1
|
Ng K, Allam N, Neshatian M, Vaez M, Hirvonen LM, Lam E, Vitkin A, Bozec L. Effects of Ionizing Radiation on the Biophysical Properties of Type I Collagen Fibrils. PLoS One 2025; 20:e0319777. [PMID: 40173206 PMCID: PMC11964255 DOI: 10.1371/journal.pone.0319777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/08/2025] [Indexed: 04/04/2025] Open
Abstract
Ionizing radiation is extensively employed in both diagnostic and therapeutic medical practices. The impact of this radiation on collagen, a primary structural protein in humans, remains underexplored, particularly at varying doses and hydration states. This study explores the impact of ionizing radiation on type I collagen fibrils at three radiation doses (diagnostic, therapeutic, and sterilization) and under two hydration conditions using an engineered acellular collagen membrane to reflect varying biological conditions. Techniques including atomic force microscopy (AFM), fluorescence lifetime imaging microscopy (FLIM), and Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were utilized to assess changes in mechanical properties, biochemical stability, and molecular structure respectively. Our results demonstrate that ionizing radiation alters the mechanical properties of collagen fibrils, notably indentation modulus, which reflects changes in stiffness or elasticity. These modifications depended on the hydration state at the time of radiation exposure; hydrated fibrils typically exhibited increased stiffness, suggesting enhanced cross-linking, whereas dehydrated fibrils showed reduced stiffness, indicative of structural weakening, possibly due to bond breakdown. Morphological changes were minimal, suggesting that radiation primarily affects the internal structure rather than the overall appearance of the fibrils. Biochemically, variations in fluorescence lifetimes highlighted changes in the collagen's biochemical environment, dependent on the dose and hydration state. Despite these biochemical and mechanical changes, FTIR analysis indicated that the primary structure of collagen was largely preserved post-irradiation for all examined dose levels. These findings imply that radiation can modify the mechanical properties of collagen, potentially affecting tissue integrity in clinical settings. This could influence the management of radiation-induced conditions like osteoradionecrosis, fibrosis and cancer metastasis. Overall, our study underscores the need for further research into the effects of radiation on structural proteins to better understand and mitigate radiation-induced tissue damage.
Collapse
Affiliation(s)
- Kester Ng
- Faculty of Dentistry, University of Toronto, Toronto, Canada,
| | - Nader Allam
- Department of Medical Biophysics, University of Toronto, Toronto, Canada,
| | | | - Mina Vaez
- Faculty of Dentistry, University of Toronto, Toronto, Canada,
| | - Liisa M. Hirvonen
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, Australia
| | - Ernest Lam
- Faculty of Dentistry, University of Toronto, Toronto, Canada,
| | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada,
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Canada,
| |
Collapse
|
2
|
Paul BR, Robaina J, Parmar R, Carter T, Shah A. Myths and Facts About Allograft Use in Anterior Cruciate Ligament Reconstruction: A Detailed Review of the Literature. JBJS Rev 2025; 13:01874474-202504000-00004. [PMID: 40259461 PMCID: PMC12011438 DOI: 10.2106/jbjs.rvw.25.00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
» Patient-Specific Graft Selection: Graft selection for anterior cruciate ligament reconstruction (ACLR) requires a nuanced approach that considers various patient-specific factors, such as age, activity level, comorbidities, and surgical goals. Generally, allografts are preferred for older patients with less active lifestyles, whereas autografts are more suitable for younger, active patients because of autografts' lower retear rates.» Impact of Sterilization Techniques: Sterilization and processing techniques significantly affect the biomechanical properties and outcomes of allografts. While high-dose irradiation reduces allograft strength and compromises healing, low-dose irradiation or nonirradiated grafts offer superior biomechanical and clinical outcomes. However, standardized sterilization protocols are yet to be established.» Comparative Outcomes of Allografts and Autografts: Evaluating the literature on allografts vs. autografts in ACLR remains challenging because of the significant variability in patient characteristics, outcome measures, graft strength testing, and sterilization techniques across studies.
Collapse
Affiliation(s)
| | - Joey Robaina
- Department of Orthopedic Surgery, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Romir Parmar
- Department of Orthopedic Surgery, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Thomas Carter
- Department of Orthopedic Surgery, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Anup Shah
- Department of Orthopedic Surgery, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| |
Collapse
|
3
|
Faragó D, Karácsony AF, Orlovits Z, Pap K, Kiss RM. Changes in the mechanical properties of tibialis anterior and peroneus longus allograft depending on sterilization method and storage time. Bone Joint Res 2025; 14:270-280. [PMID: 40094439 PMCID: PMC11913058 DOI: 10.1302/2046-3758.143.bjr-2024-0129.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Aims The aim of the present research was to analyze the effects of different sterilization methods and storage times on the mechanical properties (load at first break, strain at first break, maximum load, strain at maximum load, and Young's modulus of elasticity) of different allografts compared to native groups. Methods Two types of grafts were harvested from human cadavers: 165 tibialis anterior (TA) and 166 peroneus longus (PL) tendons. According to the two types of sterilization methods (γ and electron beam irradiation) or the lack of one, and the six types of storage time (one to six months), 36 groups were created. In addition, we created a 1 to 1 native group, which was not sterilized and stored, tested within four hours of collection. Results In the results of tendon type TA compared to TA native group, we observed significant differences at the fifth month of storage for all measured parameters. Load at first break of the frozen values at the fifth month was significantly inferior to the native group (p = 0.034). For strain at first break and strain at maximum load, all sterilization methods were significantly inferior at the fifth month (p = 0.003 to p = 0.009). Maximum load values were significantly superior with E-beam irradiation at the fifth month (p = 0.003), and also significantly higher with γ irradiation at the fifth month (p = 0.009). Young's modulus showed significantly inferior values in the frozen tendons at the fifth month (p = 0.001 to p = 0.003). In tendon type PL, no significant differences were found for any of the tested parameters compared to the native group. Conclusion Our results indicate that freezing alters mechanical properties via the decrease seen in the ultimate tensile strength. In addition, at the fifth and sixth months of storage, time could notably affect allografts rather than the sterilization procedures.
Collapse
Affiliation(s)
- Dénes Faragó
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Atilla F. Karácsony
- Department of Traumatology, Semmelweis University Budapest, Budapest, Hungary
- Department of Orthopedics, Buda Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - Zsanett Orlovits
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Karoly Pap
- Department of Traumatology, Semmelweis University Budapest, Budapest, Hungary
- Orthopaedic and Trauma Department, Uzsoki Hospital, Budapest, Hungary
| | - Rita M. Kiss
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
4
|
Meshry N, Carneiro KMM. DNA as a promising biomaterial for bone regeneration and potential mechanisms of action. Acta Biomater 2025:S1742-7061(25)00198-9. [PMID: 40090507 DOI: 10.1016/j.actbio.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
DNA nanotechnology has created new possibilities for the use of DNA in tissue regeneration - an important advance for DNA use beyond its paradigmatic role as the hereditary biomacromolecule. Biomaterials containing synthetic or natural DNA have been proposed for several applications including drug and gene delivery, and more recently, as osteoconductive biomaterials. This review provides an in-depth discussion of studies that have used DNA-based materials for biomineralization and/or bone repair, with expansion on the topic of DNA hydrogels specifically, and the advantages they offer for advancing the field of bone regeneration. Four mechanisms of action for the osteoconductive capabilities of DNA-based materials are discussed, and a proposed model for degradation of these materials and its link to their osteoconductive properties is later presented. Finally, the review considers current limitations of DNA-based materials and summarizes important aspects that need to be addressed for future application of DNA nanotechnology in tissue repair. STATEMENT OF SIGNIFICANCE: Herein we summarize the developing field of DNA-based materials for biomineralization and bone repair, with a focus on DNA hydrogels. We first provide a comprehensive review of different forms of DNA-based materials described thus far which have been shown to enhance bone repair and mineralization (namely DNA coatings, DNA-containing pastes, DNA nanostructures and DNA hydrogels). Next, we describe four different mechanisms by which DNA-based materials could be exerting their osteogenic effect. Then, we propose a novel model that links DNA degradation and osteoconductivity. Lastly, we suggest possible research directions to enhance DNA-based materials for future clinical application. The suggested mechanisms and the proposed model can guide future research to better understand how DNA functions as a mineral- and bone-promoting molecule.
Collapse
Affiliation(s)
- Nadeen Meshry
- Faculty of Dentistry, University of Toronto, Toronto, Canada, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Karina M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Canada, 124 Edward Street, Toronto, ON M5G 1G6, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada, 164 College St, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
5
|
López-Chicón P, Rodríguez Martínez JI, Castells-Sala C, Lopez-Puerto L, Ruiz-Ponsell L, Fariñas O, Vilarrodona A. Pericardium decellularization in a one-day, two-step protocol. Mol Cell Biochem 2025; 480:1819-1829. [PMID: 39251464 PMCID: PMC11842532 DOI: 10.1007/s11010-024-05086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
Scaffolds used in tissue engineering can be obtained from synthetic or natural materials, always focusing the effort on mimicking the extracellular matrix of human native tissue. In this study, a decellularization process is used to obtain an acellular, biocompatible non-cytotoxic human pericardium graft as a bio-substitute. An enzymatic and hypertonic method was used to decellularize the pericardium. Histological analyses were performed to determine the absence of cells and ensure the integrity of the extracellular matrix (ECM). In order to measure the effect of the decellularization process on the tissue's biological and mechanical properties, residual genetic content and ECM biomolecules (collagen, elastin, and glycosaminoglycan) were quantified and the tissue's tensile strength was tested. Preservation of the biomolecules, a residual genetic content below 50 ng/mg dry tissue, and maintenance of the histological structure provided evidence for the efficacy of the decellularization process, while preserving the ECM. Moreover, the acellular tissue retains its mechanical properties, as shown by the biomechanical tests. Our group has shown that the acellular pericardial matrix obtained through the super-fast decellularization protocol developed recently retains the desired biomechanical and structural properties, suggesting that it is suitable for a broad range of clinical indications.
Collapse
Affiliation(s)
- P López-Chicón
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - J I Rodríguez Martínez
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - C Castells-Sala
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain.
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain.
| | - L Lopez-Puerto
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| | - L Ruiz-Ponsell
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - O Fariñas
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - A Vilarrodona
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| |
Collapse
|
6
|
Park J, Kim MY, Yoon HY. Comparison of five preservation methods for fascia allograft. J Vet Sci 2025; 26:e13. [PMID: 40183903 PMCID: PMC11972942 DOI: 10.4142/jvs.24276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 04/05/2025] Open
Abstract
IMPORTANCE Research on tissue preservation, including cortical bone, skin, nerves, and vessels in glycerol and cortical bone in honey, has shown positive results. On the other hand, relatively few studies have been performed on fascia preservation, and comparisons between different fascia preservation methods remain scarce. OBJECTIVE This in vitro study compared the biomechanical properties of five different methods of preserving fascia lata. METHODS The control group underwent biomechanical testing immediately after decellularization, while the other five groups were stored in glycerol, honey, deep freezer, lyophilizer, and liquid nitrogen for 30 days. The ultimate load, elongation at failure, and stiffness for each group were determined from a load-elongation curve. RESULTS A comparison of the ultimate load showed that the control group had the highest value, followed by the glycerol group. The glycerol group was the only group that did not show a significant difference from the control group, while all the other groups showed a significantly lower ultimate load. A comparison of elongation at failure revealed the glycerol group to have the highest value at failure among all groups and was significantly higher than the deep freeze, honey, and cryopreservation groups. CONCLUSIONS AND RELEVANCE Glycerol can be used as an effective method for preserving fascia allografts because the resulting allografts show a similar ultimate load to the control group and the highest mean elongation at failure.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Mu-Young Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hun-Young Yoon
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- KU Center for Animal Blood Medical Science, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
7
|
Crocker DB, Akkus O, Rimnac CM. Sequential irradiation does not improve fatigue crack propagation resistance of human cortical bone at 15 kGy. J Mech Behav Biomed Mater 2025; 161:106814. [PMID: 39549473 PMCID: PMC11632722 DOI: 10.1016/j.jmbbm.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Sequential irradiation has been advocated for mitigating the reduction in fatigue properties of tendon compared to a single dose. However, to our knowledge, its capability of mitigating fatigue losses in bone is unknown. Recently, we reported that sequential irradiation did not mitigate losses in high-cycle S-N fatigue life of cortical bone at 15 kGy; however, it is unclear if sequential irradiation provides a benefit to fatigue crack propagation resistance. Our previous study also showed that radiation-induced collagen chain fragmentation and crosslinking increased from 0 to 15 kGy, suggesting that both likely contribute to the reduction in high-cycle S-N fatigue life within this dose range. Our objectives were: 1) to evaluate the fatigue crack propagation resistance of cortical bone and the effect of radiation on fracture plane damage zone thickness (DZT) at the crack tip in the dose range of 0-15 kGy, and 2) to evaluate whether sequential irradiation at 15 kGy mitigates the loss of fatigue crack propagation resistance of cortical bone compared to a single irradiation dose. Compact tension specimens from four male donor femoral pairs (ages 21-61 years old) were divided into 5 treatment groups (0 kGy, 5 kGy, 10 kGy, 15 kGy, and a 15 kGy sequential irradiation dose of 5 kGy sequentially irradiated with 10 kGy) and subjected to fatigue crack propagation testing (n = 3-4 specimens per group) where fatigue crack growth rate da/dN and cyclic stress intensity factor ΔK were determined. Following testing, specimens were bulk stained in basic fuchsin, embedded in poly(methylmethacrylate), sectioned, and mounted on acrylic slides to evaluate fracture plane DZT at known crack lengths. Sections were then imaged with a fluorescence microscope, and fracture plane DZT was measured using ImageJ (n = 3-4 specimens per group) and analyzed as a function of ΔK. We observed a decrease in fatigue crack propagation resistance at 15 kGy compared to doses of 10 kGy or lower (p ≤ 0.013). Fracture plane DZT decreased overall with increasing radiation dose from 0 to 15 kGy. Sequential irradiation offered no improvement in fatigue crack propagation resistance (p = 0.98). Radiation-induced collagen chain fragmentation and crosslinking in this dose range likely contribute to a decrease in energy dissipation capability with increasing radiation dose. Other alternative radiation sterilization methods besides sequential irradiation may be warranted to mitigate radiation-induced tissue damage and extend the functional lifetime of structural cortical bone allografts.
Collapse
Affiliation(s)
- Dylan B Crocker
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Clare M Rimnac
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Crocker DB, Akkus O, Oest ME, Rimnac CM. The influence of radiation-induced collagen chain fragmentation, crosslinking, and sequential irradiation on the high-cycle fatigue life of human cortical bone. J Mech Behav Biomed Mater 2024; 160:106759. [PMID: 39366082 DOI: 10.1016/j.jmbbm.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Both high-cycle fatigue life and fatigue crack propagation resistance of human cortical bone allograft are radiation dose-dependent between 0 and 25 kGy such that higher doses exhibit progressively shorter lifetimes. Recently, we have shown that collagen chain fragmentation and stable crosslink accumulation may contribute to the radiation dose-dependent loss in fatigue crack propagation resistance of human cortical bone. To our knowledge, the influence of these mechanisms on high-cycle fatigue life of cortical bone have not been established. Sequential irradiation has also been shown to mitigate the loss of fatigue life of tendons, however, whether this mitigates losses in fatigue life of cortical bone has not been explored. Our objectives were to evaluate the influence of radiation-induced collagen chain fragmentation and crosslinking on the high-cycle fatigue life of cortical bone in the dose range of 0-15 kGy, and to evaluate the capability of sequential irradiation at 15 kGy to mitigate the loss of high-cycle fatigue life and radiation-induced collagen damage. High-cycle fatigue life specimens from four male donor femoral pairs were divided into 5 treatment groups (0 kGy, 5 kGy, 10 kGy, 15 kGy, and 15 kGy sequentially irradiated) and subjected to high-cycle fatigue life testing with a custom rotating-bending apparatus at a cyclic stress of 35 MPa. Following fatigue testing, collagen was isolated from fatigue specimens, and collagen chain fragmentation and crosslink accumulation were quantified using SDS-PAGE and a fluorometric assay, respectively. Both collagen chain fragmentation (p = 0.006) and non-enzymatic crosslinking (p < 0.001) influenced high-cycle fatigue life, which decreased with increasing radiation dose from 0 to 15 kGy (p = 0.016). Sequential irradiation at 15 kGy did not offer any mitigation in high-cycle fatigue life (p = 0.93), collagen chain fragmentation (p = 0.99), or non-enzymatic crosslinking (p ≥ 0.10) compared to a single radiation dose of 15 kGy. Taken together with our previous findings on the influence of collagen damage on fatigue crack propagation resistance, collagen chain fragmentation and crosslink accumulation both contribute to radiation-induced losses in notched and unnotched fatigue life of cortical bone. To maximize the functional lifetime of radiation sterilized structural cortical bone allografts, pathways other than sequential radiation should be explored to mitigate collagen matrix damage.
Collapse
Affiliation(s)
- Dylan B Crocker
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Megan E Oest
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Clare M Rimnac
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
Kwacz M, Sadło J, Walo M. New chamber stapes prosthesis: Effect of ionizing radiation on material and functional properties. NUKLEONIKA 2024; 69:205-214. [DOI: 10.2478/nuka-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
New chamber stapes prosthesis (ChSP) is a middle-ear prosthesis intended for use in ear surgery for restoring the patient's middle ear function. As the prosthesis is an implantable medical device, it must be sterilized before use. However, possible alterations in the material and the functional properties following the sterilization process can influence the safety aspects while using the prosthesis. The purpose of this paper was to determine the effects of ionizing radiation (IR) on the physicochemical and biological properties of the new chamber prosthesis by utilizing EPR spectroscopy, mechanical testing, and cytotoxicity studies. Our research shows that the radiation treatment increases the hardness and the elastic modulus of the polymer, decreases the stiffness of the prosthesis membrane, and does not cause chemical changes in the polymers that may result in cytotoxicity. Furthermore, new ChSPs were successfully tested in preclinical in vitro tests. The test results justify the undertaking of further work, including in vivo biocompatibility tests and clinical trials, which would eventually lead to the increased use of the prosthesis in clinical practice.
Collapse
Affiliation(s)
- Monika Kwacz
- Institute of Micromechanics and Photonics , Faculty of Mechatronics, Warsaw University of Technology , św. Andrzeja Boboli 8 St. , Warsaw , Poland
| | - Jarosław Sadło
- Centre for Radiation Research and Technology , Institute of Nuclear Chemistry and Technology , Dorodna 16 St. , Warsaw , Poland
| | - Marta Walo
- Centre for Radiation Research and Technology , Institute of Nuclear Chemistry and Technology , Dorodna 16 St. , Warsaw , Poland
| |
Collapse
|
10
|
Quinn M, Albright A, Lemme NJ, Testa EJ, Morrissey P, Arcand M, Daniels AH, Fadale P. The Relationship Between Exogenous Testosterone Use and Risk for Primary Anterior Cruciate Ligament Rupture. Orthop J Sports Med 2024; 12:23259671241291063. [PMID: 39555320 PMCID: PMC11565631 DOI: 10.1177/23259671241291063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 11/19/2024] Open
Abstract
Background In the United States, testosterone therapy has markedly increased in recent years. Currently, there is a paucity of evidence evaluating the risk of ligamentous injuries in patients taking testosterone replacement therapy (TRT). Purpose/Hypothesis The purpose of this study was to quantify the association between TRT and the incidence of anterior cruciate ligament (ACL) injuries and the subsequent risk of ACL reconstruction (ACLR) failure. It was hypothesized that individuals receiving TRT would demonstrate an increased risk for index ACL injury and ACL rerupture. Study Design Cohort study; Level of evidence, 3. Methods This is a retrospective cohort study utilizing the PearlDiver database. Records were queried between 2011 and 2020 for patients aged 18 to 59 years who filled a testosterone prescription. A matched control group based on age, sex, Charlson Comorbidity Index, tobacco use, diabetes, and hypothyroidism consisted of patients aged 18 to 59 years who had never filled a prescription for exogenous testosterone. International Classification of Diseases, 9th and 10th Revisions and Current Procedural Terminology (CPT) codes were utilized to identify patients with ACL injuries and those undergoing reconstruction. Multivariable logistic regression was used to compare rates of ACL injury at 6 months, 1 year, and 2 years after initiating TRT. ACLR failure was also examined at 1-year intervals for 5 years for individuals filling a TRT prescription. Results A total of 851,816 patients were enrolled, with 425,908 patients in the TRT and control groups, respectively. The TRT cohort was significantly more likely to experience an ACL tear during 6-month (OR, 2.66; 95% CI, 2.17-3.26), 1-year (OR, 2.46; 95% CI, 2.11-2.86), and 2-year (OR, 2.22; 95% CI, 1.98-2.48) periods. The rate of reconstruction failure did not differ between the 2 cohorts at up to 5 years of follow-up (P > .05). Conclusion Patients receiving TRT were significantly more likely to sustain a primary ACL rupture but were not at a statistically significant increased risk of reconstruction failure.
Collapse
Affiliation(s)
- Matthew Quinn
- Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Alex Albright
- Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Nicholas J. Lemme
- Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Edward J. Testa
- Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Patrick Morrissey
- Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Michel Arcand
- Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Alan H. Daniels
- Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Paul Fadale
- Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Trejos-Soto L, Rivas-Hernández GO, Mora-Bolaños R, Vargas-Valverde N, Valerio A, Ulloa-Fernández A, Oviedo-Quirós J, García-Piñeres A, Paniagua SA, Centeno-Cerdas C, Lesser-Rojas L. Composites of Polylactic Acid with Diatomaceous Earth for 3D-Printing Biocompatible Scaffolds: A Systematic Study of Their Mechanical, Thermal, and Biocompatibility Properties. Bioengineering (Basel) 2024; 11:1059. [PMID: 39593719 PMCID: PMC11591056 DOI: 10.3390/bioengineering11111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the development of biocompatible scaffolds for bone regeneration, utilizing polylactic acid (PLA) combined with calcium phosphate as a pH buffer and diatomaceous earth as a biocompatibilizer. These materials were extruded and 3D-printed to enhance cell adhesion and biodegradability after enough cell growth. The biocompatibility of the resulting composites, with different proportions of the components and sterilization methods, was tested according to the ISO 10993 protocol. The optimal performance, with nearly zero cytotoxicity, was observed with 20 PLA/1 CP/1 DE mass ratios and gamma sterilization. Tension analysis and scanning electron microscopy (SEM) were applied to the 3D-printed composites, which were also analyzed by differential scanning calorimetry (DSC) to understand the origin of the tension properties better, which were comparable to those of cancellous bone. Degradation tests under physiological conditions for 13 weeks showed no significant mass loss. Furthermore, it was observed that cell adhesion, viability, proliferation, and osteoconduction are possible in the scaffolds studied, opening opportunities for future studies to substantiate the use of 3D-printed silica-filled composites as an alternative to homologous implants for various bone regeneration applications.
Collapse
Affiliation(s)
- Lilliam Trejos-Soto
- Master Program of Engineering in Medical Devices, School of Materials Science and Engineering, Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Biotechnology Research Center (CIB), Biology School, Tecnológico de Costa Rica, Cartago 30101, Costa Rica (C.C.-C.)
| | - Gabriel O. Rivas-Hernández
- Biotechnology Research Center (CIB), Biology School, Tecnológico de Costa Rica, Cartago 30101, Costa Rica (C.C.-C.)
- Bioengineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
| | - Rodrigo Mora-Bolaños
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), San José 1174, Costa Rica (S.A.P.)
- Advanced Materials Science and Engineering Master Programme (AMASE), Université de Lorraine, 54000 Nancy, France
| | - Nathalia Vargas-Valverde
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), San José 1174, Costa Rica (S.A.P.)
- Faculty of Chemistry and Biology, Université Grenoble Alpes, 38400 Saint Martin d’Hères, France
| | - Abraham Valerio
- School of Physics, Universidad de Costa Rica, San José 11501, Costa Rica
- Advanced Materials and Liquid Crystal Institute & Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Andrea Ulloa-Fernández
- Biotechnology Research Center (CIB), Biology School, Tecnológico de Costa Rica, Cartago 30101, Costa Rica (C.C.-C.)
| | - Jorge Oviedo-Quirós
- Craniomaxillofacial Cleft Palate Unit, National Children’s Hospital “Dr. Carlos Sáenz Herrera”, San José 10103, Costa Rica
- Faculty of Dentistry, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Alfonso García-Piñeres
- Cellular and Molecular Biology Research Center (CIBCM), Universidad de Costa Rica, San José 11501, Costa Rica
| | - Sergio A. Paniagua
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), San José 1174, Costa Rica (S.A.P.)
| | - Carolina Centeno-Cerdas
- Biotechnology Research Center (CIB), Biology School, Tecnológico de Costa Rica, Cartago 30101, Costa Rica (C.C.-C.)
- Department of Biochemistry, School of Medicine, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Leonardo Lesser-Rojas
- School of Physics, Universidad de Costa Rica, San José 11501, Costa Rica
- Research Center in Atomic, Nuclear and Molecular Sciences (CICANUM), Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
12
|
Au KM, Wilson JE, Ting JPY, Wang AZ. An injectable subcutaneous colon-specific immune niche for the treatment of ulcerative colitis. Nat Biomed Eng 2024; 8:1243-1265. [PMID: 38049469 DOI: 10.1038/s41551-023-01136-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/14/2023] [Indexed: 12/06/2023]
Abstract
As a chronic autoinflammatory condition, ulcerative colitis is often managed via systemic immunosuppressants. Here we show, in three mouse models of established ulcerative colitis, that a subcutaneously injected colon-specific immunosuppressive niche consisting of colon epithelial cells, decellularized colon extracellular matrix and nanofibres functionalized with programmed death-ligand 1, CD86, a peptide mimic of transforming growth factor-beta 1, and the immunosuppressive small-molecule leflunomide, induced intestinal immunotolerance and reduced inflammation in the animals' lower gastrointestinal tract. The bioengineered colon-specific niche triggered autoreactive T cell anergy and polarized pro-inflammatory macrophages via multiple immunosuppressive pathways, and prevented the infiltration of immune cells into the colon's lamina propria, promoting the recovery of epithelial damage. The bioengineered niche also prevented colitis-associated colorectal cancer and eliminated immune-related colitis triggered by kinase inhibitors and immune checkpoint blockade.
Collapse
Affiliation(s)
- Kin Man Au
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Justin E Wilson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Crocker DB, Hering TM, Akkus O, Oest ME, Rimnac CM. Dose-dependent effects of gamma radiation sterilization on the collagen matrix of human cortical bone allograft and its influence on fatigue crack propagation resistance. Cell Tissue Bank 2024; 25:735-745. [PMID: 38750214 PMCID: PMC11639133 DOI: 10.1007/s10561-024-10135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 09/06/2024]
Abstract
Fatigue crack propagation resistance and high-cycle S-N fatigue life of cortical bone allograft tissue are both negatively impacted in a radiation dose-dependent manner from 0 to 25 kGy. The standard radiation sterilization dose of 25-35 kGy has been shown to induce cleavage of collagen molecules into smaller peptides and accumulation of stable crosslinks within the collagen matrix, suggesting that these mechanisms may influence radiation-induced losses in cyclic fracture resistance. The objective of this study was to determine the radiation dose-dependency of collagen chain fragmentation and crosslink accumulation within the dose range of 0-25 kGy. Previously, cortical bone compact tension specimens from two donor femoral pairs were divided into four treatment groups (0 kGy, 10 kGy, 17.5 kGy, and 25 kGy) and underwent cyclic loading fatigue crack propagation testing. Following fatigue testing, collagen was isolated from one compact tension specimen in each treatment group from both donors. Radiation-induced collagen chain fragmentation was assessed using SDS-PAGE (n = 5), and accumulation of pentosidine, pyridinoline, and non-specific advanced glycation end products were assessed using a fluorometric assay (n = 4). Collagen chain fragmentation increased progressively in a dose-dependent manner (p < 0.001). Crosslink accumulation at all radiation dose levels increased relative to the 0 kGy control but did not demonstrate dose-dependency (p < 0.001). Taken together with our previous findings on fatigue crack propagation behavior, these data suggest that while collagen crosslink accumulation may contribute to reduced notched fatigue behavior with irradiation, dose-dependent losses in fatigue crack propagation resistance are mainly influenced by radiation-induced chain fragmentation.
Collapse
Affiliation(s)
- Dylan B Crocker
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Thomas M Hering
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Megan E Oest
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Clare M Rimnac
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
14
|
Taillebot V, Krieger T, Maurel-Pantel A, Kim Y, Ollivier M, Pithioux M. Freezing does not influence the microarchitectural parameters of the microstructure of the freshly harvested femoral head bone. Cell Tissue Bank 2024; 25:747-754. [PMID: 39103569 DOI: 10.1007/s10561-024-10147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
The femoral head is one of the most commonly used bones for allografts and biomechanical studies. However, there are few reports on the trabecular bone microarchitectural parameters of freshly harvested trabecular bones. To our knowledge, this is the first study to characterize the microstructure of femoral heads tested immediately after surgery and compare it with the microstructure obtained with conventional freezing. This study aims to investigate whether freezing at -80 °C for 6 weeks affects the trabecular microstructure of freshly harvested bone tissue. This study was divided into two groups: one with freshly harvested human femoral heads and the other with the same human femoral heads frozen at -80 °C for 6 weeks. Each femoral head was scanned using an X-ray microcomputed tomography scanner (µCT) to obtain the microarchitectural parameters, including the bone volume fraction (BV/TV), the mean trabecular thickness (Tb.th), the trabecular separation (Tb.sp), the degree of anisotropy (DA), and the connectivity density (Conn.D). There was no statistically significant difference between the fresh and the frozen groups for any of the parameters measured. This study shows that freezing at -80 °C for 6 weeks does not alter bone microstructure compared with freshly harvested femoral heads tested immediately after surgery.
Collapse
Affiliation(s)
- Virginie Taillebot
- Aix Marseille Univ, CNRS, ISM, 13009, Marseille, France.
- Department of Orthopaedics and Traumatology, Institute for Locomotion, Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, 13009, Marseille, France.
| | - Théo Krieger
- Aix Marseille Univ, CNRS, ISM, 13009, Marseille, France
- BIOBank, Tissue Bank, 77127, Lieusaint, France
| | | | - Youngji Kim
- Department of Orthopaedics and Traumatology, Institute for Locomotion, Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, 13009, Marseille, France
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Matthieu Ollivier
- Aix Marseille Univ, CNRS, ISM, 13009, Marseille, France
- Department of Orthopaedics and Traumatology, Institute for Locomotion, Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, 13009, Marseille, France
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, 13009, Marseille, France
- Department of Orthopaedics and Traumatology, Institute for Locomotion, Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, 13009, Marseille, France
| |
Collapse
|
15
|
Shah D, Rathod M, Tiwari A, Kini A, Bhagunde P, Bagaria V. A Histological and Biomechanical Analysis of Human Acellular Dermis (HAD) Created Using a Novel Processing and Preservation Technique. Indian J Orthop 2024; 58:922-931. [PMID: 38948369 PMCID: PMC11208345 DOI: 10.1007/s43465-024-01181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/04/2024] [Indexed: 07/02/2024]
Abstract
Background Large and complex defects requiring reconstruction are challenging for orthopaedic surgeons. The use of human acellular dermal (HAD) matrices to augment large soft tissue defects such as those seen in massive rotator cuff tears, knee extensor mechanism failures and neglected Tendo-Achilles tears has proven to be a valuable tool in surgeons reconstructive armamentarium. Different methods for allograft decellularization and preservation alter the native properties of the scaffold. Traditional processing and preservation methods have shown to have drawbacks that preclude its widespread use. Some of the common issues include inferior biomechanical properties, the risk of rejection, limited customization, difficulty in storing and transporting, the requirement of pre-operative preparation, and last but not the least increased cost. Methods We describe a novel processing and preservation method utilizing a two-step non-denaturing decellularization method coupled with preservation using a water-sequestering agent (glycerol) to remove immunogenic components while retaining biomechanical properties. The efficiency of this novel process was compared with the traditional freeze-drying method and verified by histological evaluation and biomechanical strength analysis. Results The absence of cellular components and matrix integrity in hematoxylin and eosin-stained glycerol-preserved HAD (gly-HAD) samples compared to freeze-dried HAD (FD-HAD) demonstrated effective yet gentle decellularization. Biomechanical strength analysis revealed that gly-HADs are stronger with an ultimate tensile load to the failure strength of 210 N compared to FD-HAD (124N). The gly-HADs were found to have an optimal suture-retention strength of 126 N. Finally, sterility testing of the resultant grafts was checked to ensure a sterility assurance level of 10-6 to establish implantability. Conclusion The novel processing and preservation technique is described in this paper to create a Human Acellular Dermis with higher biomechanical strength and superior histological characteristics. The processing and preservation technique ensured high sterility assurance levels to establish implantability.
Collapse
Affiliation(s)
- Damini Shah
- Novo Tissue Bank and Research Centre, Mumbai, India
| | - Madhu Rathod
- Novo Tissue Bank and Research Centre, Mumbai, India
| | | | - Abhishek Kini
- Sir H N Reliance Foundation Hospital, Girgaum, Mumbai, Maharashtra 400004 India
| | - Prasad Bhagunde
- Sona Medical Centre & Consultant Orthopaedic Surgeon Saifee Hospital, Jaslok Hospital and Research Centre, Breach Candy Hospital Trust, Mumbai, India
| | - Vaibhav Bagaria
- Department of Orthopaedic Surgery, Sir H N Reliance Foundation Hospital, Girgaum, Mumbai, Maharashtra 400004 India
| |
Collapse
|
16
|
Ina J. CORR Insights®: Can the Sterilization Protocol Be Improved to Enhance the Healing of Allograft Tendons? An In Vivo Study in Rabbit Tendons. Clin Orthop Relat Res 2024; 482:1087-1089. [PMID: 38513065 PMCID: PMC11124714 DOI: 10.1097/corr.0000000000003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Affiliation(s)
- Jason Ina
- Chief Resident, Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
17
|
Kamal Z, Lamba AK, Faraz F, Tandon S, Datta A, Ansari N, Madni ZK, Pandey J. Effect of gamma and Ultraviolet-C sterilization on BMP-7 level of indigenously prepared demineralized freeze-dried bone allograft. Cell Tissue Bank 2024; 25:475-484. [PMID: 37578672 DOI: 10.1007/s10561-023-10103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
The presence of bone morphogenetic proteins in demineralized freeze-dried bone allograft (DFDBA) are responsible for developing hard tissues in intraosseous defects. The most common mode of sterilization of bone allografts, i.e., Gamma rays, have dramatic effects on the structural and biological properties of DFDBA, leading to loss of BMPs. Ultraviolet-C radiation is a newer approach to sterilize biodegradable scaffolds, which is simple to use and ensures efficient sterilization. However, UV-C radiation has not yet been effectively studied to sterilize bone allografts. This study aimed to compare and evaluate the effectiveness of Gamma and Ultraviolet-C rays in sterilizing indigenously prepared DFDBA and assess their effect on the quantity of BMP-7 present in the allograft. DFDBA samples from non-irradiated, gamma irradiated, and UV-C irradiated groups were tested for BMP-7 level and samples sterilized with gamma and UV-C rays were analysed for sterility testing. The estimated mean BMP-7 level was highest in non-irradiated DFDBA samples, followed by UV-C irradiated, and the lowest in gamma irradiated samples. Our study concluded that UV-C rays effectively sterilized DFDBA as indicated by negative sterility test and comprised lesser degradation of BMP-7 than gamma irradiation.
Collapse
Affiliation(s)
- Zainab Kamal
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India.
| | - Arundeep Kaur Lamba
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Farrukh Faraz
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Shruti Tandon
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Archita Datta
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Nasreen Ansari
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Zaid Kamal Madni
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Jaya Pandey
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| |
Collapse
|
18
|
Manawar S, Myrick E, Awad P, Hung V, Hinton C, Kenter K, Bovid K, Li Y. Use of allograft bone matrix in clinical orthopedics. Regen Med 2024; 19:247-256. [PMID: 39028538 PMCID: PMC11321266 DOI: 10.1080/17460751.2024.2353473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 07/20/2024] Open
Abstract
Clinical orthopedics continuously aims to improve methods for bone formation. Clinical applications where bone formation is necessary include critical long bone defects in orthopedic trauma or tumor patients. Though some biomaterials combined with autologous stem cells significantly improve bone repair, critical-size damages are still challenged with the suitable implantation of biomaterials and donor cell survival. Extracellular matrix (ECM) is the fundamental structure in tissues that can nest and nourish resident cells as well as support specific functions of the tissue type. ECM also plays a role in cell signaling to promote bone growth, healing and turnover. In the last decade, the use of bone-derived ECMs or ECM-similar biomaterials have been widely investigated, including decellularized and demineralized bone ECM. In this article, we reviewed the current productions and applications of decellularized and demineralized bone matrices. We also introduce the current study of whole limb decellularization and recellularization.
Collapse
Affiliation(s)
- Shaan Manawar
- Department of Orthopedic Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Erica Myrick
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Peter Awad
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Victor Hung
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Cassidy Hinton
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Keith Kenter
- Department of Orthopedic Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Karen Bovid
- Department of Orthopedic Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Yong Li
- Department of Orthopedic Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| |
Collapse
|
19
|
Bibbo C, Yüksel KÜ. Decellularized Human Dermis for Orthoplastic Extremity Reconstruction. Bioengineering (Basel) 2024; 11:422. [PMID: 38790291 PMCID: PMC11117772 DOI: 10.3390/bioengineering11050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
The reconstruction of patients who possess multi morbid medical histories remains a challenge. With the ever-increasing number of patients with diabetes, infections, and trauma, there is a consistent need for promotion of soft tissue healing and a reliable substrate to assist with every aspect of soft tissue reconstruction, as well as the loss of fascial domain. Several proprietary products filled some of these needs but have failed to fulfill the needs of the clinician when faced with reconstructing multiple soft tissue systems, such as the integument and the musculoskeletal system. In this paper we discuss the use of decellularized human dermis (DermaPure®, Tissue Regenix, Universal City, TX, USA) through which a unique human tissue processing technique (dCELL® technology, Tissue Regenix, Universal City, TX, USA) and the creation of multiple product forms have proven to exhibit versatility in a wide range of clinical needs for successful soft tissue reconstruction. The background of human tissue processing, basic science, and early clinical studies are detailed, which has translated to the rationale for the success of this unique soft tissue substrate in orthoplastic reconstruction, which is also provided here in detail.
Collapse
Affiliation(s)
- Christopher Bibbo
- Rubin Institute for Advanced Orthopaedics, International Center for Limb Lengthening, Sinai Hospital of Baltimore, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA
| | - K. Ümit Yüksel
- Independent Scientific Researcher, Kennesaw, GA 30144, USA
| |
Collapse
|
20
|
He H, Yang F, Zhang S, Liu Z, Liu Z, Yu L, Xiao J. Bone morphogenetic protein-2 loaded triple helix recombinant collagen-based hydrogels for enhancing bone defect healing. Biomed Mater 2024; 19:035029. [PMID: 38518364 DOI: 10.1088/1748-605x/ad3701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
The development of efficacious bone substitute biomaterials remains a major challenge for research and clinical surgical. Herein, we constructed triple helix recombinant collagen (THRC) -based hydrogels loading bone morphogenetic protein-2 (BMP-2) to stimulate bone regeneration in cranial defects. A series of in situ forming hydrogels, denoted as THRC-oxidized carboxymethylcellulose (OCMC)-N-succinyl-chitosan (NSC) hydrogels, was synthesized via a Schiff base reaction involving OCMC, THRC and NSC. The hydrogels underwent rapid formation under physiological pH and temperature conditions. The composite hydrogel exhibits a network structure characterized by uniform pores, the dimensions of which can be tuned by varying THRC concentrations. The THRC-OCMC-NSC and THRC-OCMC-NSC-BMP2 hydrogels display heightened mechanical strength, substantial biodegradability, and lower swelling properties. The THRC-OCMC-NSC hydrogels show exceptional biocompatibility and bioactivity, accelerating cell proliferation, adhesion, and differentiation. Magnetic resonance imaging, computed tomography and histological analysis of rat cranial defects models revealed that the THRC-OCMC-NSC-BMP2 hydrogels substantially promote new bone formation and expedite bone regeneration. The novel THRC-OCMC-NSC-BMP2 hydrogels emerge as promising candidates for bone substitutes, demonstrating substantial potential in bone repair and regeneration applications.
Collapse
Affiliation(s)
- Huixia He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Fan Yang
- Lanzhou University First Hospital, Lanzhou 730000, People's Republic of China
| | - Shanshan Zhang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Zhao Liu
- Lanzhou University First Hospital, Lanzhou 730000, People's Republic of China
| | - Zaiman Liu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Linghui Yu
- Lanzhou University First Hospital, Lanzhou 730000, People's Republic of China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
21
|
Lambrechts MJ, Issa TZ, Mazmudar A, Lee Y, Toci GR, D’Antonio ND, Schilken M, Lingenfelter K, Kepler CK, Schroeder GD, Vaccaro AR. Cellular Bone Matrix in Spine Surgery - Are They Worth the Risk: A Systematic Review. Global Spine J 2024; 14:1070-1081. [PMID: 37773001 PMCID: PMC11192114 DOI: 10.1177/21925682231205099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
STUDY DESIGN Systematic Review. OBJECTIVE To review the literature for complications and outcomes after the implantation of cellular bone matrix (CBM) during spine fusion. METHODS The PubMed database was queried from inception to January 31, 2023 for any articles that discussed the role of and identified a specific CBM in spinal fusion procedures. Adverse events, reoperations, methods, and fusion rates were collected from all studies and reported. RESULTS Six hundred articles were identified, of which 19 were included that reported outcomes of 7 different CBM products. Seven studies evaluated lumbar fusion, 11 evaluated cervical fusion, and 1 study reported adverse events of a single CBM product. Only 4 studies were comparative studies while others were limited to case series. Fusion rates ranged from 68% to 98.7% in the lumbar spine and 87% to 100% in the cervical spine, although criteria for radiographic fusion was variable. While 7 studies reported no adverse events, there was no strict consensus on what constituted a complication. One study reported catastrophic disseminated tuberculosis from donor contaminated CBM. The authors of 14 studies had conflicts of interest with either the manufacturer or distributor for their analyzed CBM. CONCLUSIONS Current evidence regarding the use of cellular bone matrix as an osteobiologic during spine surgery is weak and limited to low-grade non-comparative studies subject to industry funding. While reported fusion rates are high, the risk of severe complications should not be overlooked. Further large clinical trials are required to elucidate whether the CBMs offer any benefits that outweigh the risks.
Collapse
Affiliation(s)
- Mark J. Lambrechts
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Tariq Z. Issa
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Aditya Mazmudar
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Yunsoo Lee
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Gregory R. Toci
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Meghan Schilken
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Gregory D. Schroeder
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R. Vaccaro
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
22
|
George RE, Bay CC, Shaffrey EC, Wirth PJ, Rao VK. A Day in the Life of a Surgical Instrument: The Cycle of Sterilization. ANNALS OF SURGERY OPEN 2024; 5:e381. [PMID: 38883953 PMCID: PMC11175864 DOI: 10.1097/as9.0000000000000381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/03/2024] [Indexed: 06/18/2024] Open
Abstract
Surgeons must be confident that the instruments they use do not pose risk of infection to patients due to bioburden or contamination. Despite this importance, surgeons are not necessarily aware of the steps required to ensure that an instrument has been properly sterilized, processed, and prepared for the next operation. At the end of an operation, instruments must be transported to the sterile processing unit. There, instruments are decontaminated before being sterilized by heat, chemical, or radiation-based methods. Following this, they are stored before being brought back into use. This review highlights the intricacies of the processing of surgical instruments at the conclusion of an operation so that they are ready for the next one.
Collapse
Affiliation(s)
- Robert E. George
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin - Madison, Madison, WI
| | - Caroline C. Bay
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin - Madison, Madison, WI
| | - Ellen C. Shaffrey
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin - Madison, Madison, WI
| | - Peter J. Wirth
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin - Madison, Madison, WI
| | - Venkat K. Rao
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin - Madison, Madison, WI
| |
Collapse
|
23
|
Gökler DJ, Karácsony AF, Faragó D, Szebényi G, Kiss RM, Pap K. The effect of sterilization and storage on the viscoelastic properties of human tendon allografts - Continued: Storage for 0 to 4 months. J Biomech 2024; 162:111904. [PMID: 38134466 DOI: 10.1016/j.jbiomech.2023.111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The role of donor-derived tendons, also known as allografts, in anterior cruciate ligament replacement surgeries is steadily increasing. Before surgery, temporary storage and, in most cases, sterilization are essential. It is, thus, crucial to determine how these procedures alter the grafts' biomechanical properties. The purpose of this research was to analyze the effect of different sterilization methods (native, frozen, frozen + 21 kGy gamma irradiation, frozen + 21 kGy electron beam irradiation) and storage durations (0 to 4 months) on the deformation and creep of two tendon types (tibialis anterior, peroneus longus). 80 tibialis anterior and 83 peroneus longus tendons from 51 human cadavers were included. The samples were removed, placed in a radio-cryoprotectant solution, then slowly cooled, sterilized and stored at -80 °C. All groups were subject to 60 s static creep test with 250 N load. Deformation during the loading phase, creep during static loading, and the ratio of these two were evaluated. Deformation at the end of the loading phase and creep consistently exhibited significantly smaller values in the tibialis anterior compared to the peroneus longus type, as well as in electron beam-sterilized grafts as opposed to gamma beam-sterilized ones. Prolonged storage periods (within 0 to 4 months) resulted in a notable increase in these values, particularly in deformation. Based on the experimental data, the tibialis anterior tendon type and sterilization by gamma beam irradiation are better choices for anterior cruciate ligament reconstruction than the peroneus longus and sterilization by electron beam. Increased storage time affects negatively the evaluated mechanical properties.
Collapse
Affiliation(s)
- Daniella Judit Gökler
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary
| | - Atilla Ferenc Karácsony
- Semmelweis University Budapest, Department of Traumatology, Hungary; Buda Hospital of the Hospitaller Order of Saint John of God, Department of Orthopedics, Hungary
| | - Dénes Faragó
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary
| | - Gábor Szebényi
- MTA-BME Lendület Lightweight Polymer Composites Research Group, Hungary; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering, Hungary.
| | - Rita Mária Kiss
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary
| | - Károly Pap
- Semmelweis University Budapest, Department of Traumatology, Hungary; Uzsoki Hospital, Department of Orthopedics and Traumatology, Hungary
| |
Collapse
|
24
|
Chandler KM, Schick S, Hargreaves M, Elphingstone J, Brabston E, Evely T, Casp A, Momaya AM. Impact of irradiation on load-to-failure in bone-patellar tendon-bone allografts: A systematic review and meta-analysis. J Orthop 2023; 46:18-23. [PMID: 37942219 PMCID: PMC10630551 DOI: 10.1016/j.jor.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction To evaluate the impact various levels of irradiation have on bone-patellar tendon-bone (BTB) allograft load-to-failure. Materials and methods Pubmed, Google Scholar and Embase were searched for studies reporting load-to-failure measurements of BTB allografts following gamma or eBeam irradiation. All systematic reviews, editorials, as well as studies that utilized animal models and/or other graft sources (achilles, hamstring, quadriceps) were excluded. Meta-analysis was performed to compare the impact of low dose (19 ≤ kGy), intermediate (20-49 kGy) and high dose (>50 kGy) gamma and eBeam radiation on load-to-failure. Results Twelve studies, containing a total of 429 BTB allografts (159 controls, 270 irradiated), were identified. Load-to-failure of BTB allograft was significantly decreased at intermediate (20-49 kGy) doses of radiation, while low (≤19 kGy) and high (>50 kGy) doses did not significantly change load-to-failure. Conclusions Intermediate doses of radiation may negatively impact the biomechanical integrity of BTB allograft in vitro. Future studies are required to examine clinical outcomes at varying irradiation levels.
Collapse
Affiliation(s)
- Kelly M. Chandler
- University of Alabama at Birmingham Department of Orthopaedic Surgery, Birmingham, AL, USA
| | - Sam Schick
- University of Alabama at Birmingham Department of Orthopaedic Surgery, Birmingham, AL, USA
| | - Mathew Hargreaves
- University of Alabama at Birmingham Department of Orthopaedic Surgery, Birmingham, AL, USA
| | - Joseph Elphingstone
- University of Alabama at Birmingham Department of Orthopaedic Surgery, Birmingham, AL, USA
| | - Eugene Brabston
- University of Alabama at Birmingham Department of Orthopaedic Surgery, Birmingham, AL, USA
| | - Thomas Evely
- University of Alabama at Birmingham Department of Orthopaedic Surgery, Birmingham, AL, USA
| | - Aaron Casp
- University of Alabama at Birmingham Department of Orthopaedic Surgery, Birmingham, AL, USA
| | - Amit M. Momaya
- University of Alabama at Birmingham Department of Orthopaedic Surgery, Birmingham, AL, USA
| |
Collapse
|
25
|
Susanto A, Komara I, Beatrix MT, Lukitowati F, Amaliya A, Hendiani I, Miranda A. Determination of the Sterilization Dose of Gamma-Ray Irradiation for Polyvinyl Alcohol-Collagen-Chitosan Composite Membrane as a Material for Periodontal Regenerative Surgery. Eur J Dent 2023; 17:1289-1293. [PMID: 37369235 PMCID: PMC10756808 DOI: 10.1055/s-0043-1761186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Membrane sterility is very necessary considering its function as an implant material. Therefore, this research aims to determine the dose of gamma-ray irradiation for the sterilization of polyvinyl alcohol (PVA)-collagen-chitosan composite membranes used as regenerative surgery materials. MATERIALS AND METHODS A total of 100 pieces of the composite membranes were prepared in a size of 2.0 × 1.5 cm by mixing 7.5% PVA, 3% collagen, and 2% chitosan using the film casting method in three batches. Furthermore, the bioburden test was performed to determine the initial microbial count in the sample by following ISO 11737-1. The results were used to ascertain the dose of gamma-ray irradiation on the sample according to ISO 11137-2. The dose verification test was then performed at the sterility assurance level 10-6. RESULTS The average result of the bioburden test from three batches was 6.6 colony forming unit; hence, the verification dose was 4.8 kGy. In the verification dose test, since there was only one contaminated sample, the sterility dose test was continued. CONCLUSION The sterile gamma-ray irradiation dose for PVA-collagen-chitosan composite membrane was 17.1 kGy.
Collapse
Affiliation(s)
- Agus Susanto
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Ira Komara
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Maria Theresia Beatrix
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Fajar Lukitowati
- Research Center for Radiation Process Technology—National Research and Innovation Agency (NRIA), Indonesia
| | - Amaliya Amaliya
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Ina Hendiani
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Aldilla Miranda
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
26
|
Sharma A, Sharma D, Zhao F. Updates on Recent Clinical Assessment of Commercial Chronic Wound Care Products. Adv Healthc Mater 2023; 12:e2300556. [PMID: 37306401 PMCID: PMC11932735 DOI: 10.1002/adhm.202300556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Impaired wound healing after trauma, disorders, and surgeries impact millions of people globally every year. Dysregulation in orchestrated healing mechanisms and underlying medical complications make chronic wound management extremely challenging. Besides standard-of-care treatments including broad spectrum antibiotics and wound-debridement, novel adjuvant therapies are clinically tested and commercialized. These include topical agents, skin substitutes, growth factor delivery, and stem cell therapies. With a goal to overcome factors playing pivotal role in delayed wound healing, researchers are exploring novel approaches to elicit desirable healing outcomes in chronic wounds. Although recent innovations in wound care products, therapies, and devices are extensively reviewed in past, a comprehensive review summarizing their clinical outcomes is surprisingly lacking. Herein, this work reviews the commercially available wound care products and their performance in clinical trials to provide a statistically comprehensive understanding of their safety and efficacy. The performance and suitability of various commercial wound care platforms, including xenogeneic and allogenic products, wound care devices, and novel biomaterials, are discussed for chronic wounds. The current clinical evaluation will provide a comprehensive understanding of the benefits and drawbacks of the most-recent approaches and will enable researchers and healthcare providers to develop next-generation technologies for chronic wound management.
Collapse
Affiliation(s)
- Archita Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| |
Collapse
|
27
|
Nikolaeva N, Rozanov V, Chernyaev A, Matveychuk I, Makarova M. The Influence of Combined Sterilization Factors on the Structural and Functional Characteristics of Bone Implants. Int J Mol Sci 2023; 24:14426. [PMID: 37833874 PMCID: PMC10573022 DOI: 10.3390/ijms241914426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The results of a comprehensive study of the patterns of structural and functional changes in bone tissue samples after combined (ozone + radiation) sterilization are presented. The study used a different approach to the sterilization process with selective ozone or radiation exposure and an integral, combined one, based on a combined ozone-oxygen treatment of bone samples at the first stage and radiation at the second. The methods of IR spectroscopy, scanning electron microscopy with a prefix for elemental analysis, atomic force microscopy, and mechanical analysis with determination of elastic-plastic properties (Vickers microhardness index) were used in the work. It is shown that the ozone exposure used at the first stage of the combined sterilization process of bone implants does not lead to negative consequences with respect to their properties and characteristics. The results obtained serve as a scientific and methodological basis for the further improvement and optimization of sterilization technologies (including combined). They also offer a comprehensive justification of the parameters of sterilization regimes to ensure the safety of using bone implants during reconstructive operations, minimizing structural and functional changes in bone matter, and creating effective health-saving technologies and the possibility of using them for various biomedical applications.
Collapse
Affiliation(s)
- Nadezhda Nikolaeva
- Radiation Technologies Laboratory, Institute of Physics and Technology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia; (N.N.); (A.C.)
| | - Vladimir Rozanov
- Radiation Technologies Laboratory, Institute of Physics and Technology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia; (N.N.); (A.C.)
- Physical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Scientific and Educational-Methodical Center of Biomedical Technology, The All-Russian Research Institute of Medicinal and Aromatic Plants, 117216 Moscow, Russia;
| | - Alexander Chernyaev
- Radiation Technologies Laboratory, Institute of Physics and Technology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia; (N.N.); (A.C.)
- Physical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Matveychuk
- Scientific and Educational-Methodical Center of Biomedical Technology, The All-Russian Research Institute of Medicinal and Aromatic Plants, 117216 Moscow, Russia;
| | - Milena Makarova
- Radiation Technologies Laboratory, Institute of Physics and Technology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia; (N.N.); (A.C.)
| |
Collapse
|
28
|
Ruan T, Naveed M, Vien H. Case report: Tuberculosis recall on bone graft patient. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100241. [PMID: 37483264 PMCID: PMC10362344 DOI: 10.1016/j.xnsj.2023.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Background Bone grafting is commonly used in spine surgery to supplement or replace the need for autografts. This is harvested, prepared, and utilized predominantly for osteoconductive properties. Anterior cervical discectomy and fusion, a procedure to decompress and fuse the spine which treats herniated discs and compressed nerves, commonly uses Polyetheretherketone (PEEK) interbody filled with allograft bone matrices to reconstruct the disc space after a discectomy is performed. Case Description The presented case is one of a 57-year-old male patient who underwent an uneventful cervical 5-6 and cervical 6-7 discectomy and fusion using a PEEK interbody and bone allograft. The allograft had been prepared using cancellous bone particles with preserved living cells and demineralized cortical bone fibers to facilitate bone repair and healing, which is a common technique. The allograft was aseptically processed to preserve native factors that can support bone repair and prevent contamination and cross-contamination of the product. Additionally, the product was sterilized using gamma irradiation to further prevent contamination. Outcome Unfortunately, with the presented case, the State's Department of Health and The Center for Diseases Control and Prevention identified that the graft was from a source contaminated with tuberculosis. The patient being reported went on to develop disseminated tuberculosis, including lung abscesses and osteomyelitis. Conclusions The current case highlights that there was contamination of the donor bone sources. Tuberculosis was not screened in the tissue donor even though he had risk factors, symptoms, and signs consistent with tuberculosis. Although there are methods to screen potential organ donors for tuberculosis, there is currently no approved standard laboratory tuberculosis screening tool for bone grafts. Thus, this emphasizes the importance of proper screening among individual institutions for even the most uncommon diseases in all donated bone grafts.
Collapse
Affiliation(s)
- Tiffany Ruan
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, United States
| | - Mustafa Naveed
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, United States
| | - Hon Vien
- Department of Orthopedics and Spine, Reid Health, 1400 Highland Rd, Richmond, IN 47374, United States
| |
Collapse
|
29
|
Potart D, Gluais M, Gaubert A, Da Silva N, Hourques M, Sarrazin M, Izotte J, Mora Charrot L, L'Heureux N. The cell-assembled extracellular matrix: A focus on the storage stability and terminal sterilization of this human "bio" material. Acta Biomater 2023; 166:133-146. [PMID: 37149079 PMCID: PMC7614989 DOI: 10.1016/j.actbio.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
The Cell-Assembled extracellular Matrix (CAM) is an attractive biomaterial because it provided the backbone of vascular grafts that were successfully implanted in patients, and because it can now be assembled in "human textiles". For future clinical development, it is important to consider key manufacturing questions. In this study, the impact of various storage conditions and sterilization methods were evaluated. After 1 year of dry frozen storage, no change in mechanical nor physicochemical properties were detected. However, storage at 4 °C and room temperature resulted in some mechanical changes, especially for dry CAM, but physicochemical changes were minor. Sterilization modified CAM mechanical and physicochemical properties marginally except for hydrated gamma treatment. All sterilized CAM supported cell proliferation. CAM ribbons were implanted subcutaneously in immunodeficient rats to assess the impact of sterilization on the innate immune response. Sterilization accelerated strength loss but no significant difference could be shown at 10 months. Very mild and transient inflammatory responses were observed. Supercritical CO2 sterilization had the least effect. In conclusion, the CAM is a promising biomaterial since it is unaffected by long-term storage in conditions available in hospitals (hydrated at 4 °C), and can be sterilized terminally (scCO2) without compromising in vitro nor in vivo performance. STATEMENT OF SIGNIFICANCE: In the field of tissue engineering, the use of extracellular matrix (ECM) proteins as a scaffolding biomaterial has become very popular. Recently, many investigators have focused on ECM produced by cells in vitro to produce unprocessed biological scaffolds. As this new kind of "biomaterial" becomes more and more relevant, it is critical to consider key manufacturing questions to facilitate future transition to the clinic. This article presents an extensive evaluation of long-term storage stability and terminal sterilization effects on an extracellular matrix assembled by cells in vitro. We believe that this article will be of great interest to help tissue engineers involved in so-called scaffold-free approaches to better prepare the translation from benchtop to bedside.
Collapse
Affiliation(s)
- Diane Potart
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Maude Gluais
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Alexandra Gaubert
- University of Bordeaux, CNRS, UMR 5320, Inserm, UMR121, ANRA, Bordeaux F-33076, France
| | - Nicolas Da Silva
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Marie Hourques
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Marie Sarrazin
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Julien Izotte
- Animal Facility A2, University of Bordeaux, Bordeaux F-33076, France
| | - Léa Mora Charrot
- Animal Facility A2, University of Bordeaux, Bordeaux F-33076, France
| | - Nicolas L'Heureux
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France.
| |
Collapse
|
30
|
Shih S, Askinas C, Caughey S, Vernice N, Berri N, Dong X, Spector JA. Sourcing and development of tissue for transplantation in reconstructive surgery: A narrative review. J Plast Reconstr Aesthet Surg 2023; 83:266-275. [PMID: 37279636 DOI: 10.1016/j.bjps.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023]
Abstract
The wealth of allogeneic and xenogeneic tissue products available to plastic and reconstructive surgeons has allowed for the development of novel surgical solutions to challenging clinical problems, often obviating the need to inflict donor site morbidity. Allogeneic tissue used for reconstructive surgery enters the tissue industry through whole body donation or reproductive tissue donation and has been regulated by the FDA as human cells, tissues, and cellular and tissue-based products (HCT/Ps) since 1997. Tissue banks offering allogeneic tissue can also undergo voluntary regulation by the American Association of Tissue Banks (AATB). Tissue prepared for transplantation is sterilized and can be processed into soft tissue or bone allografts for use in surgical reconstruction, whereas non-transplant tissue is prepared for clinical training and drug, medical device, and translational research. Xenogeneic tissue, which is most often derived from porcine or bovine sources, is also commercially available and is subject to strict regulations for animal breeding and screening for infectious diseases. Although xenogeneic products have historically been decellularized for use as non-immunogenic tissue products, recent advances in gene editing have opened the door to xenograft organ transplants into human patients. Herein, we describe an overview of the modern sourcing, regulation, processing, and applications of tissue products relevant to the field of plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Sabrina Shih
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Carly Askinas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Sarah Caughey
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Nicholas Vernice
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Nabih Berri
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Xue Dong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Jason A Spector
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America.
| |
Collapse
|
31
|
Al Qabbani A, Rani KGA, Syarif J, AlKawas S, Sheikh Abdul Hamid S, Samsudin AR, Azlina A. Evaluation of decellularization process for developing osteogenic bovine cancellous bone scaffolds in-vitro. PLoS One 2023; 18:e0283922. [PMID: 37018321 PMCID: PMC10075422 DOI: 10.1371/journal.pone.0283922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Current immunological issues in bone grafting regarding the transfer of xenogeneic donor bone cells into the recipient are challenging the industry to produce safer acellular natural matrices for bone regeneration. The aim of this study was to investigate the efficacy of a novel decellularization technique for producing bovine cancellous bone scaffold and compare its physicochemical, mechanical, and biological characteristics with demineralized cancellous bone scaffold in an in-vitro study. Cancellous bone blocks were harvested from a bovine femoral head (18-24 months old) subjected to physical cleansing and chemical defatting, and further processed in two ways. Group I was subjected to demineralization, while Group II underwent decellularization through physical, chemical, and enzymatic treatments. Both were then freeze-dried, and gamma radiated, finally producing a demineralized bovine cancellous bone (DMB) scaffold and decellularized bovine cancellous bone (DCC) scaffold. Both DMB and DCC scaffolds were subjected to histological evaluation, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), fourier-transform infrared spectroscopy (FTIR), quantification of lipid, collagen, and residual nucleic acid content, and mechanical testing. The osteogenic potential was investigated through the recellularization of scaffolds with human osteoblast cell seeding and examined for cell attachment, proliferation, and mineralization by Alizarin staining and gene expression. DCC produced a complete acellular extracellular matrix (ECM) with the absence of nucleic acid content, wider pores with extensive interconnectivity and partially retaining collagen fibrils. DCC demonstrated a higher cell proliferation rate, upregulation of osteogenic differentiation markers, and substantial mineralized nodules production. Our findings suggest that the decellularization technique produced an acellular DCC scaffold with minimal damage to ECM and possesses osteogenic potential through the mechanisms of osteoconduction, osteoinduction, and osteogenesis in-vitro.
Collapse
Affiliation(s)
- Ali Al Qabbani
- Department of Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Basic Science and Oral Biology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - K. G. Aghila Rani
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Junaidi Syarif
- Department of Nuclear and Mechanical Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Sausan AlKawas
- Department of Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Suzina Sheikh Abdul Hamid
- Tissue Bank, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - A. R. Samsudin
- Department of Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Tissue Bank, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Azlina
- Basic Science and Oral Biology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
32
|
Crocker DB, Hoffman I, Carter JL, Akkus O, Rimnac CM. Fatigue crack propagation and fracture toughness of cortical bone are radiation dose-dependent. J Orthop Res 2023; 41:823-833. [PMID: 35949192 PMCID: PMC9911555 DOI: 10.1002/jor.25424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Cortical bone allograft sterilized with a standard γ-radiation dose of 25-35kGy has demonstrated reduced static and cyclic fracture resistance compared with unirradiated bone. To mitigate radiation damage, we recently observed a dose-dependent response of high-cycle fatigue behavior of human cortical bone from 0 to 25 kGy, with lower doses exhibiting logarithmically longer fatigue lives. The objectives of this study were as follows: (1) to determine whether fracture toughness, work-to-fracture, and fatigue crack propagation resistance of human cortical bone are also radiation dose-dependent, and (2) to determine the associations of radiation dose and a Raman biomarker for collagen disorder with fracture properties. Compact tension specimens were machined from two donor femoral pairs and allocated to four treatment groups: 0 (unirradiated control), 10, 17.5, and 25 kGy. Fracture toughness specimens were monotonically loaded to failure and the critical stress intensity factor (KC ) was determined. Work-to-fracture was calculated from the load versus displacement integral up to fracture. Fatigue crack propagation specimens were cyclically loaded under constant room-temperature irrigation and fatigue crack growth rate (da/dN) and cyclic stress intensity (∆K) were calculated. Fracture toughness, work-to-fracture, and fatigue crack propagation resistance decreased 18%, 33%, and 15-fold from 0 to 25 kGy, respectively (p < 0.05). Radiation dose was more predictive of fracture properties than collagen disorder. These findings support that quasi-static and fatigue fracture properties of cortical bone are radiation dose-dependent within this dose range. The structural alterations arising from irradiation that cause these losses in fracture resistance remain to be elucidated.
Collapse
Affiliation(s)
- Dylan B. Crocker
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Isaac Hoffman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH
| | - Jennifer L.W. Carter
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH
| | - Clare M. Rimnac
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
33
|
McVeigh LG, Zaazoue MA, Lane BC, Voorhies JM, Bradbury J. Management and outcomes of surgical site tuberculosis infection due to infected bone graft in spine surgery: a single-institution experience and 1-year postoperative follow-up. J Neurosurg Spine 2023; 38:281-292. [PMID: 36272124 DOI: 10.3171/2022.7.spine22534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In 2021, several patients across the United States received bone allograft contaminated with Mycobacterium tuberculosis (TB). TB is typically a pulmonary infection with many possible extrapulmonary manifestations, including skeletal tuberculosis. However, TB is a rare causative organism of postoperative surgical site infection. Iatrogenic skeletal TB infections are not widely reported in the medical literature; therefore, treatment and associated outcomes are relatively unknown. In this series, the authors report 6 cases of patients who received a mesenchymal stem cell-enhanced bone graft infected with TB at their institution, including the clinical courses, imaging findings, management plans, and outcomes at 1 year postoperatively. METHODS A retrospective review was performed of 6 consecutive patients who underwent spinal fusion surgery at the authors' institution and received bone graft from a lot contaminated with TB. Collected data included patient demographic characteristics, indications for surgery, surgical procedures performed, timing of contamination discovery, medical treatment, and follow-up information including reoperation, healing progress, and imaging findings. RESULTS Five of 6 patients (83.3%) eventually tested positive for TB via interferon-gamma release assay or wound culture. They experienced significant complications, including surgical site infections with neck swelling, pain, dysphagia, and wound dehiscence. Extensive soft-tissue infection was common; however, significant bony involvement was not observed. Surgical wound debridement was required in 4 patients, and all patients received medical management with standard RIPE (rifampin, isoniazid pyrazinamide, pyridoxine, and ethambutol) therapy for 8 weeks with extension of rifampin and isoniazid for scheduled 12 months. All patients (excluding 1 patient who died of COVID-19) showed signs of improvement with adequately healing wounds at the most recent follow-up at a median (range) of 12 (6-13) months postoperatively. To date, no patients have developed pulmonary TB. CONCLUSIONS Direct inoculation with TB via contaminated bone grafts resulted in a high rate of severe soft-tissue infection, although extensive skeletal and pulmonary involvement has not been observed at 1 year postoperatively; this review includes the longest reported follow-up period for this TB outbreak. Medical management remains the mainstay of therapy for these patients, with most patients showing recovery with oral antibiotic therapy. The severity of these infections arising from mesenchymal stem cell-containing bone allografts that undergo an alternative sterilization process than standard allografts raises concerns regarding the added risks of infection, which should be weighed against the expected benefits of these grafts.
Collapse
|
34
|
Semenova ZB, Salimon AI, Korsunsky AM, Melnikov AV, Sadykova YA, Marshintsev AV, Statnik ES, Lukyanov VI. [Autologous bone implant for reconstructive surgery after decompressive craniectomy in children]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:58-65. [PMID: 37650277 DOI: 10.17116/neiro20238704158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The concept of post-traumatic skull defect closure is based on restoration of anatomical relationships for the maximum possible recovery of brain function, i.e. it is considered as a stage of surgical rehabilitation. The choice of implants in pediatric patients is limited. In this regard, the «gold standard» is still autologous bone implant. MATERIAL AND METHODS We propose a method for storage and sterilization of autologous bone implant. The last one implies keeping at a temperature of -80 ˚C with sterilization in a vacuum chamber filled with hydrogen peroxide vapors of biocidal plasma medium. Sterilization is provided by 45-minute cycle immediately before surgery. We report skull defect closure using autologous bone implants in 79 patients. Evaluation of effectiveness of storage and sterilization of autologous bone implant included analysis of mechanical properties of bone after sterilization, intra-operative microbiological monitoring, incidence of infections in early postoperative period, follow-up with assessment of resorption. RESULTS Early infectious complications occurred in 2 patients (2.5%). Complete resorption with redo surgery occurred in 6 (10.1%) cases. Sterilization in low-temperature plasma of hydrogen peroxide changes mechanical properties of the bone, increases durability under compressive stresses and decreases durability under tensile conditions. This does not affect functional tasks of autologous bone. The proposed method of storage and sterilization is accompanied by low risk of infections and resorption. Storage of autologous bone implant at a temperature of -80 ˚C with subsequent sterilization in low-temperature plasma of hydrogen peroxide can be considered as a safe and effective method for skull defect closure in children after decompressive surgery.
Collapse
Affiliation(s)
- Zh B Semenova
- Research Institute of Emergency Pediatric Surgery and Traumatology, Moscow, Russia
| | | | | | - A V Melnikov
- Research Institute of Emergency Pediatric Surgery and Traumatology, Moscow, Russia
| | | | - A V Marshintsev
- Research Institute of Emergency Pediatric Surgery and Traumatology, Moscow, Russia
| | | | - V I Lukyanov
- Research Institute of Emergency Pediatric Surgery and Traumatology, Moscow, Russia
| |
Collapse
|
35
|
Kloss FR, Kämmerer PW, Kloss-Brandstätter A. Risk Factors for Complications Following Staged Alveolar Ridge Augmentation and Dental Implantation: A Retrospective Evaluation of 151 Cases with Allogeneic and 70 Cases with Autogenous Bone Blocks. J Clin Med 2022; 12:jcm12010006. [PMID: 36614811 PMCID: PMC9820942 DOI: 10.3390/jcm12010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: the aim of this study was to identify potential risk factors favoring complications by assessing the number and types of complications associated with allogeneic or autogenous bone blocks applied as onlay grafts for alveolar ridge augmentation prior to implantation. Methods: A retrospective chart review on the success of 151 allogeneic and 70 autogenous bone blocks in a cohort of 164 consecutive patients, who were treated over a period of 6 years by the same surgeon, was conducted. Statistical conclusions were based on ROC curves and multiple logistic regression models. Results: Complications were observed more frequently with autogenous bone blocks (14 out of 70 cases; 20%) compared to allogeneic bone blocks (12 out of 151 cases; 7.9%; p = 0.013). However, these complications were minor and did not impact the successful dental rehabilitation. In a multiple logistic regression model, the risk of a complication was increased by the use of an autogenous bone block (OR = 3.2; p = 0.027), smoking (OR = 4.8; p = 0.007), vertical augmentation above a threshold of 2.55 mm (OR = 5.0; p = 0.002), and over-contouring (OR = 15.3; p < 0.001). Conclusions: Overall, the complication rate of ridge augmentations carried out with autogenous or allogeneic bone blocks was low. Despite previous recommendations, over-contouring and a vertical augmentation above a threshold of 2.55 mm should be avoided.
Collapse
Affiliation(s)
- Frank R. Kloss
- Oral- and Maxillofacial Surgeon, Private Clinic for Oral- and Maxillofacial Surgery, Kärntnerstraße 62, 9900 Lienz, Austria
- Correspondence: ; Tel.: +43-4852-64643
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Anita Kloss-Brandstätter
- Department of Engineering & IT, Carinthia University of Applied Sciences, Europastraße 4, 9524 Villach, Austria
| |
Collapse
|
36
|
Chitosan-Based Membranes for Skin Wound Repair in a Dorsal Fold Chamber Rat Model. Pharmaceutics 2022; 14:pharmaceutics14122736. [PMID: 36559232 PMCID: PMC9784945 DOI: 10.3390/pharmaceutics14122736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Frequently, deep partial and full-thickness skin wounds do not spontaneously regenerate. To restore the normal function of skin, epidermal and dermal components have to be supplied to the wound bed by grafting various substrates. Available options are limited and frequently costly. Herein, authors present a possible approach using 3D skin scaffolds capable of mimicking structure and biological functions of the extracellular matrix, providing, in parallel, a good environment for cell attachment, proliferation and differentiation. Low-molecular weight chitosan-based membranes were prepared by freeze-drying and ionizing radiation techniques to be used as skin scaffolds. Poly (vinyl alcohol), PVA, vinyl pyrrolidone, VP, and gelatin from cold water fish were incorporated. Information regarding membranes' physical-chemical properties from SEM analysis, swelling and weight loss, together with biological response through in vitro assays (using Human Caucasian Fetal Foreskin Fibroblast) allowed the selection of an optimized batch of membranes that was used as skin scaffold in a dorsal rat model wound. The in vivo implantation assays (in Wistar rats) resulted in very promising results: (i) healing process faster than control; (ii) good vascularization; (iii) viable new tissues morphologically functional.
Collapse
|
37
|
Abstract
Degradable and environmentally responsive polymers have been actively developed for drug delivery and regenerative medicine applications, yet inadequate consideration of their compatibility with terminal sterilization presents notable barriers to clinical translation. This Review discusses industry-established terminal sterilization methods and aseptic processing and contrasts them with innovative approaches aimed at preserving the integrity of polymeric implants. Regulatory guidelines, fiscal considerations, and potential pitfalls are discussed to encourage early integration of sterility regulatory considerations in material designs.
Collapse
Affiliation(s)
- Chloe K Herczeg
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
38
|
Low-Energy Electron Generation for Biomolecular Damage Inquiry: Instrumentation and Methods. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Technological advancement has produced a variety of instruments and methods to generate electron beams that have greatly assisted in the extensive theoretical and experimental efforts devoted to investigating the effect of secondary electrons with energies approximately less than 100 eV, which are referred as low-energy electrons (LEEs). In the past two decades, LEE studies have focused on biomolecular systems, which mainly consist of DNA and proteins and their constituents as primary cellular targets of ionizing radiation. These studies have revealed that compared to other reactive species produced by high-energy radiation, LEEs have distinctive pathways and considerable efficiency in inducing lethal DNA lesions. The present work aims to briefly discuss the current state of LEE production technology and to motivate further studies and improvements of LEE generation techniques in relation to biological electron-driven processes associated with such medical applications as radiation therapy and cancer treatment.
Collapse
|
39
|
Rajasekaran RB, Jayaramaraju D, Palanisami DR, Agraharam D, Thippeswamy PB, Rajasekaran S. Role of impaction bone grafting of allografts in the management of benign lesions of the proximal femur. J Orthop 2022; 34:189-195. [PMID: 36104992 PMCID: PMC9465316 DOI: 10.1016/j.jor.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose of study The use of allografts to reconstruct benign lesions of the proximal femur after curettage has seldom been reported. We report our experience of impaction bone grafting of only allografts combined with osteosynthesis to manage benign lesions involving the proximal femur. Materials and methods Between 2013 and 2019, 35 patients of a mean age of 23.8 years (14-41) who had a biopsy proven benign pathology and a median pre-operative Mirels' score of 9 (8-11) were managed using extended curettage, impaction bone grafting of allografts combined with osteosynthesis through a lateral approach. Radiographs were assessed to see for any recurrence at follow-ups, and functional outcomes were assessed using Musculoskeletal Tumour Society (MSTS) score and Harris hip score (HHS). Results At a mean follow-up was 41.5 months (23-80), patients demonstrated favorable functional outcomes with a mean MSTS of 28.3 (18-30) and a mean HHS of 94.3 (66-100) at the last follow-up. Two cases (GCT = 1; fibrous dysplasia = 1) had a recurrence of disease. Allografts demonstrated a particular integration pattern on radiographs that involved an intermediate period of lucency followed by consolidation and integration with the parent bone. Conclusion Impaction grafting of allografts in benign lesions of the proximal femur allows adequate bony consolidation of the cavity after extended curettage and can be effectively used as a permanent solution to manage such lesions in most cases. The intermediate period of lucency seen on radiographs must not be confused for recurrence, and patients must be followed up continuously. Study design Retrospective Case Series. Level of evidence Level IV.
Collapse
Affiliation(s)
- Raja Bhaskara Rajasekaran
- Department of Orthopaedics & Trauma, Ganga Medical Centre & Hospitals Pvt. Ltd, 313, Mettupalayam Road, Coimbatore, India
| | - Dheenadhayalan Jayaramaraju
- Department of Orthopaedics & Trauma, Ganga Medical Centre & Hospitals Pvt. Ltd, 313, Mettupalayam Road, Coimbatore, India
| | - Dhanasekara Raja Palanisami
- Department of Orthopaedics & Trauma, Ganga Medical Centre & Hospitals Pvt. Ltd, 313, Mettupalayam Road, Coimbatore, India
| | - Devendra Agraharam
- Department of Orthopaedics & Trauma, Ganga Medical Centre & Hospitals Pvt. Ltd, 313, Mettupalayam Road, Coimbatore, India
| | - Pushpa Bhari Thippeswamy
- Department of Radiology, Ganga Medical Centre & Hospitals Pvt. Ltd, 313, Mettupalayam Road, Coimbatore, India
| | - Shanmuganathan Rajasekaran
- Department of Orthopaedics & Trauma, Ganga Medical Centre & Hospitals Pvt. Ltd, 313, Mettupalayam Road, Coimbatore, India
| |
Collapse
|
40
|
Octacalcium Phosphate/Gelatin Composite (OCP/Gel) Enhances Bone Repair in a Critical-sized Transcortical Femoral Defect Rat Model. Clin Orthop Relat Res 2022; 480:2043-2055. [PMID: 35638896 PMCID: PMC9473763 DOI: 10.1097/corr.0000000000002257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Bone grafting is widely used to treat large bone defects. A porous composite of a bioactive octacalcium phosphate material with gelatin sponge (OCP/Gel) has been shown to biodegrade promptly and be replaced with new bone both in animal models of a membranous bone defect and a long bone defect. However, it is unclear whether OCP/Gel can regenerate bone in more severe bone defects, such as a critical-size transcortical defect. QUESTIONS/PURPOSES Using an in vivo rat femur model of a standardized, transcortical, critical-size bone defect, we asked: Compared with a Gel control, does OCP/Gel result in more newly formed bone as determined by (1) micro-CT evaluation, (2) histologic and histomorphometric measures, and (3) osteocalcin staining and tartrate-resistant acid phosphatase staining? METHODS Thirty-four 12-week-old male Sprague-Dawley rats (weight 356 ± 25.6 g) were used. Gel and OCP/Gel composites were prepared in our laboratory. Porous cylinders 3 mm in diameter and 4 mm in height were manufactured from both materials. The OCP/Gel and Gel cylinders were implanted into a 3-mm-diameter transcortical critical-size bone defect model in the left rat femur. The OCP/Gel and Gel were randomly assigned, and the cylinders were implanted. The biological responses of the defect regions were evaluated radiologically and histologically. At 4 and 8 weeks after implantation, CT evaluation, histological examination of decalcified samples, and immunostaining were quantitatively performed to evaluate new bone formation and remaining bone graft substitutes and activity of osteoblasts and osteoclast-like cells (n = 24). Qualitative histological evaluation was performed on undecalcified samples at 3 weeks postimplantation (n = 10). CT and decalcified tissue analysis was not performed blinded, but an analysis of undecalcified specimens was performed under blinded conditions. RESULTS Radiologic analysis revealed that the OCP/Gel group showed radiopaque regions around the OCP granules and at the edge of the defect margin 4 weeks after implantation, suggesting that new bone formation occurred in two ways. In contrast, the rat femurs in the Gel group had a limited radiopaque zone at the edge of the defect region. The amount of new bone volume analyzed by micro-CT was higher in the OCP/Gel group than in the Gel group at 4 and 8 weeks after implantation (4 weeks after implantation: OCP/Gel versus Gel: 6.1 ± 1.6 mm 3 versus 3.4 ± 0.7 mm 3 , mean difference 2.7 [95% confidence interval (CI) 0.9 to 4.5]; p = 0.002; intraclass correlation coefficient [ICC] 0.72 [95% CI 0.29 to 0.91]; 8 weeks after implantation: OCP/Gel versus Gel: 3.9 ± 0.7 mm 3 versus 1.4 ± 1.1 mm 3 , mean difference 2.5 [95% CI 0.8 to 4.3]; p = 0.004; ICC 0.81 [95% CI 0.47 to 0.94]). Histologic evaluation also showed there was a higher percentage of new bone formation in the OCP/Gel group at 4 and 8 weeks after implantation (4 weeks after implantation: OCP/Gel versus Gel: 31.2% ± 5.3% versus 13.6% ± 4.0%, mean difference 17.6% [95% CI 14.2% to 29.2%]; p < 0.001; ICC 0.83 [95% CI 0.53 to 0.95]; 8 weeks after implantation: OCP/Gel versus Gel: 28.3% ± 6.2% versus 9.5% ± 1.9%, mean difference 18.8% [95% CI 11.3% to 26.3%]; p < 0.001; ICC 0.90 [95% CI 0.69 to 0.97]). Bridging of the defect area started earlier in the OCP/Gel group than in the Gel group at 4 weeks after implantation. Osteocalcin immunostaining showed that the number of mature osteoblasts was higher in the OCP/Gel group than in the Gel group at 4 weeks (OCP/Gel versus Gel: 42.1 ± 6.5/mm 2 versus 17.4 ± 5.4/mm 2 , mean difference 24.7 [95% CI 16.2 to 33.2]; p < 0.001; ICC 0.99 [95% CI 0.97 to 0.99]). At 4 weeks, the number of osteoclast-like cells was higher in the OCP/Gel composite group than in the Gel group (OCP/Gel versus Gel: 3.2 ± 0.6/mm 2 versus 0.9 ± 0.4/mm 2 , mean difference 2.3 [95% CI 1.3 to 3.5]; p < 0.001; ICC 0.79 [95% CI 0.35 to 0.94]). CONCLUSION OCP/Gel composites induced early bone remodeling and cortical bone repair in less time than did the Gel control in a rat critical-size, transcortical femoral defect, suggesting that OCP/Gel could be used as a bone replacement material to treat severe bone defects. CLINICAL RELEVANCE In a transcortical bone defect model of critical size in the rat femur, the OCP/Gel composite demonstrated successful bone regeneration. Several future studies are needed to evaluate the clinical application of this interesting bone graft substitute, including bone formation capacity in refractory fracture and spinal fusion models and the comparison of bone strength after repair with OCP/Gel composite to that of autologous bone.
Collapse
|
41
|
Grémare A, Thibes L, Gluais M, Torres Y, Potart D, Da Silva N, Dusserre N, Fénelon M, Senthilhes L, Lacomme S, Svahn I, Gontier É, Fricain JC, L'Heureux N. Development of a vascular substitute produced by weaving yarn made from human amniotic membrane. Biofabrication 2022; 14. [PMID: 35896106 DOI: 10.1088/1758-5090/ac84ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022]
Abstract
Because synthetic vascular prostheses perform poorly in small-diameter revascularization, biological vascular substitutes are being developed as an alternative. Although their in vivo results are promising, their production involves long, complex, and expensive tissue engineering methods. To overcome these limitations, we propose an innovative approach that combines the human amniotic membrane (HAM), which is a widely available and cost-effective biological raw material, with a rapid and robust textile-inspired assembly strategy. Fetal membranes were collected after cesarean deliveries at term. Once isolated by dissection, HAM sheets were cut into ribbons that could be further processed by twisting into threads. Characterization of the HAM yarns (both ribbons and threads) showed that their physical and mechanical properties could be easily tuned. Since our clinical strategy will be to provide an off-the-shelf allogeneic implant, we studied the effects of decellularization and/or gamma sterilization on the histological, mechanical, and biological properties of HAM ribbons. Gamma irradiation of hydrated HAMs, with or without decellularization, did not interfere with the ability of the matrix to support endothelium formation in vitro. Finally, our HAM-based, woven tissue-engineered vascular grafts (TEVGs) exhibited clinically relevant mechanical properties. Thus, this study demonstrates that human, completely biological, allogeneic, small-diameter TEVGs can be produced from HAM, thereby avoiding costly cell culture and bioreactors.
Collapse
Affiliation(s)
- Agathe Grémare
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Lisa Thibes
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Maude Gluais
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Yoann Torres
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Diane Potart
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Nicolas Da Silva
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Nathalie Dusserre
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Mathilde Fénelon
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Loïc Senthilhes
- Obstetrics and Gynecology, CHU de Bordeaux, Hopital Pellegrin, 146, Rue Léo Saignat, Bordeaux, Aquitaine, 33076, FRANCE
| | - Sabrina Lacomme
- University of Bordeaux, 146, Rue Léo Saignat, Bordeaux, Aquitaine, 33000, FRANCE
| | - Isabelle Svahn
- University of Bordeaux, 146, Rue Léo Saignat, Bordeaux, Aquitaine, 33000, FRANCE
| | - Étienne Gontier
- University of Bordeaux, 146, Rue Léo Saignat, Bordeaux, Aquitaine, 33000, FRANCE
| | - Jean-Christophe Fricain
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Nicolas L'Heureux
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| |
Collapse
|
42
|
It's the Biology Orthopods! Heralding a Reconstructive Revolution Through Musculoskeletal Tissue Banks (MSTB) in India. Indian J Orthop 2022; 56:1533-1546. [PMID: 36052382 PMCID: PMC9385905 DOI: 10.1007/s43465-022-00661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND A tissue bank is an establishment that aids in retrieval, processing, storage, and distribution of human tissue for transplantation. For many years, such banks have been dispensing tissue to orthopaedic surgeons, performing reconstructive surgeries. METHODOLOGY The retrieval, preparation, and delivery of musculoskeletal tissue used for transplantation is an intricate process involving varying practices among different musculoskeletal tissue banks. RESULTS Musculoskeletal allografts are used in various orthopaedic surgeries ranging from primary bone defects, trauma, and carcinoma to congenital disabilities. Every decade brings in paradigm shifts and new hope for treating challenging cases with the aid of newer devices and materials. CONCLUSION This review article outlines various technical, regulatory and quality enhancement steps involved in tissue banking. Also, it discusses the road ahead and the research avenues for developing novel allograft products with the synergy of tissue banks and clinicians. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43465-022-00661-0.
Collapse
|
43
|
Sheen P, Rodriguez J, Alcántara R, Vargas J, Grandjean L, Moore DAJ, Gilman RH, Zimic M. Alternative cost-effective media to facilitate MODS culture for diagnostics of tuberculosis. Tuberculosis (Edinb) 2022; 135:102225. [PMID: 35728429 DOI: 10.1016/j.tube.2022.102225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 12/30/2022]
Abstract
Most culture-based methods for tuberculosis diagnosis remain low-cost options for low- and mid-income countries. The MODS culture is a rapid and low-cost assay to diagnose tuberculosis and determine drug susceptibility. However, its implementation is limited due to the low accessibility to supplies required for the enriched medium. In this study, we evaluate two alternative culture media: A powder-based mixed (PM) and a lyophilized media (LM). Catalase, PANTA, and gamma irradiation were evaluated as additions to PM and LM. The culture performance of the alternative media was compared with the standard MODS medium (MM) using Mycobacterium tuberculosis isolates and positive acid-fast smear sputum samples. Overall, no significant difference was observed in the bacterial growth between PM and LM with MM. However, PANTA and gamma irradiation combined reduced bacterial growth significantly in all media variants. A median positivity day of 6 ± 5 days was observed for sputum samples, regardless of the culture medium. The preliminary results show that the two variants culture media have a similar performance to the standard MODS medium. The powder-based media with PANTA (PM_P) showed a time-to-positivity and sensitivity similar to the standard MODS medium. It is the simplest to prepare and does not require any sterilization process.
Collapse
Affiliation(s)
- Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, 15102, Peru.
| | - Joseline Rodriguez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
| | - Roberto Alcántara
- Biomolecules Laboratory, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, 15023, Peru
| | - Johnny Vargas
- Instituto Peruano de Energía Nuclear (IPEN), Lima, 15076, Peru
| | - Louis Grandjean
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, WC1N 1EH, London, UK
| | - David A J Moore
- TB Centre, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - Robert H Gilman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, United States
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
| |
Collapse
|
44
|
Hussain MWA, Garg P, Yazji JH, Alomari M, Alamouti-fard E, Wadiwala I, Jacob S. Is a Bioengineered Heart From Recipient Tissues the Answer to the Shortage of Donors in Heart Transplantation? Cureus 2022; 14:e25329. [PMID: 35637923 PMCID: PMC9132496 DOI: 10.7759/cureus.25329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
With the increase in life expectancy worldwide, end-organ failure is becoming more prevalent. In addition, improving post-transplant outcomes has contributed to soaring demand for organs. Unfortunately, thousands have died waiting on the transplant list due to the critical shortage of organs. The success of bioengineered hearts may eventually lead to the production of limitless organs using the patient’s own cells that can be transplanted into them without the need for immunosuppressive medications. Despite being in its infancy, scientists are making tremendous strides in “growing” an artificial heart in the lab. We discuss these processes involved in bioengineering a human-compatible heart in this review. The components of a functional heart must be replicated in a bioengineered heart to make it viable. This review aims to discuss the advances that have already been made and the future challenges of bioengineering a human heart suitable for transplantation.
Collapse
|
45
|
Arthur Augusto de Castro P, Augusto Dias D, Del-Valle M, Noronha Veloso M, Sebastiana Ribeiro Somessari E, Maria Zezell D. Assessment of bone dose response using ATR-FTIR spectroscopy: A potential method for biodosimetry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:120900. [PMID: 35220053 DOI: 10.1016/j.saa.2022.120900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The health care application of ionizing radiation has expanded worldwide during the last several decades. While the health impacts of ionizing radiation improved patient care, inaccurate handling of radiation technology is more prone to potential health risks. Therefore, the present study characterizes the bone dose response using bovine femurs from a slaughterhouse. The gamma irradiation was designed into low-doses (0.002, 0.004 and 0.007 kGy) and high-doses (1, 10, 15, 25, 35, 50 and 60 kGy), all samples received independent doses. The combination of FTIR spectroscopy and PLS-DA allows the detection of differences in the control group and the ionizing dose, as well as distinguishing between high and low radiation doses. In this way, our findings contribute to future studies of the dose response to track ionizing radiation effects on biological systems.
Collapse
Affiliation(s)
| | - Derly Augusto Dias
- Center for Lasers and Applications, Nuclear and Energy Research Institute, IPEN - CNEN, 05508-000, Brazil
| | - Matheus Del-Valle
- Center for Lasers and Applications, Nuclear and Energy Research Institute, IPEN - CNEN, 05508-000, Brazil
| | - Marcelo Noronha Veloso
- Center for Lasers and Applications, Nuclear and Energy Research Institute, IPEN - CNEN, 05508-000, Brazil.
| | | | - Denise Maria Zezell
- Center for Lasers and Applications, Nuclear and Energy Research Institute, IPEN - CNEN, 05508-000, Brazil.
| |
Collapse
|
46
|
Dobratz EJ, Rosines E. Comparison of Decellularized and Gamma-Irradiated Septal and Costal Cartilage Allografts in a Rabbit Model. Facial Plast Surg Aesthet Med 2022; 24:465-471. [DOI: 10.1089/fpsam.2021.0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Eric J. Dobratz
- Department of Otolaryngology—Head and Neck Surgery, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | | |
Collapse
|
47
|
Steijvers E, Ghei A, Xia Z. Manufacturing artificial bone allografts: a perspective. BIOMATERIALS TRANSLATIONAL 2022; 3:65-80. [PMID: 35837344 PMCID: PMC9255790 DOI: 10.12336/biomatertransl.2022.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Bone grafts have traditionally come from four sources: the patients' own tissue (autograft), tissue from a living or cadaveric human donor (allograft), animal donors (xenograft) and synthetic artificial biomaterials (ceramics, cement, polymers, and metal). However, all of these have advantages and drawbacks. The most commercially successful bone grafts so far are allografts, which hold 57% of the current bone graft market; however, disease transmission and scarcity are still significant drawbacks limiting their use. Tissue-engineered grafts have great potential, in which human stem cells and synthetical biomaterials are combined to produce bone-like tissue in vitro, but this is yet to be approved for widespread clinical practice. It is hypothesised that artificial bone allografts can be mass-manufactured to replace conventional bone allografts through refined bone tissue engineering prior to decellularisation. This review article aims to review current literature on (1) conventional bone allograft preparation; (2) bone tissue engineering including the use of synthetic biomaterials as bone graft substitute scaffolds, combined with osteogenic stem cells in vitro; (3) potential artificial allograft manufacturing processes, including mass production of engineered bone tissue, osteogenic enhancement, decellularisation, sterilisation and safety assurance for regulatory approval. From these assessments, a practical route map for mass production of artificial allografts for clinical use is proposed.
Collapse
|
48
|
Villalba R, Mirabet V. Risk assessment of hepatitis E transmission through tissue allografts. World J Gastrointest Pathophysiol 2022; 13:50-58. [PMID: 35433096 PMCID: PMC8976234 DOI: 10.4291/wjgp.v13.i2.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/06/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is a small non-enveloped single stranded RNA virus whose genotypes 3 and 4 have been associated with zoonotic transmission in industrialized countries. HEV infection is considered the main cause of acute hepatitis worldwide. In some cases, transfusion of blood components or organ transplantation have been reported as the source of infection. We have conducted a literature review on the risk of transmission through cell and tissue allografts. Although no case was found, measures to control this risk should be taken when donor profile (based upon geographical and behavioural data) recommended it. Issues to be considered in donor screening and tissue processing to assess and to reduce the risk of HEV transmission are approached.
Collapse
Affiliation(s)
- Rafael Villalba
- Center for Blood Transfusion, Tissues and Cells, Córdoba 14004, Spain
| | - Vicente Mirabet
- Cell and Tissue Bank, Centro de Transfusión de Valencia, Valencia 46014, Spain
| |
Collapse
|
49
|
de Sousa Iwamoto LA, Duailibi MT, Iwamoto GY, de Oliveira DC, Duailibi SE. Evaluation of ethylene oxide, gamma radiation, dry heat and autoclave sterilization processes on extracellular matrix of biomaterial dental scaffolds. Sci Rep 2022; 12:4299. [PMID: 35277556 PMCID: PMC8916068 DOI: 10.1038/s41598-022-08258-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Scaffolds used to receive stem cells are a promising perspective of tissue regeneration research, and one of the most effective solutions to rebuild organs. In the near future will be possible to reconstruct a natural tooth using stems cells, but to avoid an immune-defensive response, sterilize the scaffold is not only desired, but also essential to be successful. A study confirmed stem cells extracted from rat's natural teeth, and implanted into the alveolar bone, could differentiate themselves in dental cells, but the scaffold's chemistry, geometry, density, morphology, adherence, biocompatibility and mechanical properties remained an issue. This study intended to produce a completely sterilized dental scaffold with preserved extracellular matrix. Fifty-one samples were collected, kept in formaldehyde, submitted to partial demineralization and decellularization processes and sterilized using four different methods: dry heating; autoclave; ethylene-oxide and gamma-radiation. They were characterized through optical images, micro-hardness, XRD, EDS, XRF, SEM, histology and sterility test. The results evidenced the four sterilization methods were fully effective with preservation of ECM molecular arrangements, variation on chemical composition (proportion of Ca/P) was compatible with Ca/P proportional variation between enamel and dentine regions. Gamma irradiation and ethylene oxide presents excellent results, but their viability are compromised by the costs and technology's accessibility (requires very expensive equipment and/or consumables). Excepted gamma irradiation, all the sterilization methods more than sterilizing also reduced the remaining pulp. Autoclave presents easy equipment accessibility, lower cost consumables, higher reduction of remaining pulp and complete sterilization, reason why was considered the most promising technique.
Collapse
|
50
|
Choong KWK, Kwok MMK, Shen Y, Gerard JM, Teh BM. Materials used for mastoid obliteration and its complications: a systematic review. ANZ J Surg 2022; 92:994-1006. [PMID: 35191151 DOI: 10.1111/ans.17563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objectives of this review are to identify the types of materials with their associated complications and respective considerations when used to obliterate the mastoid cavity. METHODS A systematic search was performed across PubMed, Embase, Medline and Cochrane databases from January 2009 to January 2020 for randomized controlled trials and observational studies of patients that underwent mastoid obliteration. Studies that fulfilled the inclusion criteria were screened and scored according to the MINORS and relevance scores to determine final inclusion. Types of complications were grouped into minor and major complications based on the Clavien-Dindo classification. RESULTS Two thousand five hundred and seventy-eight ears were evaluated. There were a total of 165 (7.9%) minor and 142 (6.8%) major complications in the autologous group. Overall complication rate is 14.8%. The major complications were largely recurrent and residual disease requiring revision surgery. There were 10 (18.5%) minor complications and three (5.6%) major complications in the allogenic group. The cumulative complications risk is 24%. For the synthetic group, there were 39 (8.0%) minor and 34 (7.6%) major complications. The cumulative complication rate is 16.6%. CONCLUSION Current evidence on materials for mastoid obliteration has been evolving. Each material has its strengths and limitations. The trend over the last decade favours the use of autologous materials. The principle of using a material remains being cautious of not reimplanting skin that can lead to the development of a cholesteatoma. The choice of materials is dependent on patient factors as well as the surgeons' preference and experience.
Collapse
Affiliation(s)
- Keith Wai Keong Choong
- Department of Otolaryngology, Head and Neck Surgery, Austin Health, Melbourne, Australia
| | - Matthew Ming Kei Kwok
- Department of Head and Neck Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Yi Shen
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center, The Affiliated Lihuili Hospital of Ningbo University; School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jean-Marc Gerard
- Department of Otolaryngology, University of Melbourne, East Melbourne, Victoria, Australia
| | - Bing Mei Teh
- Department of Otolaryngology, Head and Neck Surgery, Monash Health; Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|