk management activities is essential. Since the antimicrobial resistance (AMR) situation differs substantially between countries, prioritization should be country specific. The objective of this study was to develop a systematic and transparent framework to rank combinations of bacteria species resistant to selected antimicrobial classes found in meat, based on the risk they represent for public health in Switzerland. A risk assessment model from slaughter to consumption was developed following the Codex Alimentarius guidelines for risk analysis of foodborne AMR. Using data from the Swiss AMR monitoring program, 208 combinations of animal species/bacteria/antimicrobial classes were identified as relevant hazards. Exposure assessment and hazard characterization scores were developed and combined using multicriteria decision analysis. The effect of changing weights of scores was explored with sensitivity analysis. Attributing equal weights to each score, poultry-associated combinations represented the highest risk. In particular, contamination with extended-spectrum β-lactamase/plasmidic AmpC-producing Escherichia coli in poultry meat ranked high for both exposure and hazard characterization. Tetracycline- or macrolide-resistant Enterococcus spp., as well as fluoroquinolone- or macrolide-resistant Campylobacter jejuni, ranked among combinations with the highest risk. This study provides a basis for prioritizing future activities to mitigate the risk associated with foodborne AMR in Switzerland. A user-friendly version of the model was provided to risk managers; it can easily be adjusted to the constantly evolving knowledge on AMR.
Collapse
Affiliation(s)
| | - Luís Pedro Carmo
- Veterinary Public Health Institute, Vetsuisse, University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ioannis Magouras
- Veterinary Public Health Institute, Vetsuisse, University of Bern, Bern, Switzerland
| | - Cedric Müntener
- Institut für Veterinärpharmakologie und -toxikologie, Vetsuisse, University of Zurich, Zurich, Switzerland
| | | | - Katharina D C Stärk
- SAFOSO AG, Bern Liebefeld, Switzerland
- Royal Veterinary College, Hawkshead Lane, North Mymms, UK
| |
Collapse
|
18
|
ESBL carriage in pig slaughterhouse workers is associated with occupational exposure. Epidemiol Infect 2017; 145:2003-2010. [PMID: 28462735 DOI: 10.1017/s0950268817000784] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the prevalence of extended-spectrum β-lactamase (ESBL) carriage in slaughterhouse workers and the association with occupational exposure to slaughter animals and products. Stool samples from 334 employees in a Dutch pig slaughterhouse were obtained. Presence of ESBL was determined by selective plating, microarray analysis, and gene sequencing. Questionnaires were used to collect personal and occupational information. The overall prevalence of ESBL carriage was 4·8% (16/334). All ESBL-producing isolates were Escherichia coli. The ESBL genes detected were bla CTX-M-1 (n = 8), bla CTX-M-15 (n = 3), bla CTX-M-27 (n = 2), bla CTX-M-24 (n = 1), bla CTX-M-55 (n = 1), and bla SHV-12 (n = 1). A higher prevalence of ESBL was seen in workers in jobs with as tasks 'removal of lungs, heart, liver, tongue' (33%), and 'removal of head and spinal cord' (25%). For further analysis, participants were divided in two groups based on potential exposure to ESBL as related to their job title. One group with an assumed higher exposure to ESBL (e.g. stable work, stabbing, dehairing, removal of organs) and another group with an assumed lower exposure to ESBL (e.g. refrigeration, packaging and expedition). In the 'higher exposure' group, ten out of 95 (10·5%) were carrying ESBL vs. six out of 233 (2·6%) in the 'lower exposure' group. Human ESBL carriage was significantly associated with job exposure in the slaughterhouse (OR 4·5, CI 1·6-12·6). Results suggest that ESBL carriage in slaughterhouse workers overall is comparable with the Dutch population. Within the slaughterhouse population a difference in carriage exists depending on their position along the slaughter line and tasks involved.
Collapse
|
19
|
Tschudin-Sutter S, Lucet JC, Mutters NT, Tacconelli E, Zahar JR, Harbarth S. Contact Precautions for Preventing Nosocomial Transmission of Extended-Spectrum β Lactamase–Producing Escherichia coli: A Point/Counterpoint Review. Clin Infect Dis 2017; 65:342-347. [DOI: 10.1093/cid/cix258] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/29/2017] [Indexed: 01/10/2023] Open
|
20
|
Yamamoto S, Asakura H, Igimi S. Recent Trends for the Prevalence and Transmission Risk of Extended Spectrum β-Lactamases (ESBL) Producing Bacteria in Foods. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2017; 58:1-11. [PMID: 28260727 DOI: 10.3358/shokueishi.58.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Piso RJ, Käch R, Pop R, Zillig D, Schibli U, Bassetti S, Meinel D, Egli A. A Cross-Sectional Study of Colonization Rates with Methicillin-Resistant Staphylococcus aureus (MRSA) and Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase-Producing Enterobacteriaceae in Four Swiss Refugee Centres. PLoS One 2017; 12:e0170251. [PMID: 28085966 PMCID: PMC5234815 DOI: 10.1371/journal.pone.0170251] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/30/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The recent crisis of refugees seeking asylum in European countries challenges public health on many levels. Most refugees currently arrive from Syria, Afghanistan, or Eritrea. Data about multidrug resistant bacteria (MDR) prevalence are not present for these countries. However, when entering the European heath care systems, data about colonisation rates regarding highly resistant bacterial pathogens are important. METHODS We performed a cross-sectional screening in four Swiss refugee centres to determine the colonization rates for MRSA and ESBL- and carbapenemase-producing Enterobacteriaceae. We used pharyngeal, nasal, and inguinal swabs for MRSA and rectal swabs and urine for ESBL and carbapenemase screening using standard microbiological procedures. Whole genome sequencing (WGS) was used to determine the relatedness of MRSA isolates with high resolution due to a suspected outbreak. RESULTS 41/261(15.7%) refugees were colonized with MRSA. No differences regarding the country of origin were observed. However, in a single centre significantly more were colonized, which was confirmed to be a recent local outbreak. 57/241 (23.7%) refugees were colonized with ESBL with significantly higher colonisation in persons originating from the Middle East (35.1%, p<0.001). No carbapenemase producers were detected. CONCLUSION The colonisation rate of the refugees was about 10 times higher for MRSA and 2-5 times higher for ESBL compared to the Swiss population. Contact precaution is warranted for these persons if they enter medical care. In cases of infections, MRSA and ESBL-producing Enterobacteriaceae should be considered regarding antibiotic treatment choices.
Collapse
Affiliation(s)
- Rein Jan Piso
- Medical Clinic, Cantonal Hospital of Olten, Olten, Switzerland
| | - Roman Käch
- Medical Clinic, Cantonal Hospital of Olten, Olten, Switzerland
| | - Roxana Pop
- Medical Clinic, Cantonal Hospital of Olten, Olten, Switzerland
| | - Daniela Zillig
- Medical Clinic, Cantonal Hospital of Olten, Olten, Switzerland
| | - Urs Schibli
- Bakt Institut Olten BIO AG, Olten, Switzerland
| | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Dominik Meinel
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Su Y, Yu CY, Tsai Y, Wang SH, Lee C, Chu C. Fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli from the milk of cows with clinical mastitis in Southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:892-901. [DOI: 10.1016/j.jmii.2014.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 01/31/2023]
|
23
|
Wang J, Gibbons JF, McGrath K, Bai L, Li F, Leonard FC, Stephan R, Fanning S. Molecular characterization ofblaESBL-producingEscherichia colicultured from pig farms in Ireland. J Antimicrob Chemother 2016; 71:3062-3065. [DOI: 10.1093/jac/dkw278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/17/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
|
24
|
Quantification of ESBL-Escherichia coli on broiler carcasses after slaughtering in Germany. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Elhadi N. Prevalence of Extended-Spectrum-β-Lactamase-Producing Escherichia coli in Imported Frozen Freshwater Fish in Eastern Province of Saudi Arabia. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2015; 4:19-25. [PMID: 30787690 PMCID: PMC6298268 DOI: 10.4103/1658-631x.170883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background: The prevalence of extended-spectrum β-lactamase (ESBL) production and antimicrobial susceptibility testing in the Escherichia coli in frozen freshwater fish imported into Saudi Arabia have not been investigated. Objective: The aim of this study was to investigate the prevalence of ESBL-producing E. coli in frozen freshwater fish imported into Saudi Arabia and retailed in various supermarkets and food stores in the Eastern Province of Saudi Arabia. Materials and Methods: A total of 405 imported freshwater fish samples: Catfish (n = 65); mrigal (n = 45); tilapia (n = 135); carfoo (n = 50); rohu (n = 75); and milkfish (n = 35) were purchased from supermarkets and screened for ESBL-producing E. coli using ESBL chromogenic selective agar. The phenotypically confirmed ESBL isolates were further tested for antimicrobial susceptibility testing against 21 antimicrobial agents and amplification of blaTEM, blaSHV, and blaCTX-M genes using polymerase chain reaction. Results: A total of 110 out of the 405 (27.2%) freshwater fish samples were found to be positive for ESBL producing E. coli and yielded 224 confirmed isolates. The highest rates of multi-drug resistant patterns to antimicrobial agents were observed in E. coli isolated from catfish, mrigal, and tilapia imported from Thailand and milkfish imported from Vietnam. The most prevalent ESBL gene found in the samples was blaCTX-M, which was detected in tilapia (100%, n = 30) imported from Thailand and carfoo (100%, n = 5), milkfish (60%, n = 24), catfish (52.3%, n = 34), and tilapia imported from India (34.8%, n = 24). Conclusion: The results confirmed the imported frozen freshwater fish is pool reservoir of antibiotic resistance and ESBL producing E. coli.
Collapse
Affiliation(s)
- Nasreldin Elhadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, Dammam 31441, Saudi Arabia
| |
Collapse
|
26
|
Schmithausen RM, Schulze-Geisthoevel SV, Stemmer F, El-Jade M, Reif M, Hack S, Meilaender A, Montabauer G, Fimmers R, Parcina M, Hoerauf A, Exner M, Petersen B, Bierbaum G, Bekeredjian-Ding I. Analysis of Transmission of MRSA and ESBL-E among Pigs and Farm Personnel. PLoS One 2015; 10:e0138173. [PMID: 26422606 PMCID: PMC4589321 DOI: 10.1371/journal.pone.0138173] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/27/2015] [Indexed: 12/27/2022] Open
Abstract
Livestock-associated bacteria with resistance to two or more antibiotic drug classes have heightened our awareness for the consequences of antibiotic consumption and spread of resistant bacterial strains in the veterinary field. In this study we assessed the prevalence of concomitant colonization with livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) and enterobacteriaceae expressing extended-spectrum betalactamases (ESBL-E) in farms at the German-Dutch border region. Nasal colonization of pigs with MRSA (113/547 (20.7%)) was less frequent than rectal colonization with ESBL-E (163/540 (30.2%)). On the individual farm level MRSA correlated with ESBL-E recovery. The data further provide information on prevalence at different stages of pig production, including abattoirs, as well as in air samples and humans living and working on the farms. Notably, MRSA was detected in stable air samples of 34 out of 35 pig farms, highlighting air as an important MRSA transmission reservoir. The majority of MRSA isolates, including those from humans, displayed tetracycline resistance and spa types t011 and t034 characteristic for LA-MRSA, demonstrating transmission from pigs to humans. ESBL-E positive air samples were detected on 6 out of 35 farms but no pig-to-human transmission was found. Detection of ESBL-E, e.g. mostly Escherichia coli with CTX-M-type ESBL, was limited to these six farms. Molecular typing revealed transmission of ESBL-E within the pig compartments; however, related strains were also found on unrelated farms. Although our data suggest that acquisition of MRSA and ESBL-E might occur among pigs in the abattoirs, MRSA and ESBL-E were not detected on the carcasses. Altogether, our data define stable air (MRSA), pig compartments (ESBL-E) and abattoir waiting areas (MRSA and ESBL-E) as major hot spots for transmission of MRSA and/or ESBL-E along the pig production chain.
Collapse
Affiliation(s)
- Ricarda Maria Schmithausen
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- Institute of Animal Science, Preventive Health Management Group, University of Bonn, Katzenburgweg 7–9, Bonn, Germany
| | | | - Franziska Stemmer
- Institute of Animal Science, Preventive Health Management Group, University of Bonn, Katzenburgweg 7–9, Bonn, Germany
| | - Mohamed El-Jade
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marion Reif
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Sylvia Hack
- Institute of Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Alina Meilaender
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Gabriele Montabauer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Rolf Fimmers
- Institute of Medical Biometry, Epidemiology and Computer Science, University Hospital Bonn, Bonn, Germany
| | - Marijo Parcina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Martin Exner
- Institute of Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Brigitte Petersen
- Institute of Animal Science, Preventive Health Management Group, University of Bonn, Katzenburgweg 7–9, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Bekeredjian-Ding
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- Division of EU cooperation/ Microbiology, Paul-Ehrlich-Institute, Langen, Germany
- * E-mail:
| |
Collapse
|
27
|
Eradication of methicillin-resistant Staphylococcus aureus and of Enterobacteriaceae expressing extended-spectrum beta-lactamases on a model pig farm. Appl Environ Microbiol 2015; 81:7633-43. [PMID: 26341200 DOI: 10.1128/aem.01713-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023] Open
Abstract
Colonization of livestock with bacteria resistant to antibiotics is considered a risk for the entry of drug-resistant pathogens into the food chain. For this reason, there is a need for novel concepts to address the eradication of drug-resistant commensals on farms. In the present report, we evaluated the decontamination measures taken on a farm contaminated with methicillin-resistant Staphylococcus aureus (MRSA) and Enterobacteriaceae expressing extended-spectrum β-lactamases (ESBL-E). The decontamination process preceded the conversion from piglet breeding to gilt production. Microbiological surveillance showed that the decontamination measures eliminated the MRSA and ESBL-E strains that were detected on the farm before the complete removal of pigs, cleaning and disinfection of the stable, and construction of an additional stable meeting high-quality standards. After pig production was restarted, ESBL-E remained undetectable over 12 months, but MRSA was recovered from pigs and the environment within the first 2 days. However, spa (Staphylococcus aureus protein A gene) typing revealed acquisition of an MRSA strain (type t034) that had not been detected before decontamination. Interestingly, we observed that a farmworker who had been colonized with the prior MRSA strain (t2011) acquired the new strain (t034) after 2 months. In summary, this report demonstrates that decontamination protocols similar to those used here can lead to successful elimination of contaminating MRSA and ESBL-E in pigs and the stable environment. Nevertheless, decontamination protocols do not prevent the acquisition of new MRSA strains.
Collapse
|
28
|
Changkaew K, Intarapuk A, Utrarachkij F, Nakajima C, Suthienkul O, Suzuki Y. Antimicrobial Resistance, Extended-Spectrum β-Lactamase Productivity, and Class 1 Integrons in Escherichia coli from Healthy Swine. J Food Prot 2015; 78:1442-50. [PMID: 26219356 DOI: 10.4315/0362-028x.jfp-14-445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Administration of antimicrobials to food-producing animals increases the risk of higher antimicrobial resistance in the normal intestinal flora of these animals. The present cross-sectional study was conducted to investigate antimicrobial susceptibility and extended-spectrum β-lactamase (ESBL)-producing strains and to characterize class 1 integrons in Escherichia coli in healthy swine in Thailand. All 122 of the tested isolates had drug-resistant phenotypes. High resistance was found to ampicillin (98.4% of isolates), chloramphenicol (95.9%), gentamicin (78.7%), streptomycin (77.9%), tetracycline (74.6%), and cefotaxime (72.1%). Fifty-four (44.3%) of the E. coli isolates were confirmed as ESBL-producing strains. Among them, blaCTX-M (45 isolates) and blaTEM (41 isolates) were detected. Of the blaCTX-M-positive E. coli isolates, 37 carried the blaCTX-M-1 cluster, 12 carried the blaCTX-M-9 cluster, and 5 carried both clusters. Sequence analysis revealed blaTEM-1, blaTEM-135, and blaTEM-175 in 38, 2, and 1 isolate, respectively. Eighty-seven (71%) of the 122isolates carried class 1 integrons, and eight distinct drug-resistance gene cassettes with seven different integron profiles were identified in 43 of these isolates. Gene cassettes were associated with resistance to aminoglycosides (aadA1, aadA2, aadA22, or aadA23), trimethoprim (dfrA5, dfrA12, or dfrA17), and lincosamide (linF). Genes encoding β-lactamases were not found in class 1 integrons. This study is the first to report ESBL-producing E. coli with a class 1 integron carrying the linF gene cassette in swine in Thailand. Our findings confirm that swine can be a reservoir of ESBL-producing E. coli harboring class 1 integrons, which may become a potential health risk if these integrons are transmitted to humans. Intensive analyses of animal, human, and environmental isolates are needed to control the spread of ESBL-producing E. coli strains.
Collapse
Affiliation(s)
- Kanjana Changkaew
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Apiradee Intarapuk
- Department of Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Fuangfa Utrarachkij
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Orasa Suthienkul
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
29
|
Lim JS, Choi DS, Kim YJ, Chon JW, Kim HS, Park HJ, Moon JS, Wee SH, Seo KH. Characterization of Escherichia coli-Producing Extended-Spectrum β-Lactamase (ESBL) Isolated from Chicken Slaughterhouses in South Korea. Foodborne Pathog Dis 2015. [PMID: 26219023 DOI: 10.1089/fpd.2014.1921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In South Korea, few reports have indicated the occurrence and characteristics of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in food-producing animals, particularly in poultry slaughterhouses. In this study, we investigated the occurrence and antibiotic resistance of ESBL-producing E. coli from whole chicken carcasses (n=156) and fecal samples (n=39) of chickens obtained from 2 slaughterhouses. Each sample enriched in buffered peptone water was cultured on MacConkey agar with 2 mg/L cefotaxime and ESBL agar. ESBL production and antibiotic susceptibility were determined using the Trek Diagnostics system. The ESBL genotypes were determined by polymerase chain reaction (PCR) using the bla(SHV), bla(TEM), and bla(CTX-M) gene sequences. Subtyping using a repetitive sequence-based PCR system (DiversiLab™) and multilocus sequence typing (MLST) were used to assess the interspecific biodiversity of isolates. Sixty-two ESBL-producing E. coli isolates were obtained from 156 samples (39.7%). No bla(SHV) genes were detected in any of the isolates, whereas all contained the bla(TEM) gene. Twenty-five strains (40.3%) harbored the CTX-M group 1 gene. The most prevalent MLST sequence type (ST) was ST 93 (14.5%), followed by ST 117 (9.7%) and ST 2303 (8.1%). This study reveals a high occurrence and β-lactams resistance rate of E. coli in fecal samples and whole chickens collected from slaughterhouses in South Korea.
Collapse
Affiliation(s)
- Jong-Soo Lim
- 1 KU Center for Food Safety, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Da-Som Choi
- 1 KU Center for Food Safety, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Young-Jo Kim
- 2 Ministry of Food and Drug Safety, Food and Drug Administration , Cheongwon, Korea
| | - Jung-Whan Chon
- 3 Department of Animal Science and Technology, Konkuk University , Seoul, Korea
| | - Hong-Seok Kim
- 1 KU Center for Food Safety, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Hyun-Jung Park
- 2 Ministry of Food and Drug Safety, Food and Drug Administration , Cheongwon, Korea
| | - Jin-San Moon
- 4 Animal and Plant Quarantine Agency , Anyang, Gyeonggi, Korea
| | - Sung-Hwan Wee
- 4 Animal and Plant Quarantine Agency , Anyang, Gyeonggi, Korea
| | - Kun-Ho Seo
- 1 KU Center for Food Safety, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| |
Collapse
|
30
|
Impact of the use of β-lactam antimicrobials on the emergence of Escherichia coli isolates resistant to cephalosporins under standard pig-rearing conditions. Appl Environ Microbiol 2014; 81:1782-7. [PMID: 25548055 DOI: 10.1128/aem.03916-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate if the treatments with ceftiofur and amoxicillin are risk factors for the emergence of cephalosporin resistant (CR) E. coli in a pig farm during the rearing period. One hundred 7-day-old piglets were divided into two groups, a control (n = 50) group and a group parenterally treated with ceftiofur (n = 50). During the fattening period, both groups were subdivided in two. A second treatment with amoxicillin was administered in feed to two of the four groups, as follows: group 1 (untreated, n = 20), group 2 (treated with amoxicillin, n = 26), group 3 (treated with ceftiofur, n = 20), and group 4 (treated with ceftiofur and amoxicillin, n = 26). During treatment with ceftiofur, fecal samples were collected before treatment (day 0) and at days 2, 7, 14, 21, and 42 posttreatment, whereas with amoxicillin, the sampling was extended 73 days posttreatment. CR E. coli bacteria were selected on MacConkey agar with ceftriaxone (1 mg/liter). Pulsed-field gel electrophoresis (PFGE), MICs of 14 antimicrobials, the presence of cephalosporin resistance genes, and replicon typing of plasmids were analyzed. Both treatments generated an increase in the prevalence of CR E. coli, which was statistically significant in the treated groups. Resistance diminished after treatment. A total of 47 CR E. coli isolates were recovered during the study period; of these, 15 contained blaCTX-M-1, 10 contained blaCTX-M-14, 4 contained blaCTX-M-9, 2 contained blaCTX-M-15, and 5 contained blaSHV-12. The treatment with ceftiofur and amoxicillin was associated with the emergence of CR E. coli during the course of the treatment. However, by the time of finishing, CR E. coli bacteria were not recovered from the animals.
Collapse
|
31
|
Tschudin-Sutter S, Frei R, Stephan R, Hächler H, Nogarth D, Widmer AF. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae: a threat from the kitchen. Infect Control Hosp Epidemiol 2014; 35:581-4. [PMID: 24709730 DOI: 10.1086/675831] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food is an established source of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Hand hygiene and cooking prevent transmission, but hands could be recontaminated by touching used cutting boards. ESBL-producing Escherichia coli were identified on 12% of cutting boards and 50% of gloves after poultry preparation, pointing to an important source for transmission.
Collapse
Affiliation(s)
- Sarah Tschudin-Sutter
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Randall LP, Lemma F, Rogers JP, Cheney TEA, Powell LF, Teale CJ. Prevalence of extended-spectrum- -lactamase-producing Escherichia coli from pigs at slaughter in the UK in 2013. J Antimicrob Chemother 2014; 69:2947-50. [DOI: 10.1093/jac/dku258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Allen HK. Antibiotic resistance gene discovery in food-producing animals. Curr Opin Microbiol 2014; 19:25-29. [PMID: 24994584 DOI: 10.1016/j.mib.2014.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/28/2014] [Accepted: 06/07/2014] [Indexed: 12/14/2022]
Abstract
Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.
Collapse
Affiliation(s)
- Heather K Allen
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
34
|
Reich F, Atanassova V, Klein G. Extended-spectrum β-lactamase- and AmpC-producing enterobacteria in healthy broiler chickens, Germany. Emerg Infect Dis 2014; 19:1253-9. [PMID: 23876576 PMCID: PMC3739521 DOI: 10.3201/eid1908.120879] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During 2010, we evaluated the presence of extended-spectrum β-lactamase– and AmpC-producing enterobacteria in broiler chickens at slaughter. Samples (70 carcasses and 51 ceca) from 4 flocks were analyzed by direct plating and after enrichment. Extended-spectrum β-lactamase producers were found in 88.6% and 72.5% of carcasses and ceca, respectively; AmpC producers were found in 52.9% and 56.9% of carcasses and ceca, respectively. Most isolates were identified as Escherichia coli; Enterobacter cloacae (cecum) and Proteus mirabilis (carcass) were found in 2 samples each. Molecular characterization revealed the domination of CTX-M genes; plasmidic AmpC was CIT-like. Phylogenetic grouping of E. coli showed types A (31.5%), B1 (20.2%), B2 (13.5%), and D (34.8%). These findings provide evidence that healthy broilers in Germany are a source for the dissemination of transmissible resistance mechanisms in enterobacteria brought from the rearing environment into the food chain during slaughtering.
Collapse
Affiliation(s)
- Felix Reich
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | |
Collapse
|
35
|
Bardoň J, Husičková V, Chromá M, Kolář M. Prevalence and characteristics of Escherichia coli strains producing extended-spectrum β -lactamases in slaughtered animals in the Czech Republic. J Food Prot 2013; 76:1773-7. [PMID: 24112579 DOI: 10.4315/0362-028x.jfp-13-114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Resistance of bacteria to antibiotics is a global medical problem requiring close cooperation between veterinary and human physicians. Raw materials and foods of animal origin may be not only a source of pathogenic bacteria causing alimentary tract infections but also a source of bacteria with a dangerous extent of resistance to antibiotics, potentially entering the human food chain. This article presents results of the first study in the Czech Republic detecting the presence of Enterobacteriaceae-producing extended-spectrum b -lactamases (ESBLs) in swabs collected in slaughterhouses from surfaces of healthy animal carcasses. In 2012, swabs taken from pig (n = 166) and cattle (n = 140) carcass surfaces were analyzed. In 17 % of 53 studied slaughterhouses, ESBL-producing Escherichia coli strains were isolated. ESBLs were found in 11 and 4 % of porcine and bovine samples, respectively. Swabs collected from pigs yielded 18 ESBL-producing E. coli strains. The bla genes were found to encode production of CTX-M-1 group enzymes in 16 strains, SHV in one case, and both CTX-M-1-like and TEM in another case. In swabs taken from cattle, five ESBL-producing E. coli strains were isolated. In three cases, the bla genes for CTX-M-1-like production were identified; in two cases, genes for both CTX-M-1-like and TEM production were found. The similarity/identity of ESBL-positive isolates was compared by pulsed-field gel electrophoresis. This is the first report and characterization of the presence and nature of ESBL-producing E. coli in swabs collected from surfaces of healthy pig and cattle carcasses in slaughterhouses in the Czech Republic.
Collapse
Affiliation(s)
- J Bardoň
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnêvotínská 5, 779 00 Olomouc, Czech Republic, State Veterinary Institute Olomouc, Jakoubka ze Stříbra 1, 779 00 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
36
|
ESBL-producing Enterobacteriaceae: occurrence, risk factors for fecal carriage and strain traits in the Swiss slaughter cattle population younger than 2 years sampled at abattoir level. PLoS One 2013; 8:e71725. [PMID: 23977126 PMCID: PMC3748101 DOI: 10.1371/journal.pone.0071725] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022] Open
Abstract
During the past decade extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae have become a matter of great concern in human and veterinary medicine. In this cross-sectional study fecal swabs of a geographically representative number of Swiss cattle at slaughterhouse level were sampled i) to determine the occurrence of ESBL producing Enterobacteriaceae in the Swiss slaughter cattle population younger than 2 years, and ii) to assess risk factors for shedding ESBL producing Enterobacteriaceae. In total, 48 (8.4%; 95% C.I. 6.3–11.1%) independent ESBL producing Enterobacteriaceae were detected among the 571 tested animals. Species identification revealed 46 E. coli strains, one Enterobacter cloacae and one Citrobacter youngae. In view of beta-lactam antibiotics, all 48 isolates were resistant to ampicillin, cephalothin and cefpodoxime. Forty-five (93.8%) isolates were resistant cefuroxime; one (2.1%) isolate to cefoxitin, 28 (58.3%) isolates to cefotaxime, 2 (4.2%) isolates to ceftazidime, and 2 (4.2%) isolates to cefepime. Risk factors for shedding ESBL producing Enterobacteriaceae were (i) age (OR 0.19 and 0.12 in age category 181 d to 1y and 1y to 2 y compared to ≤180 d), (ii) primary production type, meaning dairy compared to beef on farm of origin (OR 5.95), and (iii) more than 1 compared to less than 1 animal movement per d per 100 animals on farm of origin (OR 2.37).
Collapse
|
37
|
Hordijk J, Wagenaar JA, Kant A, van Essen-Zandbergen A, Dierikx C, Veldman K, Wit B, Mevius D. Cross-sectional study on prevalence and molecular characteristics of plasmid mediated ESBL/AmpC-producing Escherichia coli isolated from veal calves at slaughter. PLoS One 2013; 8:e65681. [PMID: 23724148 PMCID: PMC3665799 DOI: 10.1371/journal.pone.0065681] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/25/2013] [Indexed: 11/18/2022] Open
Abstract
Objectives The presence of ESBL/AmpC-producing E. coli in cattle has been reported previously, however information on veal calves is limited. This study describes the prevalence and molecular characteristics of E. coli with non-wild type susceptibility to cefotaxime in veal calves at slaughter. Methods Faecal samples from 100 herds, 10 individual animals per herd, were screened for E. coli with non-wild type susceptibility for cefotaxime. Molecular characterization of ESBL/AmpC genes and plasmids was performed on one isolate per herd by microarray, PCR and sequence analysis. Results 66% of the herds were positive for E. coli with non-wild type susceptibility for cefotaxime. Within-herd prevalence varied from zero to 90%. 83% of E. coli producing ESBL/AmpC carried blaCTX-M genes, of which blaCTX-M-1, blaCTX-M-14 and blaCTX-M-15 were most prevalent. The dominant plasmids were IncI1 and IncF-type plasmids. Conclusions A relatively high prevalence of various blaCTX-M producing E. coli was found in veal calves at slaughter. The genes were mainly located on IncI1 and IncF plasmids.
Collapse
Affiliation(s)
- Joost Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland. Appl Environ Microbiol 2013; 79:3021-6. [PMID: 23455339 DOI: 10.1128/aem.00054-13] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the currently most relevant resistance mechanisms in Enterobacteriaceae is the production of enzymes that lead to modern expanded-spectrum cephalosporin and even carbapenem resistance, mainly extended-spectrum β-lactamases (ESBLs) and carbapenemases. A worrisome aspect is the spread of ESBL and carbapenemase producers into the environment. The aim of the present study was to assess the occurrence of ESBL- and carbapenemase-producing Enterobacteriaceae and to further characterize ESBL- and carbapenemase-producing Enterobacteriaceae in rivers and lakes in Switzerland. ESBL-producing Enterobacteriaceae were detected in 21 (36.2%) of the 58 bodies of water sampled. One river sample tested positive for a carbapenemase-producing Klebsiella pneumoniae subsp. pneumoniae strain. Seventy-four individual strains expressing an ESBL phenotype were isolated. Species identification revealed 60 Escherichia coli strains, seven Klebsiella pneumoniae subsp. pneumoniae strains, five Raoultella planticola strains, one Enterobacter cloacae strain, and one Enterobacter amnigenus strain. Three strains were identified as SHV-12 ESBL producers, and 71 strains carried genes encoding CTX-M ESBLs. Of the 71 strains with CTX-M ESBL genes, 8 isolates expressed CTX-M-1, three produced CTX-M-3, 46 produced CTX-M-15, three produced CTX-M-55, one produced CTX-M-79, six produced CTX-M-14, and four produced CTX-M-27. Three of the four CTX-M-27 producers belonged to the multiresistant pandemic sequence type E. coli B2:ST131 that is strongly associated with potentially severe infections in humans and animals.
Collapse
|
39
|
Bonkat G, Müller G, Braissant O, Frei R, Tschudin-Suter S, Rieken M, Wyler S, Gasser TC, Bachmann A, Widmer AF. Increasing prevalence of ciprofloxacin resistance in extended-spectrum-β-lactamase-producing Escherichia coli urinary isolates. World J Urol 2013; 31:1427-32. [DOI: 10.1007/s00345-013-1031-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/20/2013] [Indexed: 01/02/2023] Open
|
40
|
Ramos S, Silva N, Dias D, Sousa M, Capelo-Martinez JL, Brito F, Caniça M, Igrejas G, Poeta P. Clonal diversity of ESBL-producing Escherichia coli in pigs at slaughter level in Portugal. Foodborne Pathog Dis 2012. [PMID: 23186548 DOI: 10.1089/fpd.2012.1173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We aimed to determine the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in fecal samples of healthy pigs, and to evaluate their clonality and associated resistance. Forty-nine percent of pigs sampled (n=35/71) in a slaughterhouse in Portugal revealed ESBL-producing E. coli isolates. Most isolates produced CTX-M-1 enzyme (71.4%; n=25/35), followed by CTX-M-9 (11.4%; n=4/35), CTX-M-14 (5.7%; n=2/35), SHV-12 (5.7%; n=2/35), and CTX-M-32 (5.7%; n=2/35). Ninety-four percent of the isolates presented a phenotype of multi-resistance. Most isolates belonged to phylogroups B1 (42.8%; n=15/35) and A (40%; n=14/35). Multilocus sequence typing (MLST) analysis revealed nine sequence types (STs) under six clonal complexes (CCs) and nine singletons, including overrepresentation of CC10 and three new STs (ST2524, ST2525, ST2528). We observed the frequent presence of CTX-M-producing E. coli in pigs at slaughter level, most of them belonging to CC10, commonly recovered from clinical samples.
Collapse
Affiliation(s)
- Sónia Ramos
- Centre of Studies of Animal and Veterinary Sciences, Vila Real, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tschudin-Sutter S, Frei R, Dangel M, Stranden A, Widmer AF. Rate of Transmission of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Without Contact Isolation. Clin Infect Dis 2012; 55:1505-11. [DOI: 10.1093/cid/cis770] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
42
|
First countrywide survey of third-generation cephalosporin-resistant Escherichia coli from broilers, swine, and cattle in Switzerland. Diagn Microbiol Infect Dis 2012; 73:31-8. [DOI: 10.1016/j.diagmicrobio.2012.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/20/2022]
|
43
|
Geser N, Stephan R, Hächler H. Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet Res 2012; 8:21. [PMID: 22397509 PMCID: PMC3319423 DOI: 10.1186/1746-6148-8-21] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/07/2012] [Indexed: 11/26/2022] Open
Abstract
Background The impact of food animals as a possible reservoir for extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae, and the dissemination of such strains into the food production chain need to be assessed. In this study 334 fecal samples from pigs, cattle, chicken and sheep were investigated at slaughter. Additionally, 100 raw milk samples, representing bulk tank milk of 100 different dairy farms, 104 minced meat (pork and beef) samples and 67 E. coli isolates from cattle E. coli mastitis were analyzed. Results As many as 15.3% of the porcine, 13.7% of the bovine, 8.6% of the sheep and 63.4% of the chicken fecal samples yielded ESBL producers after an enrichment step. In contrast, none of the minced meat, none of the bulk tank milk samples and only one of the mastitis milk samples contained ESBL producing strains. Of the total of 91 isolates, 89 were E. coli, one was Citrobacter youngae and one was Enterobacter cloacae. PCR analysis revealed that 78 isolates (85.7%) produced CTX-M group 1 ESBLs while six isolates (6.6%) produced CTX-M group 9 enzymes. Five detected ESBLs (5.5%) belonged to the SHV group and 2 isolates (2.2%) contained a TEM-type enzyme. A total of 27 CTX-M producers were additionally PCR-positive for TEM-beta-lactamase. The ESBL-encoding genes of 53 isolates were sequenced of which 34 produced CTX-M-1, 6 produced CTX-M-14, 5 produced CTX-M-15 and also 5 produced SHV-12. Two isolates produced TEM-52 and one isolate expressed a novel CTX-M group 1 ESBL, CTX-M-117. One isolate--aside from a CTX-M ESBL-- contained an additional novel TEM-type broad-spectrum beta-lactamase, TEM-186. Conclusions The relatively high rates of ESBL producers in food animals and the high genetic diversity among these isolates are worrisome and indicate an established reservoir in farm animals.
Collapse
Affiliation(s)
- Nadine Geser
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
44
|
Molecular identification of extended-spectrum-β-lactamase genes from Enterobacteriaceae isolated from healthy human carriers in Switzerland. Antimicrob Agents Chemother 2011; 56:1609-12. [PMID: 22155836 DOI: 10.1128/aac.05539-11] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, fecal samples from 586 healthy humans were investigated to determine the occurrence of extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae in Swiss people. A total of 5.8% of the human fecal samples yielded ESBL producers, and all of the 34 isolated strains were Escherichia coli. PCR analysis revealed that 14 strains produced CTX-M-15, 10 produced CTX-M-1, 7 strains produced CTX-M-14, and 2 strains produced CTX-M-2 ESBLs. One strain produced SHV-12 ESBL. Of the 34 isolates, 15 produced additional TEM-1 broad-spectrum β-lactamases. By serotyping, a high degree of diversity among the strains was found.
Collapse
|
45
|
Wieler LH, Semmler T, Eichhorn I, Antao EM, Kinnemann B, Geue L, Karch H, Guenther S, Bethe A. No evidence of the Shiga toxin-producing E. coli O104:H4 outbreak strain or enteroaggregative E. coli (EAEC) found in cattle faeces in northern Germany, the hotspot of the 2011 HUS outbreak area. Gut Pathog 2011; 3:17. [PMID: 22051440 PMCID: PMC3227623 DOI: 10.1186/1757-4749-3-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/03/2011] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Ruminants, in particular bovines, are the primary reservoir of Shiga toxin-producing E. coli (STEC), but whole genome analyses of the current German ESBL-producing O104:H4 outbreak strain of sequence type (ST) 678 showed this strain to be highly similar to enteroaggregative E. coli (EAEC). Strains of the EAEC pathotype are basically adapted to the human host. To clarify whether in contrast to this paradigm, the O104:H4 outbreak strain and/or EAEC may also be able to colonize ruminants, we screened a total of 2.000 colonies from faecal samples of 100 cattle from 34 different farms - all located in the HUS outbreak region of Northern Germany - for genes associated with the O104:H4 HUS outbreak strain (stx2, terD, rfbO104, fliCH4), STEC (stx1, stx2, escV), EAEC (pAA, aggR, astA), and ESBL-production (blaCTX-M, blaTEM, blaSHV). RESULTS The faecal samples contained neither the HUS outbreak strain nor any EAEC. As the current outbreak strain belongs to ST678 and displays an en-teroaggregative and ESBL-producing phenotype, we additionally screened selected strains for ST678 as well as the aggregative adhesion pattern in HEp-2 cells. However, we were unable to find any strains belonging to ST678 or showing an aggregative adhesion pattern. A high percentage of animals (28%) shed STEC, corroborating previous knowl-edge and thereby proving the validity of our study. One of the STEC also harboured the LEE pathogenicity island. In addition, eleven animals shed ESBL-producing E. coli. CONCLUSIONS While we are aware of the limitations of our survey, our data support the theory, that, in contrast to other Shiga-toxin producing E. coli, cattle are not the reservoir for the O104:H4 outbreak strain or other EAEC, but that the outbreak strain seems to be adapted to humans or might have yet another reservoir, raising new questions about the epidemiology of STEC O104:H4.
Collapse
Affiliation(s)
- Lothar H Wieler
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Germany
| | - Torsten Semmler
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Germany
| | - Esther M Antao
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Germany
| | - Bianca Kinnemann
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Germany
| | - Lutz Geue
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Seestrasse 55, D-16868 Wusterhausen, Germany
| | - Helge Karch
- Institute for Hygiene and the National Consulting Laboratory for Haemolytic Uraemic Syndrome, University of Münster, Germany
| | - Sebastian Guenther
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Germany
| |
Collapse
|