1
|
Koutsoumanis K, Ordóñez AA, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Banach J, Ottoson J, Zhou B, da Silva Felício MT, Jacxsens L, Martins JL, Messens W, Allende A. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVHs). Part 1 (outbreak data analysis, literature review and stakeholder questionnaire). EFSA J 2023; 21:e08332. [PMID: 37928944 PMCID: PMC10623241 DOI: 10.2903/j.efsa.2023.8332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
The contamination of water used in post-harvest handling and processing operations of fresh and frozen fruit, vegetables and herbs (ffFVHs) is a global concern. The most relevant microbial hazards associated with this water are: Listeria monocytogenes, Salmonella spp., human pathogenic Escherichia coli and enteric viruses, which have been linked to multiple outbreaks associated with ffFVHs in the European Union (EU). Contamination (i.e. the accumulation of microbiological hazards) of the process water during post-harvest handling and processing operations is affected by several factors including: the type and contamination of the FVHs being processed, duration of the operation and transfer of microorganisms from the product to the water and vice versa, etc. For food business operators (FBOp), it is important to maintain the microbiological quality of the process water to assure the safety of ffFVHs. Good manufacturing practices (GMP) and good hygienic practices (GHP) related to a water management plan and the implementation of a water management system are critical to maintain the microbiological quality of the process water. Identified hygienic practices include technical maintenance of infrastructure, training of staff and cooling of post-harvest process water. Intervention strategies (e.g. use of water disinfection treatments and water replenishment) have been suggested to maintain the microbiological quality of process water. Chlorine-based disinfectants and peroxyacetic acid have been reported as common water disinfection treatments. However, given current practices in the EU, evidence of their efficacy under industrial conditions is only available for chlorine-based disinfectants. The use of water disinfection treatments must be undertaken following an appropriate water management strategy including validation, operational monitoring and verification. During operational monitoring, real-time information on process parameters related to the process and product, as well as the water and water disinfection treatment(s) are necessary. More specific guidance for FBOp on the validation, operational monitoring and verification is needed.
Collapse
|
2
|
Schryvers S, De Bock T, Uyttendaele M, Jacxsens L. Multi-criteria decision-making framework on process water treatment of minimally processed leafy greens. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Gunathilaka GU, He J, Li H, Zhang W, Ryser ET. Behavior of Silver Nanoparticles in Chlorinated Lettuce Wash Water. J Food Prot 2022; 85:1061-1068. [PMID: 35512293 DOI: 10.4315/jfp-22-018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Use of silver nanoparticles (Ag NPs) in pesticides may lead to residual levels in food crops, thus raising food safety and environmental concerns. Because little is known about Ag NP behavior in wash water during typical commercial washing of fresh produce, this study assessed the temporal changes in Ag NP behavior when exposed to 2 to 100 mg/L free chlorine (Cl2) in simulated lettuce wash water for up to 10 days. Aggregate size and zeta potential of Ag NPs (5 mg/L) were evaluated in the presence and absence of dissolved lettuce extract (DLE, 0.1%), with Ag NPs in deionized water serving as the control treatment. In the presence of chlorine, greater aggregation of Ag NPs occurred over time (49 to 431 nm) compared with the control treatment (P < 0.05). Lower zeta potentials (-39 to -95 mV) were observed in the chlorine-only treatments, likely due to the formation of AgCl particles. Larger aggregates and lower zeta potentials were also observed in DLE (84 to 273 nm and -28 to -32 mV, respectively), as compared with the control treatment. After 7 to 10 days, larger aggregates were seen in the chlorine-only treatments as compared with the DLE treatments, despite lower zeta potentials, probably facilitated by nucleation and crystal growth of AgCl. Transmission electron microscopy with energy dispersive spectroscopy confirmed the formation of AgCl-Ag NP composite particles with chlorine and the embedding of AgCl and Ag NPs in the DLE matrix. Thus, DLE might stabilize and protect Ag NPs from chlorine. These findings indicate that chlorine and plant-released organic material can substantially change the behavior of Ag NPs, which may, in turn, impact both removal from fresh-cut produce during washing and their environmental fate. HIGHLIGHTS
Collapse
Affiliation(s)
- Gayathri U Gunathilaka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jianzhou He
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elliot T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
4
|
Cimowsky S, Kumar GD, Biscaia Ribeiro da Silva AL, White E, Kerr WL, Rodrigues C, Juneja VK, Dunn LL. Postharvest control of Escherichia coli O157:H7 on romaine lettuce using a novel pelargonic acid sanitizer. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Bhullar MS, Shaw A, Mendonca A, Monge A, Nabwire L, Thomas-Popo E. Shiga Toxin-Producing Escherichia coli in the Long-Term Survival Phase Exhibit Higher Chlorine Tolerance and Less Sublethal Injury Following Chlorine Treatment of Romaine Lettuce. Foodborne Pathog Dis 2021; 18:276-282. [PMID: 33471590 DOI: 10.1089/fpd.2020.2873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The extent of chlorine inactivation and sublethal injury of stationary-phase (STAT) and long-term survival-phase (LTS) cells of Shiga toxin-producing Escherichia coli (STEC) in vitro and in a lettuce postharvest wash model was investigated. Four STEC strains were cultured in tryptic soy broth supplemented with 0.6% (w/v) yeast extract (TSBYE; 35°C) for 24 h and 21 d to obtain STAT and LTS cells, respectively. Minimum bactericidal concentration (MBC) and dose-response assays were performed to determine chlorine's antibacterial efficacy against STAT and LTS cells. Chlorine solutions (pH 6.5) and romaine lettuce were each inoculated with STAT and LTS cells to obtain initial populations of ∼7.8 log colony-forming units (CFU)/mL. Survivors in chlorine solutions were determined after 30 s. Inoculated lettuce samples were held at 22°C ± 1°C for 2 h or 20 h and then exposed to chlorine (10-40 ppm) for 60 s. Survivors were enumerated on nonselective and selective agar media following incubation (35°C, 48 h). The MBC for STAT and LTS cells was 0.04 and 0.08 ppm, respectively. Following exposure (30 s) to chlorine at 2.5, 5.0, and 10 ppm, STAT cells were reduced to <1.0 log CFU/mL, whereas LTS survivors were at 5.10 (2.5 ppm), 3.71 (5.0 ppm), and 2.55 (10 ppm) log CFU/mL. At 20 and 40 ppm chlorine, greater log CFU reductions of STAT cells (1.64 and 1.85) were observed compared with LTS cells (0.94 and 0.83) after 2 h of cell contact with lettuce (p < 0.05), but not after 20 h. Sublethal injury in STEC after chlorine (40 ppm) treatment was lower in LTS compared with STAT survivors (p < 0.05). Compared with STAT cells, LTS cells of STEC seem to have higher chlorine tolerance as planktonic cells and as attached cells depending on cell contact time on lettuce. In addition, a higher percentage of LTS cells, compared with STAT cells, survive in a noninjured state after chlorine (40 ppm) treatment of lettuce.
Collapse
Affiliation(s)
- Manreet Singh Bhullar
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Angela Shaw
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Aubrey Mendonca
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Ana Monge
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Lillian Nabwire
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Emalie Thomas-Popo
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
White E, Kumar GD, da Silva ALBR, Kerr WL, Cimowsky S, Widmer JA, Dunn LL. Postharvest Reduction of Salmonella enterica on Tomatoes Using a Pelargonic Acid Emulsion. Foods 2021; 10:foods10010178. [PMID: 33477287 PMCID: PMC7830531 DOI: 10.3390/foods10010178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
A novel produce wash consisting of pelargonic acid (PEL) emulsions was tested on tomatoes contaminated with a five-serovar Salmonella enterica cocktail. Ability to reduce contamination on the inoculated tomato surface, as well as mitigation of subsequent cross-contamination to uninoculated tomatoes washed in re-used/spent wash water were examined. Sanitizer efficacy was also examined over 1 and 7 d storage time (8 °C, recommended for red ripe tomatoes) and in the presence of 0.5% (w/v) organic load. PEL performed statistically the same (p ≤ 0.05) at both 30 mM and 50 mM concentrations and resulted in greater than 1, 5 and 6 log CFU/g Salmonella reductions at 0 h, 1 d and 7 d, respectively, when compared to a water-only or no rinse (NR) treatment. This was also a significantly greater reduction than was observed due to chlorine (sodium hypochlorite) and peroxyacetic acid (PAA) at all time points (p ≤ 0.01). Organic load had no impact on sanitizer efficacy for all examined treatments. Finally, PEL had a deleterious impact on tomato texture. At 1 d, ca. 5 N and 7 N were required to achieve tomato skin penetration and compression, respectively, compared to >9 N and 15 N required by all other treatments (p ≤ 0.05). While PEL sanitizers effectively reduced inoculated Salmonella and subsequent transfer to uninoculated tomatoes, reformulation may be necessary to prevent deleterious quality impacts on produce.
Collapse
Affiliation(s)
- Elizabeth White
- Department of Food Science & Technology, University of Georgia, 100 Cedar St., Athens, GA 30602, USA; (E.W.); (W.L.K.); (S.C.); (J.A.W.)
| | - Govindaraj Dev Kumar
- Center for Food Safety, University of Georgia, 1109 Experiment St, Griffin, GA 30223, USA
- Correspondence: (G.D.K.); (L.L.D.); Tel.: +1-770-467-6094 (G.D.K.); +1-706-542-0993 (L.L.D.)
| | | | - William L. Kerr
- Department of Food Science & Technology, University of Georgia, 100 Cedar St., Athens, GA 30602, USA; (E.W.); (W.L.K.); (S.C.); (J.A.W.)
| | - Samuel Cimowsky
- Department of Food Science & Technology, University of Georgia, 100 Cedar St., Athens, GA 30602, USA; (E.W.); (W.L.K.); (S.C.); (J.A.W.)
| | - J. Andrew Widmer
- Department of Food Science & Technology, University of Georgia, 100 Cedar St., Athens, GA 30602, USA; (E.W.); (W.L.K.); (S.C.); (J.A.W.)
| | - Laurel L. Dunn
- Department of Food Science & Technology, University of Georgia, 100 Cedar St., Athens, GA 30602, USA; (E.W.); (W.L.K.); (S.C.); (J.A.W.)
- Correspondence: (G.D.K.); (L.L.D.); Tel.: +1-770-467-6094 (G.D.K.); +1-706-542-0993 (L.L.D.)
| |
Collapse
|
7
|
Song YS, Stewart D, Reineke K, Wang L, Ma C, Lu Y, Shazer A, Deng K, Tortorello ML. Effects of Package Atmosphere and Storage Conditions on Minimizing Risk of Escherichia coli O157:H7 in Packaged Fresh Baby Spinach. J Food Prot 2019; 82:844-853. [PMID: 31013167 DOI: 10.4315/0362-028x.jfp-18-337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Packaged fresh spinach has been associated with outbreaks of illness caused by Escherichia coli O157:H7. The purpose of this study was to assess the behavior of E. coli O157:H7 in packaged baby spinach in response to storage conditions of temperature and package atmosphere and including effects of inoculation level, spinach leaf damage (cut leaves), internalized or leaf surface contamination, exposure to hypochlorite sanitizer, and package size. Behavior of E. coli O157:H7 inoculated at 2 and 4 log CFU/g on spinach packaged in polymer bags composed of a two-layer laminate (polypropylene and polyethylene) and stored under atmospheres of 20% O2-3% CO2 and 0% O2-15% CO2 (aerobic and anaerobic, respectively) was assessed at 5, 7, 12, and 15°C for up to 14 days. Growth kinetics were calculated using DMFit software. Temperature decreases progressively diminished growth or survival of the pathogen, and an aerobic package atmosphere resulted in longer lag times (4 to 6 days) and lower population levels (0.2 to 1.4 log CFU/g) compared with the anaerobic atmosphere at 15°C. Internalized contamination, leaf cuts, or exposure to 100 ppm of hypochlorite did not result in changes in pathogen behavior compared with controls; however, a growth minimization trend consisting of longer lag times and lower population levels was repeatedly observed in the aerobic compared with the anaerobic package atmospheres. In contrast, growth of indigenous mesophiles and Enterobacteriaceae was unaffected by package atmosphere. Spinach stored at 5 to 7°C in two sizes (5 and 16 oz) of polyethylene terephthalate clamshell packages with ambient air atmospheres was more likely to progress to lower-oxygen conditions in 16-oz compared with 5-oz packages after 7 days of storage (P < 0.05). Practices to maintain aerobic conditions within the package, as well as storage of the package at low temperature, are ways to limit growth of E. coli O157:H7 in packaged spinach.
Collapse
Affiliation(s)
- Yoon Seok Song
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Diana Stewart
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Karl Reineke
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Liao Wang
- 2 Illinois Institute of Technology, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| | - Chong Ma
- 2 Illinois Institute of Technology, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| | - Yin Lu
- 2 Illinois Institute of Technology, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| | - Arlette Shazer
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Kaiping Deng
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Mary Lou Tortorello
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| |
Collapse
|
8
|
Kearns EA, Gustafson RE, Castillo SM, Alnughaymishi H, Lim DV, Ryser ET. Rapid large-volume concentration for increased detection of Escherichia coli O157:H7 and Listeria monocytogenes in lettuce wash water generated at commercial facilities. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Fu TJ, Li Y, Awad D, Zhou TY, Liu L. Factors affecting the performance and monitoring of a chlorine wash in preventing Escherichia coli O157:H7 cross-contamination during postharvest washing of cut lettuce. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Mathew EN, Muyyarikkandy MS, Bedell C, Amalaradjou MA. Efficacy of Chlorine, Chlorine Dioxide, and Peroxyacetic Acid in Reducing Salmonella Contamination in Wash Water and on Mangoes Under Simulated Mango Packinghouse Washing Operations. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Dynamic changes in free-chlorine levels within a commercial post-harvest wash and prevention of cross-contamination between shredded lettuce batches. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Dunkin N, Weng S, Jacangelo JG, Schwab KJ. Inactivation of Human Norovirus Genogroups I and II and Surrogates by Free Chlorine in Postharvest Leafy Green Wash Water. Appl Environ Microbiol 2017; 83:e01457-17. [PMID: 28887415 PMCID: PMC5666131 DOI: 10.1128/aem.01457-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (hNoVs) are a known public health concern associated with the consumption of leafy green vegetables. While a number of studies have investigated pathogen reduction on the surfaces of leafy greens during the postharvest washing process, there remains a paucity of data on the level of treatment needed to inactivate viruses in the wash water, which is critical for preventing cross-contamination. The objective of this study was to quantify the susceptibility of hNoV genotype I (GI), hNoV GII, murine norovirus (MNV), and bacteriophage MS2 to free chlorine in whole leaf, chopped romaine, and shredded iceberg lettuce industrial leafy green wash waters, each sampled three times over a 4-month period. A suite of kinetic inactivation models was fit to the viral reduction data to aid in quantification of concentration-time (CT) values. Results indicate that 3-log10 infectivity reduction was achieved at CT values of less than 0.2 mg · min/liter for MNV and 2.5 mg · min/liter for MS2 in all wash water types. CT values for 2-log10 molecular reduction of hNoV GI in whole leaf and chopped romaine wash waters were 1.5 and 0.9 mg · min/liter, respectively. For hNoV GII, CT values were 13.0 and 7.5 mg · min/liter, respectively. In shredded iceberg wash water, 3-log10 molecular reduction was not observed for any virus over the time course of experiments. These findings demonstrate that noroviruses may exhibit genogroup-dependent resistance to free chlorine and emphasize the importance of distinguishing between genogroups in hNoV persistence studies.IMPORTANCE Postharvest washing of millions of pounds of leafy greens is performed daily in industrial processing facilities with the intention of removing dirt, debris, and pathogenic microorganisms prior to packaging. Modest inactivation of pathogenic microorganisms (less than 2 log10) is known to occur on the surfaces of leafy greens during washing. Therefore, the primary purpose of the sanitizing agent is to maintain microbial quality of postharvest processing water in order to limit cross-contamination. This study modeled viral inactivation data and quantified the free-chlorine CT values that processing facilities must meet in order to achieve the desired level of hNoV GI and GII reduction. Disinfection experiments were conducted in industrial leafy green wash water collected from a full-scale fresh produce processing facility in the United States, and hNoV GI and GII results were compared with surrogate molecular and infectivity data.
Collapse
Affiliation(s)
- Nathan Dunkin
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - ShihChi Weng
- JHU/MWH-Stantec Alliance, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph G Jacangelo
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- JHU/MWH-Stantec Alliance, Johns Hopkins University, Baltimore, Maryland, USA
- MWH-Stantec, Pasadena, California, USA
| | - Kellogg J Schwab
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- JHU/MWH-Stantec Alliance, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Davidson GR, Kaminski-Davidson CN, Ryser ET. Persistence of Escherichia coli O157:H7 during pilot-scale processing of iceberg lettuce using flume water containing peroxyacetic acid-based sanitizers and various organic loads. Int J Food Microbiol 2017; 248:22-31. [PMID: 28237883 DOI: 10.1016/j.ijfoodmicro.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 11/22/2022]
Abstract
In order to minimize cross-contamination during leafy green processing, chemical sanitizers are routinely added to the wash water. This study assessed the efficacy of peroxyacetic acid and mixed peracid against E. coli O157:H7 on iceberg lettuce, in wash water, and on equipment during simulated commercial production in a pilot-scale processing line using flume water containing various organic loads. Iceberg lettuce (5.4kg) inoculated to contain 106CFU/g of a 4-strain cocktail of non-toxigenic, GFP-labeled, ampicillin-resistant E. coli O157:H7, was shredded using a commercial shredder, step-conveyed to a flume tank, washed for 90s using water alone or two different sanitizing treatments (50ppm peroxyacetic acid or mixed peracid) in water containing organic loads of 0, 2.5, 5 or 10% (w/v) blended iceberg lettuce, and then dried using a shaker table and centrifugal dryer. Thereafter, three 5.4-kg batches of uninoculated iceberg lettuce were identically processed. Various product (25g) and water (50ml) samples collected during processing along with equipment surface samples (100cm2) from the flume tank, shaker table and centrifugal dryer were then assessed for numbers of E. coli O157:H7. Organic load rarely impacted (P>0.05) the efficacy of either peroxyacetic acid or mixed peracid, with typical reductions of >5logCFU/ml in wash water throughout processing for all organic loads. Increases in organic load in the wash water corresponded to changes in total solids, chemical oxygen demand, turbidity, maximum filterable volume, and oxidation/reduction potential. After 90s of exposure to flume water, E. coli O157:H7 reductions on inoculated lettuce ranged from 0.97 to 1.74logCFU/g using peroxyacetic acid, with an average reduction of 1.35logCFU/g for mixed peracid. E. coli O157:H7 persisted on all previously uninoculated lettuce following the inoculated batch, emphasizing the need for improved intervention strategies that can better ensure end-product safety.
Collapse
Affiliation(s)
- Gordon R Davidson
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | - Elliot T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Swanson S, Fu TJ. Effect of Water Hardness on Efficacy of Sodium Hypochlorite Inactivation of Escherichia coli O157:H7 in Water. J Food Prot 2017; 80:497-501. [PMID: 28207312 DOI: 10.4315/0362-028x.jfp-16-112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study examined how the hardness of water affected the efficacy of sodium hypochlorite in inactivating Escherichia coli O157:H7 in water. Water was prepared at different degrees of total hardness (0, 50, 100, 200, 500, 1,000, 2,000, and 5,000 mg/liter CaCO3). Inactivation was assessed at different levels of free chlorine (0, 0.2, 0.5, and 1.0 ppm) at 2 to 4°C and pH 6.5. Thirty milliliters of chlorinated water was inoculated with 6 log CFU/ml of E. coli O157:H7 and allowed to mix for 3, 10, 20, or 30 s. In the absence of sodium hypochlorite, no reduction in counts of E. coli O157:H7 was observed regardless of the degree of water hardness. However, in the presence of hard water, under certain chlorine concentrations and exposure times, the reduction of E. coli O157:H7 in chlorinated hard water was significantly less than the reduction observed in chlorinated deionized water. For example, after exposure to 0.5 ppm of free chlorine for 10 s, E. coli O157:H7 counts were reduced by 4.8 ± 1.4, 2.0 ± 1.3, 1.6 ± 0.7, 0.5 ± 0.7, and 0.0 ± 0.1 log CFU/ml in water containing 0, 100, 1,000, 2,000, and 5,000 mg/liter CaCO3, respectively. With the exception of 5,000 mg/liter CaCO3, the effect of water hardness was no longer visible after 20 s of exposure to 0.5 ppm of free chlorine. Also, hard water significantly lowered the efficacy of sodium hypochlorite at 3 s of exposure to 1.0 ppm of free chlorine. But after 20 s of exposure to 1.0 ppm of free chlorine, the impact of water hardness was no longer observed. This study demonstrated that water hardness can affect the germicidal efficacy of sodium hypochlorite, and such an impact may or may not be apparent depending on the condition of the solution and the treatment time at which the observation is made. Under the conditions typically seen in commercial produce washing operations, the impact of water hardness on chlorine efficacy is likely to be insignificant compared with that of organic load.
Collapse
Affiliation(s)
- Sara Swanson
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, Illinois 60501
| | - Tong-Jen Fu
- U.S. Food and Drug Administration, Division of Food Processing Science and Technology, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| |
Collapse
|
15
|
Chardon J, Swart A, Evers E, Franz E. Public Health Relevance of Cross-Contamination in the Fresh-Cut Vegetable Industry. J Food Prot 2016; 79:30-6. [PMID: 26735026 DOI: 10.4315/0362-028x.jfp-15-272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although quantitative studies have revealed that cross-contamination during the washing stage of fresh produce occurs, the importance of cross-contamination in terms of public health relevance has rarely been assessed. The direct distribution of initially contaminated leafy vegetables to a multitude of servings by cutting and mixing also has not been addressed. The goal of this study was to assess the attribution of both contamination pathways to disease risk. We constructed a transparent and exploratory mathematical model that simulates the dispersion of contamination from a load of leafy greens during industrial washing. The risk of disease was subsequently calculated using a Beta-Poisson dose-response relation. The results indicate that up to contamination loads of 10(6) CFU the direct contamination route is more important than the indirect route (i.e., cross-contamination) in terms of number of illnesses. We highlight that the relevance of cross-contamination decreases with more diffuse and uniform contamination, and we infer that prevention of contamination in the field is the most important risk management strategy and that disinfection of washing water can be an additional intervention to tackle potentially high (>10(6) CFU) point contamination levels.
Collapse
Affiliation(s)
- Jurgen Chardon
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Arno Swart
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Eric Evers
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Eelco Franz
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| |
Collapse
|