1
|
Wright ZJ, Tharp NE, Bartel B. ER nests are specialized ER subdomains in Arabidopsis where peroxisomes and lipid droplets form. Dev Cell 2025:S1534-5807(25)00152-2. [PMID: 40157364 DOI: 10.1016/j.devcel.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/08/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025]
Abstract
Organelles are defining features of eukaryotic cells, yet much remains to be learned about organelle biogenesis. Lipid droplets and peroxisomes, which play opposing roles in storing and catabolizing fats, form from a mysterious domain in the endoplasmic reticulum (ER). We used live-cell fluorescence microscopy to visualize peroxisome and lipid droplet biogenesis in young Arabidopsis seedlings, where lipid catabolism is active, and peroxisomes can be unusually large. We found that the ER domains where these organelles are born, which we term ER nests, are complex, dynamic structures that exclude general ER proteins but accumulate other proteins, including lipid biosynthetic enzymes and the COPII component SAR1. Furthermore, ER nests appear to define peroxisome-lipid droplet contact sites. Our findings provide a framework for understanding how these domains form and sort their protein components, illuminate eukaryotic lipid biosynthesis, and elucidate how distinct organelles arise from the ER.
Collapse
Affiliation(s)
| | - Nathan E Tharp
- Biosciences Department, Rice University, Houston, TX 77005, USA
| | - Bonnie Bartel
- Biosciences Department, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
2
|
Faggiano A, Russo F, Zamponi V, Sesti F, Puliani G, Modica R, Malandrino P, Ferraù F, Rinzivillo M, Di Muzio M, Di Simone E, Panattoni N, Dolce P, Lauretta R, Di Iasi G, Prinzi A, Alessi Y, Feola T, Mazzilli R, Appetecchia M, Giannetta E, Panzuto F, Colao A. Impact of dyslipidemia and lipid-lowering therapy with statins in patients with neuroendocrine tumors. J Neuroendocrinol 2025; 37:e13485. [PMID: 39726194 PMCID: PMC11791004 DOI: 10.1111/jne.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Dyslipidemia is a potential unfavorable prognostic factor in neuroendocrine tumors (NETs); conversely, statins proved to have antiproliferative effects in NET cell lines and could be a helpful therapeutic strategy for these patients. The main objective of this observational cohort retrospective study is to explore the associations between dyslipidemia and NET progression and evaluate the potential influence of statins in this context. 393 patients with histologically confirmed gastroenteropancreatic or bronchopulmonary NETs from six Italian centres didicated to NET diagnosis and therapy were included. The cohort included 123 patients with dyslipidemia, 81 of which were taking statins. Clinicopathological data, including patient demographics, tumor characteristics, and treatment details as well as the prevalence, timing of dyslipidemia and hypolipemic therapy were collected. The main outcome measure used is progression-free survival (PFS). Among the 393 patients, 123 (31.3%) had dyslipidemia. Statins were used by 81 (65.8%) dyslipidemic patients, mostly atorvastatin. Median PFS was 87 months overall, 124 months in non-dyslipidemic patients, and 72 months in dyslipidemic patients (p = .268). Dyslipidemic patients on statins had a significantly better median PFS (108 months) than those not on statins (26 months; p = .024). Recurrence-free survival (RFS) was also evaluated, but no significant differences were found. In conclusion, while PFS was lower in dyslipidemic patients compared to non-dyslipidemic patients, the difference was not statistically significant. Statin therapy was associated with improved PFS among dyslipidemic patients, suggesting a potential antiproliferative effect of statins in NETs. These findings warrant further investigation to substantiate the role of statins in the management of NETs.
Collapse
Affiliation(s)
- Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, European Neuroendocrine Tumor Society (ENETS) Center of ExcellenceSant'Andrea University Hospital, Sapienza University of RomeRomeItaly
| | - Flaminia Russo
- Endocrinology Unit, Department of Clinical and Molecular Medicine, European Neuroendocrine Tumor Society (ENETS) Center of ExcellenceSant'Andrea University Hospital, Sapienza University of RomeRomeItaly
| | - Virginia Zamponi
- Endocrinology Unit, Department of Clinical and Molecular Medicine, European Neuroendocrine Tumor Society (ENETS) Center of ExcellenceSant'Andrea University Hospital, Sapienza University of RomeRomeItaly
| | - Franz Sesti
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Giulia Puliani
- Oncological Endocrinology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Roberta Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and SurgeryFederico II University of NaplesNaplesItaly
| | - Pasqualino Malandrino
- Endocrinology Unit, Department of Clinical and Experimental MedicineGaribaldi ‐ Nesima Medical Center, University of CataniaCataniaItaly
| | - Francesco Ferraù
- Department of Human Pathology of Adulthood and Childhood ‘G. Barresi’University of MessinaMessinaItaly
| | - Maria Rinzivillo
- Digestive Disease Unit, Department of Medical‐Surgical Sciences and Translational Medicine, European Neuroendocrine Tumor Society (ENETS) Center of ExcellenceSant'Andrea University Hospital, Sapienza University of RomeRomeItaly
| | - Marco Di Muzio
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | - Emanuele Di Simone
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Nicolò Panattoni
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Pasquale Dolce
- Department of Translational Medical ScienceFederico II UniversityNaplesItaly
| | - Rosa Lauretta
- Oncological Endocrinology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Gianfranco Di Iasi
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and SurgeryFederico II University of NaplesNaplesItaly
| | - Antonio Prinzi
- Endocrinology Unit, Department of Clinical and Experimental MedicineGaribaldi ‐ Nesima Medical Center, University of CataniaCataniaItaly
| | - Ylenia Alessi
- Department of Biomedical, Dental and Morphological and Functional Imaging SciencesUniversity of MessinaMessinaItaly
| | - Tiziana Feola
- Department of Experimental MedicineSapienza University of RomeRomeItaly
- NeuroendocrinologyNeuromed Institute, IRCCSPozzilliItaly
| | - Rossella Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, European Neuroendocrine Tumor Society (ENETS) Center of ExcellenceSant'Andrea University Hospital, Sapienza University of RomeRomeItaly
| | | | - Elisa Giannetta
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Francesco Panzuto
- Digestive Disease Unit, Department of Medical‐Surgical Sciences and Translational Medicine, European Neuroendocrine Tumor Society (ENETS) Center of ExcellenceSant'Andrea University Hospital, Sapienza University of RomeRomeItaly
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and SurgeryFederico II University of NaplesNaplesItaly
- UNESCO Chair “Education for Health and Sustainable Development”Federico II UniversityNaplesItaly
| |
Collapse
|
3
|
Qian X, Jin X, He J, Zhang J, Hu S. Exploring lipidomic profiles and their correlation with hormone receptor and HER2 status in breast cancer. Oncol Lett 2025; 29:34. [PMID: 39512509 PMCID: PMC11542162 DOI: 10.3892/ol.2024.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Dysregulated lipid metabolism promotes the progression of various cancer types, including breast cancer. The present study aimed to explore the lipidomic profiles of patients with breast cancer, providing insights into the correlation between lipid compositions and tumor subtypes characterized by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status. Briefly, 30 patients with breast cancer were categorized into four groups based on their HR and HER2 status: HR+ no HER2 expression (HER2-0), HR+ HER2-low; HR+ HER2-positive (pos) and HR- HER2-pos. The lipidomic profiles of these patients were analyzed using high-throughput liquid chromatography-mass spectrometry. The data were processed through principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and random forest (RF) classification to assess the lipidomic variations and significant lipid features among these groups. The profiles of the lipids, particularly triglycerides (TG) such as TG(16:0-18:1-18:1)+NH4, were significantly different across the groups. PCA and PLS-DA identified unique lipid profiles in the HR+ HER2-pos and HR+ HER2-0 groups, while RF highlighted phosphatidylinositol-3,4,5-trisphosphate(21:2)+NH4 as a crucial lipid feature for accurate patient grouping. Advanced statistical analysis showed significant correlations between lipid carbon chain length and the number of double bonds within the classifications, providing insights into the role of structural lipid properties in tumor biology. Additionally, a clustering heatmap and network analysis indicated significant lipid-lipid interactions. Pathway enrichment analysis showed critical biological pathways, such as the 'Assembly of active LPL and LIPC lipase complexes', which has high enrichment ratio and statistical significance. In conclusion, the present study underscored that lipidomic profiling is crucial in understanding the metabolic alterations associated with different breast cancer subtypes. These findings highlighted specific lipid features and interactions that may serve as potential biomarkers for breast cancer classification and target pathways for therapeutic intervention. Furthermore, advanced lipidomic analyses can be integrated to decipher complex biological data, offering a foundation for further research into the role of lipid metabolism in cancer progression.
Collapse
Affiliation(s)
- Xiaojun Qian
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Xiaolin Jin
- Health Management Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Jiaying He
- Health Management Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Junjing Zhang
- Health Management Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Shan Hu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
4
|
Lou Y, Jiang F, Guan J. The effect of lipidomes on the risk of endometrioid endometrial cancer: a Mendelian randomization study. Front Oncol 2024; 14:1436955. [PMID: 39493450 PMCID: PMC11527595 DOI: 10.3389/fonc.2024.1436955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Objective This study aimed to explore the potential effects between various human plasma lipidomes and endometrioid endometrial cancer (EEC) by using Mendelian randomization (MR) methods. Methods This study designated a total of 179 human plasma lipidomes from the genome-wide association study (GWAS) database as the exposure variable. An EEC-related dataset from the GWAS (GCST006465) served as the outcome variable. MR analyses used the inverse variance-weighted method (IVW), MR-Egger, weighted median, simple mode, and weighted mode methods for regression calculations, accounting for possible biases induced by linkage disequilibrium and weak instrument variables. Any lipidomes failing to pass heterogeneity and horizontal pleiotropy tests were deemed to lack significant causal impact on the outcome. Results The results of IVW analysis disclosed that a variety of human plasma lipidomes (n = 15) exhibited a significant causal effect on EEC (p < 0.05). A subset of these lipidomes (n = 13) passed heterogeneity and horizontal pleiotropy tests, which demonstrated consistent and viable causal effects (p < 0.05) including glycerophospholipids, glycerolipids, and sterols. Specifically, phosphatidylcholine (odds ratio [OR]: 1.065-1.129, p < 0.05) exhibited a significant positive causal effect on the occurrence of EEC. Conversely, sterol ester (OR = 0.936, p = 0.007), diacylglycerol (OR = 0.914, p = 0.036), phosphatidylcholine (OR: 0.903-0.927, p < 0.05), phosphatidylethanolamine (OR = 0.907, p = 0.046) and triacylglycerol (OR: 0.880-0.924, p < 0.05) showed a notable negative causal association with EEC, suggesting their inhibitory effects on the EEC occurrence. Conclusions The study revealed that human plasma lipidomes have complex impacts on EEC through Mendelian randomization. This indicated that the diversity of structural changes in lipidomes could show different effects on subtypes and then affect EEC occurrence. Although these lipids had the potential to be promising biomarkers, they needed to be further clinically validated nevertheless.
Collapse
Affiliation(s)
- Yaochen Lou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jun Guan
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Sioris P, Mäkelä M, Kontunen A, Karjalainen M, Vehkaoja A, Oksala N, Roine A. Identification of Phospholipids Relevant to Cancer Tissue Using Differential Ion Mobility Spectrometry. Int J Mol Sci 2024; 25:11002. [PMID: 39456784 PMCID: PMC11508011 DOI: 10.3390/ijms252011002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Phospholipids are the main building components of cell membranes and are also used for cell signaling and as energy storages. Cancer cells alter their lipid metabolism, which ultimately leads to an increase in phospholipids in cancer tissue. Surgical energy instruments use electrical or vibrational energy to heat tissues, which causes intra- and extracellular water to expand rapidly and degrade cell structures, bursting the cells, which causes the formation of a tissue aerosol or smoke depending on the amount of energy used. This gas phase analyte can then be analyzed via gas analysis methods. Differential mobility spectrometry (DMS) is a method that can be used to differentiate malignant tissue from benign tissues in real time via the analysis of surgical smoke produced by energy instruments. Previously, the DMS identification of cancer tissue was based on a 'black box method' by differentiating the 2D dispersion plots of samples. This study sets out to find datapoints from the DMS dispersion plots that represent relevant target molecules. We studied the ability of DMS to differentiate three subclasses of phospholipids (phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine) from a control sample using a bovine skeletal muscle matrix with a 5 mg addition of each phospholipid subclass to the sample matrix. We trained binary classifiers using linear discriminant analysis (LDA) and support vector machines (SVM) for sample classification. We were able to identify phosphatidylcholine, -inositol, and -ethanolamine with SVM binary classification accuracies of 91%, 73%, and 66% and with LDA binary classification accuracies of 82%, 74%, and 72%, respectively. Phosphatidylcholine was detected with a reliable classification accuracy, but ion separation setups should be adjusted in future studies to reliably detect other relevant phospholipids such as phosphatidylinositol and phosphatidylethanolamine and improve DMS as a microanalysis method and identify other phospholipids relevant to cancer tissue.
Collapse
Affiliation(s)
- Patrik Sioris
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.V.)
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
| | - Meri Mäkelä
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
| | - Anton Kontunen
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
| | - Markus Karjalainen
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
| | - Antti Vehkaoja
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.V.)
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
| | - Niku Oksala
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.V.)
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
- Centre for Vascular Surgery and Interventional Radiology, Tampere University Hospital, 33520 Tampere, Finland
| | - Antti Roine
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.V.)
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
| |
Collapse
|
6
|
Dabbousy R, Rima M, Roufayel R, Rahal M, Legros C, Sabatier JM, Fajloun Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals (Basel) 2024; 17:1307. [PMID: 39458949 PMCID: PMC11510165 DOI: 10.3390/ph17101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development from medicinal plants constitutes an important strategy for finding natural anticancer therapies. While several plant secondary metabolites with potential antitumor activities have been identified, well-defined mechanisms of action remained uncovered. In fact, studies of medicinal plants have often focused on the genome, transcriptome, and proteome, dismissing the relevance of the metabolome for discovering effective plant-based drugs. Metabolomics has gained huge interest in cancer research as it facilitates the identification of potential anticancer metabolites and uncovers the metabolomic alterations that occur in cancer cells in response to treatment. This holds great promise for investigating the mode of action of target metabolites. Although metabolomics has made significant contributions to drug discovery, research in this area is still ongoing. In this review, we emphasize the significance of plant metabolomics in anticancer research, which continues to be a potential technique for the development of anticancer drugs in spite of all the challenges encountered. As well, we provide insights into the essential elements required for performing effective metabolomics analyses.
Collapse
Affiliation(s)
- Ranin Dabbousy
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Mohamad Rima
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Rahal
- School of Pharmacy, Lebanese International University, Beirut 146404, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Faculty of Medicine, University Angers, 49000 Angers, France;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| |
Collapse
|
7
|
Tan S, Sun X, Dong H, Wang M, Yao L, Wang M, Xu L, Xu Y. ACSL3 regulates breast cancer progression via lipid metabolism reprogramming and the YES1/YAP axis. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0309. [PMID: 38953696 PMCID: PMC11271223 DOI: 10.20892/j.issn.2095-3941.2023.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/15/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers, because it sustains cancer cell survival, proliferation, and metastasis. The acyl-CoA synthetase long-chain (ACSL) family is known to activate long-chain fatty acids, yet the specific role of ACSL3 in breast cancer has not been determined. METHODS We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples. Gain-of-function and loss-of-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 in vitro and in vivo. RESULTS ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues, and this phenotype correlated with improved survival outcomes. Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation, migration, and epithelial-mesenchymal transition. Mechanistically, ACSL3 was found to inhibit β-oxidation and the formation of associated byproducts, thereby suppressing malignant behavior in breast cancer. Importantly, ACSL3 was found to interact with YES proto-oncogene 1, a member of the Src family of tyrosine kinases, and to suppress its activation through phosphorylation at Tyr419. The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation, and the expression of its downstream genes in breast cancer cell nuclei. CONCLUSIONS ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming, and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways. These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Shirong Tan
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Xiangyu Sun
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Haoran Dong
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Mozhi Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Mengshen Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
8
|
Nath AR, Natarajan J. Gut metagenomic analysis of gastric cancer patients reveals Akkermansia, Gammaproteobacteria, and Veillonella microbiota as potential non-invasive biomarkers. Genomics Inform 2024; 22:1. [PMID: 38907281 PMCID: PMC11184957 DOI: 10.1186/s44342-024-00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/07/2024] [Indexed: 06/23/2024] Open
Abstract
The goal of the study was to investigate the changes in the gut microbiota during the advancement of gastric cancer (GC) and identify pertinent taxa associated with the disease. We used a public fecal amplicon gastric cancer dataset from the Sequence Retrieval Archive (SRA), of patients with GC, gastritis, and healthy individuals. We did sequence pre-processing, including quality filtering of the sequences. Then, we performed a diversity analysis, evaluating α- and β-diversity. Next, taxonomic composition analysis was performed and the relative abundances of different taxa at the phylum and genus levels were compared between GC, gastritis, and healthy controls. The obtained results were subsequently subjected to statistical validation. To conclude, metagenomic function prediction was carried out, followed by correlation analysis between the microbiota and KEGG pathways. α analysis revealed a significant difference between male and female categories, while β analysis demonstrated significant distinctions between GC, gastritis, and healthy controls, as well as between sexes within the GC and gastritis groups. The statistically confirmed taxonomic composition analysis highlighted the presence of the microbes Bacteroides and Veillonella. Furthermore, through metagenomic prediction analysis and correlation analysis with pathways, three taxa, namely Akkermansia, Gammaproteobacteria, and Veillonella, were identified as potential biomarkers for GC. Additionally, this study reports, for the first time, the presence of two bacteria, Desulfobacteriota and Synergistota, in GC, necessitating further investigation. Overall, this research sheds light on the potential involvement of gut microbiota in GC pathophysiology; however, additional studies are warranted to explore its functional significance.
Collapse
Affiliation(s)
- Anju R Nath
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641 046, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
9
|
Pandey S, Singh R, Habib N, Tripathi RM, Kushwaha R, Mahdi AA. Regulation of Hypoxia Dependent Reprogramming of Cancer Metabolism: Role of HIF-1 and Its Potential Therapeutic Implications in Leukemia. Asian Pac J Cancer Prev 2024; 25:1121-1134. [PMID: 38679971 PMCID: PMC11162727 DOI: 10.31557/apjcp.2024.25.4.1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
Metabolic reprogramming occurs to meet cancer cells' high energy demand. Its function is essential to the survival of malignancies. Comparing cancer cells to non-malignant cells has revealed that cancer cells have altered metabolism. Several pathways, particularly mTOR, Akt, PI3K, and HIF-1 (hypoxia-inducible factor-1) modulate the metabolism of cancer. Among other aspects of cancer biology, gene expression in metabolism, survival, invasion, proliferation, and angiogenesis of cells are controlled by HIF-1, a vital controller of cellular responsiveness to hypoxia. This article examines various cancer cell metabolisms, metabolic alterations that can take place in cancer cells, metabolic pathways, and molecular aspects of metabolic alteration in cancer cells placing special attention on the consequences of hypoxia-inducible factor and summarising some of their novel targets in the treatment of cancer including leukemia. A brief description of HIF-1α's role and target in a few common types of hematological malignancies (leukemia) is also elucidated in the present article.
Collapse
Affiliation(s)
- Sandeep Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ranjana Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Nimra Habib
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ramesh Mani Tripathi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Rashmi Kushwaha
- Department of Pathology, King George’s Medical University, Lucknow, U.P., India.
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| |
Collapse
|
10
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
11
|
Zhang MQ, Yang BZ, Wang ZQ, Guo S. Fatty acid metabolism-related lncRNAs are potential biomarkers for survival prediction in clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e37207. [PMID: 38394500 PMCID: PMC11309608 DOI: 10.1097/md.0000000000037207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic reprogramming of energy is a newly recognized characteristic of cancer. In our current investigation, we examined the possible predictive importance of long noncoding RNAs (lncRNAs) associated to fatty acid metabolism in clear cell renal cell carcinoma (ccRCC). We conducted an analysis of the gene expression data obtained from patients diagnosed with ccRCC using the Cancer Genome Atlas (TCGA) database and the ArrayExpress database. We performed a screening to identify lncRNAs that are differentially expressed in fatty acid metabolism. Based on these findings, we developed a prognostic risk score model using these fatty acid metabolism-related lncRNAs. We then validated this model using Cox regression analysis, Kaplan-Meier survival analysis, and principal-component analysis (PCA). Furthermore, the prognostic risk score model was successfully validated using both the TCGA cohort and the E-MTAB-1980 cohort. We utilized gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) to determine the correlation between fatty acid metabolism and the PPAR signaling pathway in patients with ccRCC at various clinical stages and prognoses. We have discovered compelling evidence of the interaction between immune cells in the tumor microenvironment and tumor cells, which leads to immune evasion and resistance to drugs. This was achieved by the utilization of advanced techniques such as the CIBERSORT method, ESTIMATE R package, ssGSEA algorithm, and TIMER database exploration. Ultimately, we have established a network of competing endogenous RNA (ceRNA) that is related to fatty acid metabolism. The findings of our study suggest that medicines focused on fatty acid metabolism could be clinically significant for individuals with ccRCC. The utilization of this risk model, which is centered around the lncRNAs associated with fatty acid metabolism, could potentially provide valuable prognostic information and hold immunotherapeutic implications for patients with ccRCC.
Collapse
Affiliation(s)
- Ming-Qing Zhang
- Department of Urology, Weifang Pepole’s Hospital, Weifang, Shandong, China
| | - Bai-Zhi Yang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Zhi-Qiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA
| |
Collapse
|
12
|
Yang J, Shay C, Saba NF, Teng Y. Cancer metabolism and carcinogenesis. Exp Hematol Oncol 2024; 13:10. [PMID: 38287402 PMCID: PMC10826200 DOI: 10.1186/s40164-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Yang C, Zhu L, Lin Q. Anoikis related genes may be novel markers associated with prognosis for ovarian cancer. Sci Rep 2024; 14:1564. [PMID: 38238592 PMCID: PMC10796408 DOI: 10.1038/s41598-024-52117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024] Open
Abstract
The aim of this study was to determine the prognostic significance of anoikis related genes (ARGs) in ovarian cancer (OC) and to develop a prognostic signature based on ARG expression. We analyzed cohorts of OC patients and used nonnegative matrix factorization (NMF) for clustering. Single-sample gene-set enrichment analysis (ssGSEA) was employed to quantify immune infiltration. Survival analyses were performed using the Kaplan-Meier method, and differences in survival were determined using the log-rank test. The extent of anoikis modification was quantified using a risk score generated from ARG expression. The analysis of single-cell sequencing data was performed by the Tumor Immune Single Cell Hub (TISCH). Our analyses revealed two distinct patterns of anoikis modification. The risk score was used to evaluate the anoikis modification patterns in individual tumors. Three hub-genes were screened using the LASSO (Least Absolute Shrinkage and Selection Operator) method and patients were classified into different risk groups based on their individual score and the median score. The low-risk subtype was characterized by decreased expression of hub-genes and better overall survival. The risk score, along with patient age and gender, were considered to identify the prognostic signature, which was visualized using a nomogram. Our findings suggest that ARGs may play a novel role in the prognosis of OC. Based on ARG expression, we have developed a prognostic signature for OC that can aid in patient stratification and treatment decision-making. Further studies are needed to validate these results and to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - LuChao Zhu
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
14
|
Tracz-Gaszewska Z, Sowka A, Dobrzyn P. Stearoyl-CoA desaturase 1 inhibition impairs triacylglycerol accumulation and lipid droplet formation in colorectal cancer cells. J Cell Physiol 2023; 238:2888-2903. [PMID: 37814830 DOI: 10.1002/jcp.31137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Increases in fatty acid (FA) biosynthesis meet the higher lipid demand by intensely proliferating cancer cells and promoting their progression. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme in FA biosynthesis, converting saturated FA (SFA) into monounsaturated FA (MUFA). Increases in the MUFA/SFA ratio and SCD1 expression have been observed in cancers of various origins and correlate with their aggressiveness. However, much is still unknown about the SCD1-dependent molecular mechanisms that promote specific changes in metabolic pathways of cancer cells. The present study investigated the involvement of SCD1 in shaping glucose and lipid metabolism in colorectal cancer (CRC) cells. Excess FAs that derive from de novo lipogenesis are stored in organelles, called lipid droplets (LDs), mainly in the form of triacylglycerol (TAG) and cholesteryl esters. LD accumulation is associated with key features of cancer development and progression. Consistent with our findings, the pharmacological inhibition of SCD1 activity affects CRC cell viability and impairs TAG accumulation and LD formation in these cells through the activation of lipolytic and lipophagic pathways. We showed that SCD1 suppression affects crucial lipogenic processes that promote lipid accumulation in CRC cells but in a sterol regulatory element-binding protein 1-independent manner. We propose that adenosine monophosphate-activated protein kinase contributes to these changes through the activation of lipolysis and inhibition of TAG synthesis. We also provide evidence of the involvement of SCD1 in the regulation of glucose uptake and utilization in CRC cells. These findings underscore the importance of SCD1 in regulating cellular processes that promote cancer development and progression.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Differential Proteome Profiling Analysis under Pesticide Stress by the Use of a Nano-UHPLC-MS/MS Untargeted Proteomic-Based Approach on a 3D-Developed Neurospheroid Model: Identification of Protein Interactions, Prognostic Biomarkers, and Potential Therapeutic Targets in Human IDH Mutant High-Grade Gliomas. J Proteome Res 2023; 22:3534-3558. [PMID: 37651309 PMCID: PMC10629271 DOI: 10.1021/acs.jproteome.3c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/02/2023]
Abstract
High-grade gliomas represent the most common group of infiltrative primary brain tumors in adults associated with high invasiveness, agressivity, and resistance to therapy, which highlights the need to develop potent drugs with novel mechanisms of action. The aim of this study is to reveal changes in proteome profiles under stressful conditions to identify prognostic biomarkers and altered apoptogenic pathways involved in the anticancer action of human isocitrate dehydrogenase (IDH) mutant high-grade gliomas. Our protocol consists first of a 3D in vitro developing neurospheroid model and then treatment by a pesticide mixture at relevant concentrations. Furthermore, we adopted an untargeted proteomic-based approach with high-resolution mass spectrometry for a comparative analysis of the differentially expressed proteins between treated and nontreated spheroids. Our analysis revealed that the majority of altered proteins were key members in glioma pathogenesis, implicated in the cellular metabolism, biological regulation, binding, and catalytic and structural activity and linked to many cascading regulatory pathways. Our finding revealed that grade-IV astrocytomas promote the downstream of the mitogen-activated-protein-kinases/extracellular-signal-regulated kinase (MAPK1/ERK2) pathway involving massive calcium influx. The gonadotrophin-releasing-hormone signaling enhances MAKP activity and may serve as a negative feedback compensating regulator. Thus, our study can pave the way for effective new therapeutic and diagnostic strategies to improve the overall survival.
Collapse
Affiliation(s)
- Kaouthar Louati
- Laboratory
of Pharmacology, Analytics and Galenic Drug Development- LR12ES09,
Faculty of Pharmacy, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
| | - Rania Zribi
- Higher Institute
of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, 1005 Tunis, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Basma Mnif
- Department
of Bacteriology, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Zouheir Khemakhem
- Legal Medicine
Department, Habib Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Fathi Safta
- Laboratory
of Pharmacology, Analytics and Galenic Drug Development- LR12ES09,
Faculty of Pharmacy, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| |
Collapse
|
16
|
Revilla G, Ruiz-Auladell L, Vallverdú NF, Santamaría P, Moral A, Pérez JI, Li C, Fuste V, Lerma E, Corcoy R, Pitoia F, Escolà-Gil JC, Mato E. Low-Density Lipoprotein Receptor Is a Key Driver of Aggressiveness in Thyroid Tumor Cells. Int J Mol Sci 2023; 24:11153. [PMID: 37446330 DOI: 10.3390/ijms241311153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
We previously described the role of low-density lipoprotein (LDL) in aggressiveness in papillary thyroid cancer (PTC). Moreover, the MAPK signaling pathway in the presence of BRAF V600E mutation is associated with more aggressive PTC. Although the link between MAPK cascade and LDL receptor (LDLR) expression has been previously described, it is unknown whether LDL can potentiate the adverse effects of PTC through it. We aimed to investigate whether the presence of LDL might accelerate the oncogenic processes through MAPK pathway in presence or absence of BRAF V600E in two thyroid cell lines: TPC1 and BCPAP (wild-type and BRAF V600E, respectively). LDLR, PI3K-AKT and RAS/RAF/MAPK (MEK)/ERK were analyzed via Western blot; cell proliferation was measured via MTT assay, cell migration was studied through wound-healing assay and LDL uptake was analyzed by fluorometric and confocal analysis. TPC1 demonstrated a time-specific downregulation of the LDLR, while BCPAP resulted in a receptor deregulation after LDL exposition. LDL uptake was increased in BCPAP over-time, as well as cell proliferation (20% higher) in comparison to TPC1. Both cell lines differed in migration pattern with a wound closure of 83.5 ± 9.7% after LDL coculture in TPC1, while a loss in the adhesion capacity was detected in BCPAP. The siRNA knockdown of LDLR in LDL-treated BCPAP cells resulted in a p-ERK expression downregulation and cell proliferation modulation, demonstrating a link between LDLR and MAPK pathway. The modulation of BRAF-V600E using vemurafenib-impaired LDLR expression decreased cellular proliferation. Our results suggest that LDLR regulation is cell line-specific, regulating the RAS/RAF/MAPK (MEK)/ERK pathway in the LDL-signaling cascade and where BRAF V600E can play a critical role. In conclusion, targeting LDLR and this downstream signaling cascade, could be a new therapeutic strategy for PTC with more aggressive behavior, especially in those harboring BRAF V600E.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), 08025 Barcelona, Spain
| | - Lara Ruiz-Auladell
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain
| | - Núria Fucui Vallverdú
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain
| | - Paula Santamaría
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Antonio Moral
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - José Ignacio Pérez
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Changda Li
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), 08025 Barcelona, Spain
| | - Victoria Fuste
- Department of Pathological Anatomy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Enrique Lerma
- Department of Pathological Anatomy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Rosa Corcoy
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Fabián Pitoia
- Division of Endocrinology, Hospital de Clínicas, University of Buenos Aires, Buenos Aires C1120 AAF, Argentina
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), 08025 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Eugènia Mato
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
17
|
Yang T, Luo Y, Liu J, Liu F, Ma Z, Liu G, LI H, Wen J, Chen C, Zeng X. A novel signature incorporating lipid metabolism- and immune-related genes to predict the prognosis and immune landscape in hepatocellular carcinoma. Front Oncol 2023; 13:1182434. [PMID: 37346073 PMCID: PMC10279962 DOI: 10.3389/fonc.2023.1182434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is a highly malignant tumor with high metastasis and recurrence rates. Due to the relation between lipid metabolism and the tumor immune microenvironment is constantly being elucidated, this work is carried out to produce a new prognostic gene signature that incorporates immune profiles and lipid metabolism of LIHC patients. Methods We used the "DEseq2" R package and the "Venn" R package to identify differentially expressed genes related to lipid metabolism (LRDGs) in LIHC. Additionally, we performed unsupervised clustering of LIHC patients based on LRDGs to identify their subgroups and immuno-infiltration and Gene Ontology (GO) enrichment analysis on the subgroups. Next, we employed multivariate, LASSO and univariate Cox regression analyses to determine variables and to create a prognostic profile on the basis of immune- and lipid metabolism-related differential genes (IRDGs and LRDGs). We separated patients into low- and high-risk groups in accordance with the best cut-off value of risk score. We conducted Decision Curve Analysis (DCA), Receiver Operating Characteristic curve analysis as a function of time as well as Survival Analysis to evaluate this signature's prognostic value. We incorporated the clinical characteristics of patients into the risk model to obtain a nomogram prognostic model. GEO14520 and ICGC-LIRI JP datasets were employed to externally confirm the accuracy and robustness of signature. The gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were applied for investigating the underlying mechanisms. Immune infiltration analysis was implemented to examine the differences in immune between both risk groups. Single-cell RNA sequencing (scRNA-SEQ) was utilized to characterize the genes that were involved in the distribution of signature and expression characteristics of different LIHC cell types. The patients' sensitivity in both risk groups to commonly used chemotherapeutic agents and semi-inhibitory concentrations (IC50) of the drugs was assessed using the GDSC database. On the basis of the differentially expressed genes (DEGs) in the two groups, the CMAP database was adopted for the prediction of potential small-molecule compounds. Small-molecule compounds were molecularly docked with prognostic markers. Lastly, we investigated the prognostic gene expression levels in normal and LIHC tissues with immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction(qRT-PCR). Results We built and verified a prognostic signature with seven genes that incorporated immune profiles and lipid metabolism. Patients were classified as low- and high-risk groups depending on their prognostic profiles. The overall survival (OS) was markedly lower in the high-risk group as compared to low-risk group. Time-dependent ROC curves more precisely predicted patients' survival at 1, 3 and 5 years; the area under the ROC curve was 0.81 (1 year), 0.75 (3 years) and 0.77 (5 years). The DCA curves showed the value of the prognostic genes in this signature for clinical applications. We included the patients' clinical characteristics in the risk model for both multivariate and univariate Cox regression analyses, and the findings revealed that the risk model represents an independent factor that influences OS in LIHC patients. With immune analysis, GSVA and GSEA, we identified that there are remarkable differences between the two risk groups in immune pathways, lipid metabolism, tumor development, immune cell infiltration and immune microenvironment, response to immunotherapy, and sensitivity to chemotherapy. Moreover, those with higher risk scores presented greater sensitivity to the chemotherapeutic agents. Experiments in vitro further elucidated the roles of SPP1 and FLT3 in the LIHC immune microenvironment. Furthermore, four small-molecule drugs that could target LIHC were screened. In vitro qRT-PCR , IHC revealed that the SPP1,KIF18A expressions were raised in LIHC in tumor samples, whereas FLT3,SOCS2 showed the opposite trend. Conclusions We developed and verified a new signature comprising immune- and lipid metabolism-associated markers and to assess the prognosis and the immune status of LIHC patients. This signature can be applied to survival prediction, individualized chemotherapy, and immunotherapeutic guidance for patients with liver cancer. This study also provides potential targeted therapeutics and novel ideas for the immune evasion and progression of LIHC.
Collapse
Affiliation(s)
- Ti Yang
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yurong Luo
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junhao Liu
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Fang Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zengxin Ma
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Gai Liu
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hailiang LI
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianfan Wen
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiancheng Zeng
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
18
|
Duong LK, Corbali HI, Riad TS, Ganjoo S, Nanez S, Voss T, Barsoumian HB, Welsh J, Cortez MA. Lipid metabolism in tumor immunology and immunotherapy. Front Oncol 2023; 13:1187279. [PMID: 37205182 PMCID: PMC10185832 DOI: 10.3389/fonc.2023.1187279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Lipids are a diverse class of biomolecules that have been implicated in cancer pathophysiology and in an array of immune responses, making them potential targets for improving immune responsiveness. Lipid and lipid oxidation also can affect tumor progression and response to treatment. Although their importance in cellular functions and their potential as cancer biomarkers have been explored, lipids have yet to be extensively investigated as a possible form of cancer therapy. This review explores the role of lipids in cancer pathophysiology and describes how further understanding of these macromolecules could prompt novel treatments for cancer.
Collapse
Affiliation(s)
- Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tiffany Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Vasarri M, Barletta E, Stio M, Bergonzi MC, Galli A, Degl’Innocenti D. Ameliorative Effect of Posidonia oceanica on High Glucose-Related Stress in Human Hepatoma HepG2 Cells. Int J Mol Sci 2023; 24:ijms24065203. [PMID: 36982278 PMCID: PMC10048879 DOI: 10.3390/ijms24065203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Metabolic disorders characterized by elevated blood glucose levels are a recognized risk factor for hepatocellular carcinoma (HCC). Lipid dysregulation is critically involved in the HCC progression, regulating energy storage, metabolism, and cell signaling. There is a clear link between de novo lipogenesis in the liver and activation of the NF-κB pathway, which is involved in cancer metastasis via regulation of metalloproteinases MMP-2/9. As conventional therapies for HCC reach their limits, new effective and safe drugs need to be found for the prevention and/or adjuvant therapy of HCC. The marine plant Posidonia oceanica (L.) Delile is endemic to the Mediterranean and has traditionally been used to treat diabetes and other health disorders. The phenol-rich leaf extract of Posidonia oceanica (POE) is known to have cell-safe bioactivities. Here, high glucose (HG) conditions were used to study lipid accumulation and fatty acid synthase (FASN) expression in human HepG2 hepatoma cells using Oil Red O and Western blot assays. Under HG conditions, the activation status of MAPKs/NF-κB axis and MMP-2/9 activity were determined by Western blot and gelatin zymography assays. The potential ameliorative role of POE against HG-related stress in HepG2 cells was then investigated. POE reduced lipid accumulation and FASN expression with an impact on de novo lipogenesis. Moreover, POE inhibited the MAPKs/NF-κB axis and, consequently, MMP-2/9 activity. Overall, these results suggest that P. oceanica may be a potential weapon in the HCC additional treatment.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Maria Stio
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Maria Camilla Bergonzi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
- Correspondence:
| |
Collapse
|
20
|
Lee WK, Myong J, Kwag E, Shin Y, Son JW, Yoo BC, Kim BS, Yoo HS, Choi JJ. Comparison of Plasma Metabolites From Patients With Non-Small Cell Lung Cancer by Erlotinib Treatment and Skin Rash. Integr Cancer Ther 2023; 22:15347354231198090. [PMID: 37750513 PMCID: PMC10524077 DOI: 10.1177/15347354231198090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023] Open
Abstract
Erlotinib is a necessary anticancer treatment for non-small cell lung cancer (NSCLC) patients yet it causes severe side effects such as skin rash. In this study, researchers compared the untargeted compound profiles before and after erlotinib administration to observe changes in blood metabolites in NSCLC patients. The levels of 1005 substances changed after taking erlotinib. The levels of 306 and 699 metabolites were found to have increased and decreased, respectively. We found 5539 substances with peak area differences based on the presence of skin rash. Carbohydrate, amino acid, and vitamin metabolic pathways were altered in response to the onset of erlotinib-induced skin rash. Finally, this study proposed using plasma metabolites to identify biomarker(s) induced by erlotinib, as well as target molecule(s), for the treatment of dermatological toxic effects.
Collapse
Affiliation(s)
- Won Kil Lee
- Daejeon University, Daejeon, Republic of Korea
| | - Jisoo Myong
- Daejeon University, Seoul, Republic of Korea
| | - Eunbin Kwag
- Daejeon University, Daejeon, Republic of Korea
| | | | - Ji Woong Son
- Konyang University Hospital, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
21
|
Pal S, Sharma A, Mathew SP, Jaganathan BG. Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Front Immunol 2022; 13:955476. [PMID: 36618350 PMCID: PMC9815821 DOI: 10.3389/fimmu.2022.955476] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a heterogeneous disease characterized by various genetic and phenotypic aberrations. Cancer cells undergo genetic modifications that promote their proliferation, survival, and dissemination as the disease progresses. The unabated proliferation of cancer cells incurs an enormous energy demand that is supplied by metabolic reprogramming. Cancer cells undergo metabolic alterations to provide for increased energy and metabolite requirement; these alterations also help drive the tumor progression. Dysregulation in glucose uptake and increased lactate production via "aerobic glycolysis" were described more than 100 years ago, and since then, the metabolic signature of various cancers has been extensively studied. However, the extensive research in this field has failed to translate into significant therapeutic intervention, except for treating childhood-ALL with amino acid metabolism inhibitor L-asparaginase. Despite the growing understanding of novel metabolic alterations in tumors, the therapeutic targeting of these tumor-specific dysregulations has largely been ineffective in clinical trials. This chapter discusses the major pathways involved in the metabolism of glucose, amino acids, and lipids and highlights the inter-twined nature of metabolic aberrations that promote tumorigenesis in different types of cancer. Finally, we summarise the therapeutic interventions which can be used as a combinational therapy to target metabolic dysregulations that are unique or common in blood, breast, colorectal, lung, and prostate cancer.
Collapse
Affiliation(s)
- Soumik Pal
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sam Padalumavunkal Mathew
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India,Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India,*Correspondence: Bithiah Grace Jaganathan,
| |
Collapse
|
22
|
Lipid Metabolism and Homeostasis in Patients with Neuroendocrine Neoplasms: From Risk Factor to Potential Therapeutic Target. Metabolites 2022; 12:metabo12111057. [PMID: 36355141 PMCID: PMC9692415 DOI: 10.3390/metabo12111057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Lipid metabolism is known to be involved in tumorigenesis and disease progression in many common cancer types, including colon, lung, breast and prostate, through modifications of lipid synthesis, storage and catabolism. Furthermore, lipid alterations may arise as a consequence of cancer treatment and may have a role in treatment resistance. Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies with increasing incidence, whose mechanisms of cancer initiation and progression are far from being fully understood. Alterations of lipid metabolism may be common across various cancer types, but data about NENs are scattered and heterogeneous. Herein, we provide an overview of the relevant literature on lipid metabolism and alterations in NENs. The available evidence both in basic and clinical research about lipid metabolism in NENs, including therapeutic effects on lipid homeostasis, are summarized. Additionally, the potential of targeting the lipid profile in NEN therapy is also discussed, and areas for further research are proposed.
Collapse
|
23
|
Cherry ABC, Gherardin NA, Sikder HI. Intracellular radar: Understanding γδ T cell immune surveillance and implications for clinical strategies in oncology. Front Oncol 2022; 12:1011081. [PMID: 36212425 PMCID: PMC9539555 DOI: 10.3389/fonc.2022.1011081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
T cells play a key role in anticancer immunity, with responses mediated through a diversity of αβ or γδ T cell receptors. Although αβ and γδ T cells stem from common thymic precursors, the development and subsequent biological roles of these two subsets differ considerably. γδ T cells are an unconventional T cell subset, uniquely poised between the adaptive and innate immune systems, that possess the ability to recognize intracellular disturbances and non-peptide-based antigens to eliminate tumors. These distinctive features of γδ T cells have led to recent interest in developing γδ-inspired therapies for treating cancer patients. In this minireview, we explore the biology of γδ T cells, including how the γδ T cell immune surveillance system can detect intracellular disturbances, and propose a framework to understand the γδ T cell-inspired therapeutic strategies entering the clinic today.
Collapse
Affiliation(s)
- Anne B. C. Cherry
- Axiom Healthcare Strategies, Princeton, NJ, United States
- *Correspondence: Anne B. C. Cherry,
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
24
|
Ding L, Ning S, Hu W, Xue Y, Yu S. Distinctive Metabolism-Associated Gene Clusters That Are Also Prognostic in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6595989. [PMID: 36199423 PMCID: PMC9527115 DOI: 10.1155/2022/6595989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Objective To offer new prognostic evaluations by exploring potentially distinctive genetic features of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Methods There were 12 samples for gene expression profiling processes in this study. These included three HCC lesion samples and their matched adjacent nontumor liver tissues obtained from patients with HCC, as well as three ICC samples and their controls collected similarly. In addition to the expression matrix generated on our own, profiles of other cohorts from The Cancer Genome Atlas (TCGA) program and the Gene Expression Omnibus (GEO) were also employed in later bioinformatical analyses. Differential analyses, functional analyses, protein interaction network analyses, and gene set variation analyses were used to identify key genes. To establish the prognostic models, univariate/multivariate Cox analyses and subsequent stepwise regression were applied, with the Akaike information criterion evaluating the goodness of fitness. Results The top three pathways enriched in HCC were all metabolism-related; they were fatty acid degradation, retinol metabolism, and arachidonic acid metabolism. In ICC, on the other hand, additional pathways related to fat digestion and absorption and cholesterol metabolism were identified. Consistent characteristics of such a metabolic landscape were observed across different cohorts. A prognostic risk score model for calculating HCC risk was constructed, consisting of ADH4, ADH6, CYP2C9, CYP4F2, and RDH16. This signature predicts the 3-year survival with an AUC area of 0.708 (95%CI = 0.644 to 0.772). For calculating the risk of ICC, a prognostic risk score model was built upon the expression levels of CYP26A1, NAT2, and UGT2B10. This signature predicts the 3-year survival with an AUC area of 0.806 (95% CI = 0.664 to 0.947). Conclusion HCC and ICC share commonly abrupted pathways associated with the metabolism of fatty acids, retinol, arachidonic acids, and drugs, indicating similarities in their pathogenesis as primary liver cancers. On the flip side, these two types of cancer possess distinctive promising biomarkers for predicting overall survival or potential targeted therapies.
Collapse
Affiliation(s)
- Linchao Ding
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shilong Ning
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Weijian Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yadong Xue
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shi'an Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
25
|
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biol Int 2022; 46:1717-1728. [DOI: 10.1002/cbin.11896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Negar Aghaei
- Department of Psycology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Imam Sajjad Hospital Tabriz Azad University Tabriz Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
26
|
Guo Z, Liang J. Lipid-Based Factors: A Promising New Biomarker for Predicting Prognosis and Conditional Survival Probability in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:869-883. [PMID: 36051861 PMCID: PMC9427011 DOI: 10.2147/jhc.s360871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Abnormalities in lipid metabolism play a vital role in the development of cancer. This retrospective study aimed to evaluate the survival prognosis of patients with hepatocellular carcinoma (HCC) in terms of (free fatty acid: high-density lipoproteins) ratio (FF-HL) and to compare it with conditional probability and annual death hazard. Patients and Methods Patients (n=300) were enrolled. Time-dependent receiver operating characteristic (ROC) analysis was used to determine the predictive ability of survival. Survival probabilities were estimated using the Kaplan-Meier method and Log rank tests were performed for statistical significance. Results The area under the ROC curve for FF-HL, which predicts overall survival (OS), was superior to other markers. Patients in the high FF-HL (>840.3) showed poorer OS and progress-free survival (PFS). In multivariable analysis, FF-HL was an independent marker in predicting OS. Younger people and those with intrahepatic metastasis in higher FF-HL groups, as well as older men without vascular invasion in higher AHLR groups showed shorter OS and PFS. 3-year conditional disease-free survival (CDFS3) was slightly higher than those with actuarial survival. The death risk for 3-year conditional OS (COS3) was stable in the group with low FF-HL and (albumin: high-density lipoproteins) ratio (AHLR) and more pronounced in high subgroups. However, risk stratification using the Barcelona Clinic Liver Cancer approach and Child-Pugh score might not accurately predict COS3. Conclusion FF-HL and AHLR are not only promising biomarkers in terms of predictive ability of OS and PFS but also provide time-dependent prognostic information for HCC patients.
Collapse
Affiliation(s)
- Ziwei Guo
- Peking University Cancer Hospital and Institute, Medical Oncology, Beijing, People’s Republic of China
- Peking University International Hospital, Medical Oncology, Beijing, People’s Republic of China
| | - Jun Liang
- Peking University Cancer Hospital and Institute, Medical Oncology, Beijing, People’s Republic of China
- Peking University International Hospital, Medical Oncology, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Changes in Metabolism as a Diagnostic Tool for Lung Cancer: Systematic Review. Metabolites 2022; 12:metabo12060545. [PMID: 35736478 PMCID: PMC9229104 DOI: 10.3390/metabo12060545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with five-year survival rates varying from 3–62%. Screening aims at early detection, but half of the patients are diagnosed in advanced stages, limiting therapeutic possibilities. Positron emission tomography-computed tomography (PET-CT) is an essential technique in lung cancer detection and staging, with a sensitivity reaching 96%. However, since elevated 18F-fluorodeoxyglucose (18F-FDG) uptake is not cancer-specific, PET-CT often fails to discriminate between malignant and non-malignant PET-positive hypermetabolic lesions, with a specificity of only 23%. Furthermore, discrimination between lung cancer types is still impossible without invasive procedures. High mortality and morbidity, low survival rates, and difficulties in early detection, staging, and typing of lung cancer motivate the search for biomarkers to improve the diagnostic process and life expectancy. Metabolomics has emerged as a valuable technique for these pitfalls. Over 150 metabolites have been associated with lung cancer, and several are consistent in their findings of alterations in specific metabolite concentrations. However, there is still more variability than consistency due to the lack of standardized patient cohorts and measurement protocols. This review summarizes the identified metabolic biomarkers for early diagnosis, staging, and typing and reinforces the need for biomarkers to predict disease progression and survival and to support treatment follow-up.
Collapse
|
28
|
Sharma A, Sinha S, Shrivastava N. Therapeutic Targeting Hypoxia-Inducible Factor (HIF-1) in Cancer: Cutting Gordian Knot of Cancer Cell Metabolism. Front Genet 2022; 13:849040. [PMID: 35432450 PMCID: PMC9008776 DOI: 10.3389/fgene.2022.849040] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Metabolic alterations are one of the hallmarks of cancer, which has recently gained great attention. Increased glucose absorption and lactate secretion in cancer cells are characterized by the Warburg effect, which is caused by the metabolic changes in the tumor tissue. Cancer cells switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis due to changes in glucose degradation mechanisms, a process known as “metabolic reprogramming”. As a result, proteins involved in mediating the altered metabolic pathways identified in cancer cells pose novel therapeutic targets. Hypoxic tumor microenvironment (HTM) is anticipated to trigger and promote metabolic alterations, oncogene activation, epithelial-mesenchymal transition, and drug resistance, all of which are hallmarks of aggressive cancer behaviour. Angiogenesis, erythropoiesis, glycolysis regulation, glucose transport, acidosis regulators have all been orchestrated through the activation and stability of a transcription factor termed hypoxia-inducible factor-1 (HIF-1), hence altering crucial Warburg effect activities. Therefore, targeting HIF-1 as a cancer therapy seems like an extremely rational approach as it is directly involved in the shift of cancer tissue. In this mini-review, we present a brief overview of the function of HIF-1 in hypoxic glycolysis with a particular focus on novel therapeutic strategies currently available.
Collapse
Affiliation(s)
- Abhilasha Sharma
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, India
| | | | - Neeta Shrivastava
- Shri B.V. Patel Education Trust, Ahmedabad, India
- *Correspondence: Neeta Shrivastava,
| |
Collapse
|
29
|
Attenuation of obesity-induced hyperlipidemia reduces tumor growth. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159124. [PMID: 35150894 DOI: 10.1016/j.bbalip.2022.159124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/28/2021] [Accepted: 02/06/2022] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that hyperlipidemia is associated with obesity and cancer mortality in humans. We tested the hypotheses that inhibition of microsomal triglyceride transfer protein (MTP) would attenuate obesity-induced hyperlipidemia and reduce tumor growth by treating BCR-ABL B cell tumor-bearing hyperlipidemic obese ob/ob obese mice with a MTP inhibitor. MTP inhibition in tumor-bearing mice reduced concentrations of plasma apoB100 5-fold together with a corresponding decrease in VLDL triacylglycerol (TG) and cholesterol. Inhibition of MTP decreased tumor volume by 50%. MTP inhibitor did not alter tumor cell viability in vitro, suggesting that the in vivo tumor shrinkage effect was related to altered circulating lipids. Tumor volume reduction occurred without change in the protein expression of LDLR, FASN and HMGCR in the tumor, suggesting a lack of compensatory mechanisms in response to decreased hyperlipidemia. Expression of genes encoding GLUT4 and PEPCK was increased 6- and 10-fold, respectively, but no change in the expression of genes encoding regulatory enzymes of glycolysis was observed, suggesting that the tumors were not dependent on or switching to carbohydrates for energy requirement to support their growth. No change of proliferative signaling PI3K/AKT and ERK pathways after MTP inhibition was observed in the tumors. In conclusion, MTP inhibition decreased dyslipidemia and tumor growth in obese, insulin resistant mice. Therefore, decreasing VLDL secretion could be further explored as an adjuvant therapeutic intervention together with standard care to reduce tumor growth in obese patients.
Collapse
|
30
|
Lepionka T, Białek M, Czauderna M, Szlis M, Białek A. Lipidomic Profile and Enzymes Activity in Hepatic Microsomes of Rats in Physiological and Pathological Conditions. Int J Mol Sci 2021; 23:ijms23010442. [PMID: 35008866 PMCID: PMC8745594 DOI: 10.3390/ijms23010442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Among the risk factors affecting the development of cancer, nutritional factors occupy a significant place. Pomegranate seed oil (PSO) and bitter melon extract (BME), used for ages in folk medicine, are nowadays used in the prevention of many diseases and as ingredients of dietary supplements. Despite numerous publications on these raw materials or their active substances, their mechanism of action in various pathological states has not been recognized yet, nor has the safety of their simultaneous use been evaluated. The study aimed to assess how dietary supplementation with either PSO, with BME, or both, affects fatty acids’ profiles and their metabolism in hepatic microsomes, as well as the activity of selected microsomal enzymes (COX-2 and CYP1B1). Experimental animals (Sprague-Dawley rats) were divided into eight parallel experimental groups, differing in applied dietary modifications (control, PSO, BME and both PSO and BME) and introduction of chemical carcinogen—7,12-dimethylbenz[a]nthracene. Obtained results indicated the pronounced effect of the cancerous process on lipid metabolism and demonstrated the antagonistic effect of applied dietary supplements on the content of individual fatty acids and the activity of CYP1B1 and COX-2. The applied broad analytical approach and chemometric data analysis confirmed that raw materials, for which potential cancer prevention has been previously demonstrated, may differ in effects depending on the coexisting pathological state.
Collapse
Affiliation(s)
- Tomasz Lepionka
- Department of Bioaerosols, The Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100 Pulawy, Poland;
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Małgorzata Białek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland; (M.B.); (M.C.); (M.S.)
| | - Marian Czauderna
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland; (M.B.); (M.C.); (M.S.)
| | - Michał Szlis
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland; (M.B.); (M.C.); (M.S.)
| | - Agnieszka Białek
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Department of Biotechnology and Nutrigenomics, Institute of Animal Genetics and Biotechnology of Polish Academy of Sciences, Postępu 36A Jastrzębiec, 05-552 Magdalenka, Poland
- Correspondence: ; Tel.: +48-(22)-7367128
| |
Collapse
|
31
|
Dadgar T, Ebrahimi N, Gholipour AR, Akbari M, Khani L, Ahmadi A, Hamblin MR. Targeting the metabolism of cancer stem cells by energy disruptor molecules. Crit Rev Oncol Hematol 2021; 169:103545. [PMID: 34838705 DOI: 10.1016/j.critrevonc.2021.103545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in various tumor types. CSCs are believed to contribute to tumor metastasis and resistance to conventional therapy. So targeting these cells could be an effective strategy to eliminate tumors and a promising new type of cancer treatment. Alterations in metabolism play an essential role in CSC biology and their resistance to treatment. The metabolic properties pathways in CSCs are different from normal cells, and to some extent, are different from regular tumor cells. Interestingly, CSCs can use other nutrients for their metabolism and growth. The different metabolism causes increased sensitivity of CSCs to agents that disrupt cellular homeostasis. Compounds that interfere with the central metabolic pathways are known as energy disruptors and can reduce CSC survival. This review highlights the differences between regular cancer cells and CSC metabolism and discusses the action mechanisms of energy disruptors at the cellular and molecular levels.
Collapse
Affiliation(s)
- Tahere Dadgar
- Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular & Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Gholipour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Akbari
- Department of Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Khani
- Department of Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
32
|
Liefwalker DF, Ryan M, Wang Z, Pathak KV, Plaisier S, Shah V, Babra B, Dewson GS, Lai IK, Mosley AR, Fueger PT, Casey SC, Jiang L, Pirrotte P, Swaminathan S, Sears RC. Metabolic convergence on lipogenesis in RAS, BCR-ABL, and MYC-driven lymphoid malignancies. Cancer Metab 2021; 9:31. [PMID: 34399819 PMCID: PMC8369789 DOI: 10.1186/s40170-021-00263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Metabolic reprogramming is a central feature in many cancer subtypes and a hallmark of cancer. Many therapeutic strategies attempt to exploit this feature, often having unintended side effects on normal metabolic programs and limited efficacy due to integrative nature of metabolic substrate sourcing. Although the initiating oncogenic lesion may vary, tumor cells in lymphoid malignancies often share similar environments and potentially similar metabolic profiles. We examined cells from mouse models of MYC-, RAS-, and BCR-ABL-driven lymphoid malignancies and find a convergence on de novo lipogenesis. We explore the potential role of MYC in mediating lipogenesis by 13C glucose tracing and untargeted metabolic profiling. Inhibition of lipogenesis leads to cell death both in vitro and in vivo and does not induce cell death of normal splenocytes. METHODS We analyzed RNA-seq data sets for common metabolic convergence in lymphoma and leukemia. Using in vitro cell lines derived in from conditional MYC, RAS, and BCR-ABL transgenic murine models and oncogene-driven human cell lines, we determined gene regulation, metabolic profiles, and sensitivity to inhibition of lipogenesis in lymphoid malignancies. We utilize preclinical murine models and transgenic primary model of T-ALL to determine the effect of lipogenesis blockade across BCR-ABL-, RAS-, and c-MYC-driven lymphoid malignancies. Statistical significance was calculated using unpaired t-tests and one-way ANOVA. RESULTS This study illustrates that de novo lipid biogenesis is a shared feature of several lymphoma subtypes. Using cell lines derived from conditional MYC, RAS, and BCR-ABL transgenic murine models, we demonstrate shared responses to inhibition of lipogenesis by the acetyl-coA carboxylase inhibitor 5-(tetradecloxy)-2-furic acid (TOFA), and other lipogenesis inhibitors. We performed metabolic tracing studies to confirm the influence of c-MYC and TOFA on lipogenesis. We identify specific cell death responses to TOFA in vitro and in vivo and demonstrate delayed engraftment and progression in vivo in transplanted lymphoma cell lines. We also observe delayed progression of T-ALL in a primary transgenic mouse model upon TOFA administration. In a panel of human cell lines, we demonstrate sensitivity to TOFA treatment as a metabolic liability due to the general convergence on de novo lipogenesis in lymphoid malignancies driven by MYC, RAS, or BCR-ABL. Importantly, cell death was not significantly observed in non-malignant cells in vivo. CONCLUSIONS These studies suggest that de novo lipogenesis may be a common survival strategy for many lymphoid malignancies and may be a clinically exploitable metabolic liability. TRIAL REGISTRATION This study does not include any clinical interventions on human subjects.
Collapse
Affiliation(s)
- Daniel F Liefwalker
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA.
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Meital Ryan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhichao Wang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Khyatiben V Pathak
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Seema Plaisier
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Vidhi Shah
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Bobby Babra
- Molecular & Cellular Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Gabrielle S Dewson
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Ian K Lai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Adriane R Mosley
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick T Fueger
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Stephanie C Casey
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Jiang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Srividya Swaminathan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, CA, 91016, USA
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
33
|
Wang N, Brickute D, Braga M, Barnes C, Lu H, Allott L, Aboagye EO. Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019. Pharmaceutics 2021; 13:1078. [PMID: 34371769 PMCID: PMC8309005 DOI: 10.3390/pharmaceutics13071078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Choline kinase alpha (CHKA) is a promising target for the development of cancer therapeutics. We have previously reported ICL-CCIC-0019, a potent CHKA inhibitor with high cellular activity but with some unfavorable pharmacological properties. In this work, we present an active analogue of ICL-CCIC-0019 bearing a piperazine handle (CK146) to facilitate further structural elaboration of the pharmacophore and thus improve the biological profile. Two different strategies were evaluated in this study: (1) a prodrug approach whereby selective CHKA inhibition could be achieved through modulating the activity of CK146, via the incorporation of an ε-(Ac) Lys motif, cleavable by elevated levels of histone deacetylase (HDAC) and cathepsin L (CTSL) in tumour cells; (2) a prostate-specific membrane antigen (PSMA) receptor targeted delivery strategy. Prodrug (CK145) and PSMA-targeted (CK147) derivatives were successfully synthesized and evaluated in vitro. While the exploitation of CK146 in those two strategies did not deliver the expected results, important and informative structure-activity relationships were observed and have been reported.
Collapse
Affiliation(s)
- Ning Wang
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Marta Braga
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Chris Barnes
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Haonan Lu
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Louis Allott
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| |
Collapse
|
34
|
Wang J, Xiang H, Lu Y, Wu T, Ji G. The role and therapeutic implication of CPTs in fatty acid oxidation and cancers progression. Am J Cancer Res 2021; 11:2477-2494. [PMID: 34249411 PMCID: PMC8263643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023] Open
Abstract
Cancer cells must maintain metabolic homeostasis under a wide range of conditions and meet their own energy needs in order to survive and reproduce. In addition to glycolysis, cancer cells can also perform various metabolic strategies, such as fatty acid oxidation (FAO). It has been found that the proliferation, survival, drug resistance and metastasis of cancer cells depend on FAO. The carnitine palmitoyltransferase (CPT), including CPT1 and CPT2, located on the mitochondrial membrane, are important mediators of FAO. In recent years, many researchers have found that CPT has a close relationship with the metabolic development of tumor cells, not only provides energy for cancer cells development and metastasis by promoting FAO but also affects the occurrence and invasion through other signal pathways or cytokines or microRNA. This review summarized the role of CPTs in several kinds of tumors and the developed targeted inhibitors of CPTs, as well as the potential gene therapy and immunotherapy of CPTs, hoping to better explore the mechanism and role of CPTs in the future and providing useful ideas for clinical treatment.
Collapse
Affiliation(s)
- Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
35
|
Melana JP, Mignolli F, Stoyanoff T, Aguirre MV, Balboa MA, Balsinde J, Rodríguez JP. The Hypoxic Microenvironment Induces Stearoyl-CoA Desaturase-1 Overexpression and Lipidomic Profile Changes in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13122962. [PMID: 34199164 PMCID: PMC8231571 DOI: 10.3390/cancers13122962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Clear cell renal cell carcinoma (ccRCC) is characterized by a high rate of cell proliferation and an extensive accumulation of lipids. Uncontrolled cell growth usually generates areas of intratumoral hypoxia that define the tumor phenotype. In this work, we show that, under these microenvironmental conditions, stearoyl-CoA desaturase-1 is overexpressed. This enzyme induces changes in the cellular lipidomic profile, increasing the oleic acid levels, a metabolite that is essential for cell proliferation. This work supports the idea of considering stearoyl-CoA desaturase-1 as an exploitable therapeutic target in ccRCC. Abstract Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma (RCC). It is characterized by a high cell proliferation and the ability to store lipids. Previous studies have demonstrated the overexpression of enzymes associated with lipid metabolism, including stearoyl-CoA desaturase-1 (SCD-1), which increases the concentration of unsaturated fatty acids in tumor cells. In this work, we studied the expression of SCD-1 in primary ccRCC tumors, as well as in cell lines, to determine its influence on the tumor lipid composition and its role in cell proliferation. The lipidomic analyses of patient tumors showed that oleic acid (18:1n-9) is one of the major fatty acids, and it is particularly abundant in the neutral lipid fraction of the tumor core. Using a ccRCC cell line model and in vitro-generated chemical hypoxia, we show that SCD-1 is highly upregulated (up to 200-fold), and this causes an increase in the cellular level of 18:1n-9, which, in turn, accumulates in the neutral lipid fraction. The pharmacological inhibition of SCD-1 blocks 18:1n-9 synthesis and compromises the proliferation. The addition of exogenous 18:1n-9 to the cells reverses the effects of SCD-1 inhibition on cell proliferation. These data reinforce the role of SCD-1 as a possible therapeutic target.
Collapse
Affiliation(s)
- Juan Pablo Melana
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - Francesco Mignolli
- Instituto de Botánica del Nordeste, Facultad de Ciencias Agrarias (UNNE-CONICET), Universidad Nacional del Nordeste, Corrientes 3400, Argentina;
| | - Tania Stoyanoff
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - María V. Aguirre
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (J.B.); (J.P.R.); Tel.: +34-983-423-062 (J.B.); Tel.: +54-937-9469-4464 (J.P.R.)
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
- Correspondence: (J.B.); (J.P.R.); Tel.: +34-983-423-062 (J.B.); Tel.: +54-937-9469-4464 (J.P.R.)
| |
Collapse
|
36
|
Stockard B, Bhise N, Shin M, Guingab-Cagmat J, Garrett TJ, Pounds S, Lamba JK. Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML. Front Oncol 2021; 11:678008. [PMID: 34178663 PMCID: PMC8222790 DOI: 10.3389/fonc.2021.678008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematological malignancy with a dismal prognosis. For over four decades, AML has primarily been treated by cytarabine combined with an anthracycline. Although a significant proportion of patients achieve remission with this regimen, roughly 40% of children and 70% of adults relapse. Over 90% of patients with resistant or relapsed AML die within 3 years. Thus, relapsed and resistant disease following treatment with standard therapy are the most common clinical failures that occur in treating this disease. In this study, we evaluated the relationship between AML cell line global metabolomes and variation in chemosensitivity. Methods We performed global metabolomics on seven AML cell lines with varying chemosensitivity to cytarabine and the anthracycline doxorubicin (MV4.11, KG-1, HL-60, Kasumi-1, AML-193, ME1, THP-1) using ultra-high performance liquid chromatography - mass spectrometry (UHPLC-MS). Univariate and multivariate analyses were performed on the metabolite peak intensity values from UHPLC-MS using MetaboAnalyst to identify cellular metabolites associated with drug chemosensitivity. Results A total of 1,624 metabolic features were detected across the leukemic cell lines. Of these, 187 were annotated to known metabolites. With respect to doxorubicin, we observed significantly greater abundance of a carboxylic acid (1-aminocyclopropane-1-carboxylate) and several amino acids in resistant cell lines. Pathway analysis found enrichment of several amino acid biosynthesis and metabolic pathways. For cytarabine resistance, nine annotated metabolites were significantly different in resistance vs. sensitive cell lines, including D-raffinose, guanosine, inosine, guanine, aldopentose, two xenobiotics (allopurinol and 4-hydroxy-L-phenylglycine) and glucosamine/mannosamine. Pathway analysis associated these metabolites with the purine metabolic pathway. Conclusion Overall, our results demonstrate that metabolomics differences contribute toward drug resistance. In addition, it could potentially identify predictive biomarkers for chemosensitivity to various anti-leukemic drugs. Our results provide opportunity to further explore these metabolites in patient samples for association with clinical response.
Collapse
Affiliation(s)
- Bradley Stockard
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Neha Bhise
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Miyoung Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Joy Guingab-Cagmat
- Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, United States
| | - Timothy J Garrett
- Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, United States
| | - Stanley Pounds
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States.,University of Florida Health Cancer Center, Gainesville, FL, United States.,Center for Pharmacogenetics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
37
|
Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomed Pharmacother 2021; 140:111704. [PMID: 34082400 DOI: 10.1016/j.biopha.2021.111704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer treatment is improving widely over time, but finding a proper defender to beat them seems like a distant dream. The quest for identification and discovery of drugs with an effective action is still a vital work. The role of a membrane protein called P-glycoprotein, which functions as garbage chute that efflux the waste, xenobiotics, and toxins out of the cancer cells acts as a major reason behind the therapeutic failure of most chemotherapeutic drugs. In this review, we mainly focused on a multiple strategies by employing 5-Fluorouracil, curcumin, and lipids in Nano formulation for the possible treatment of colorectal cancer and its metastasis. Eventually, multidrug resistance and angiogenesis can be altered and it would be helpful in colorectal cancer targeting.We have depicted the possible way for the depletion of colorectal cancer cells without disturbing the normal cells. The concept of focusing on multiple pathways for marking the colorectal cancer cells could help in activating one among the pathways if the other one fails. The activity of the 5-Fluorouracil can be enhanced with the help of curcumin which acts as a chemosensitizer, chemotherapeutic agent, and even for altering the resistance. As we eat to survive, so do the cancer cells. The cancer cells utilize the energy source to stay alive and survive. Fatty acids can be used as the energy source and this concept can be employed for targeting the colorectal cancer cells and also for altering the resistant part.
Collapse
|
38
|
Muyinda IJ, Park JG, Jang EJ, Yoo BC. KRAS, A Prime Mediator in Pancreatic Lipid Synthesis through Extra Mitochondrial Glutamine and Citrate Metabolism. Int J Mol Sci 2021; 22:5070. [PMID: 34064761 PMCID: PMC8150642 DOI: 10.3390/ijms22105070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven pancreatic cancer is very lethal, with a five-year survival rate of <9%, irrespective of therapeutic advances. Different treatment modalities including chemotherapy, radiotherapy, and immunotherapy demonstrated only marginal efficacies because of pancreatic tumor specificities. Surgery at the early stage of the disease remains the only curative option, although only in 20% of patients with early stage disease. Clinical trials targeting the main oncogenic driver, KRAS, have largely been unsuccessful. Recently, global metabolic reprogramming has been identified in patients with pancreatic cancer and oncogenic KRAS mouse models. The newly reprogrammed metabolic pathways and oncometabolites affect the tumorigenic environment. The development of methods modulating metabolic reprogramming in pancreatic cancer cells might constitute a new approach to its therapy. In this review, we describe the major metabolic pathways providing acetyl-CoA and NADPH essential to sustain lipid synthesis and cell proliferation in pancreatic cancer cells.
Collapse
Affiliation(s)
- Isaac James Muyinda
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Uganda Cancer Institute, Mulago-Kampala 3935, Uganda
| | - Jae-Gwang Park
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Eun-Jung Jang
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
| | - Byong-Chul Yoo
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| |
Collapse
|
39
|
Wang C, Meng X, Zhou Y, Yu J, Li Q, Liao Z, Gu Y, Han J, Linghu S, Jiao Z, Wang T, Zhang CY, Chen X. Long Noncoding RNA CTD-2245E15.3 Promotes Anabolic Enzymes ACC1 and PC to Support Non-Small Cell Lung Cancer Growth. Cancer Res 2021; 81:3509-3524. [PMID: 33941610 DOI: 10.1158/0008-5472.can-19-3806] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/09/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) have been shown to play critical regulatory roles in the onset and progression of human cancers. However, the functions of a large proportion of lncRNAs are still unexplored. Here we describe a novel lncRNA, CTD-2245E15.3, that promotes lung tumorigenesis by regulating the anabolic enzymes acetyl-CoA carboxylase 1 (ACC1, encoded by the ACACA gene) and pyruvate carboxylase (PC). Differentially expressed lncRNAs between non-small cell lung cancer (NSCLC) and paired adjacent nontumor tissues were identified by a microarray and validated using quantitative real-time polymerase chain reaction. CTD-2245E15.3 was significantly upregulated in NSCLC and was mainly located in the cytoplasm. Knockdown of CTD-2245E15.3 by specific antisense oligonucleotides suppressed cell growth in vitro and in vivo, largely due to cell-cycle arrest and induction of apoptosis. Overexpression of CTD-2245E15.3 in an orthotopic model of lung cancer led to a significant increase in total tumor burden. CTD-2245E15.3 exerted its oncogenic function by binding ACC1 and PC, which are key anabolic factors for biomolecule synthesis in rapidly proliferating tumor cells. Knockdown of CTD-2245E15.3 increased phosphorylation of ACC1 at an inhibitory site for enzymatic activity and promoted PC degradation via ubiquitination. Supplements of palmitate or oxaloacetate, products of ACC1 and PC, alleviated the suppression of cell growth caused by loss of CTD-2245E15.3. These findings reveal the important role of CTD-2245E15.3 as an oncogenic lncRNA in the anabolic process for tumor growth. SIGNIFICANCE: These findings demonstrate a novel lncRNA CTD-2245E15.3 that binds and positively regulates anabolic enzymes ACC1 and PC to promote tumor growth. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3509/F1.large.jpg.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| | - Xiangfeng Meng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yu Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhicong Liao
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jiayi Han
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shuo Linghu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zichen Jiao
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing Medical University, Nanjing, China
| | - Tao Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing Medical University, Nanjing, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
40
|
Nam HJ, Kim YE, Moon BS, Kim HY, Jung D, Choi S, Jang JW, Nam DH, Cho H. Azathioprine antagonizes aberrantly elevated lipid metabolism and induces apoptosis in glioblastoma. iScience 2021; 24:102238. [PMID: 33748720 PMCID: PMC7957120 DOI: 10.1016/j.isci.2021.102238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor with poor survival rate. Temozolomide (TMZ) is used as standard chemotherapy to treat GBM, but a large number of patients either respond poorly and/or develop resistance after long-term use, emphasizing the need to develop potent drugs with novel mechanisms of action. Here, using high-throughput compound screening (HTS), we found that azathioprine, an immunosuppressant, is a promising therapeutic agent to treat TMZ-resistant GBM. Through integrative genome-wide analysis and global proteomic analysis, we found that elevated lipid metabolism likely due to hyperactive EGFR/AKT/SREBP-1 signaling was inhibited by azathioprine. Azathioprine also promoted ER stress-induced apoptosis. Analysis of orthotopic xenograft models injected with patient-derived GBM cells revealed reduced tumor volume and increased apoptosis after azathioprine and TMZ co-treatment. These data indicate that azathioprine could be a powerful therapeutic option for TMZ-resistant GBM patients.
Collapse
Affiliation(s)
- Hye Jin Nam
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Eun Kim
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyun Young Kim
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Daeyoung Jung
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Seungho Choi
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jeong Woon Jang
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Heeyeong Cho
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
41
|
Aksoy HN, Ceylan C. Comparison of the Effects of Statins on A549 Nonsmall-Cell Lung Cancer Cell Line Lipids Using Fourier Transform Infrared Spectroscopy: Rosuvastatin Stands Out. Lipids 2021; 56:289-299. [PMID: 33611813 DOI: 10.1002/lipd.12296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 11/10/2022]
Abstract
Statins are commonly prescribed antilipidemic and anticholesterol class of drugs. In addition to their major role, they have been found to have anticancer effects on in vitro, animal and clinical studies. The aim of this study was to investigate the effects of six different statins (rosuvastatin, pravastatin, simvastatin, lovastatin, fluvastatin, and atorvastatin) on A549 cancer cells lipids by Fourier transform infrared (FTIR) spectroscopy. Proliferation tests were carried out to detect the half-maximal inhibitory concentrations (IC50 ) of each statin on A549 cells. The IC50 values were 50 μM for simvastatin, 150 μM for atorvastatin and pravastatin, and 170 μM for fluvastatin, 200 μM for rosuvastatin and lovastatin on A549 cells. No correlation was found between the antiproliferative effects of the statins and lipid-lowering effect. The cells were treated with IC5 , IC10 , and IC50 values of each statins concentration and lipid extracts were compared using FTIR spectroscopy. The results indicated that different statins had different effects on the lipid content of A549 cells. The FTIR spectra of the lipid exctracts of statin-treated A549 cells indicated that the value of hydrocarbon chain length, unsaturation index, oxidative stress level, and phospholipid containing lipids increased except for rosuvastatin-treated A549 cells. In addition, rosuvastatin significantly lowered cholesterol ester levels. In conclusion, the contrasting effects of rosuvastatin should be further investigated.
Collapse
Affiliation(s)
- Hatice Nurdan Aksoy
- Department of Biotechnology, İzmir Institute of Technology, İzmir, 35430, Turkey
| | - Cagatay Ceylan
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, 35430, İzmir, Turkey
| |
Collapse
|
42
|
Smirnova A, Mentor A, Ranefall P, Bornehag CG, Brunström B, Mattsson A, Jönsson M. Increased apoptosis, reduced Wnt/β-catenin signaling, and altered tail development in zebrafish embryos exposed to a human-relevant chemical mixture. CHEMOSPHERE 2021; 238:124584. [PMID: 33032226 DOI: 10.1016/j.chemosphere.2019.124584] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 05/22/2023]
Abstract
A wide variety of anthropogenic chemicals is detected in humans and wildlife and the health effects of various chemical exposures are not well understood. Early life stages are generally the most susceptible to chemical disruption and developmental exposure can cause disease in adulthood, but the mechanistic understanding of such effects is poor. Within the EU project EDC-MixRisk, a chemical mixture (Mixture G) was identified in the Swedish pregnancy cohort SELMA by the inverse association between levels in women at around gestational week ten with birth weight of their children. This mixture was composed of mono-ethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mono-isononyl phthalate, triclosan, perfluorohexane sulfonate, perfluorooctanoic acid, and perfluorooctane sulfonate. In a series of experimental studies, we characterized effects of Mixture G on early development in zebrafish models. Here, we studied apoptosis and Wnt/β-catenin signaling which are two evolutionarily conserved signaling pathways of crucial importance during development. We determined effects on apoptosis by measuring TUNEL staining, caspase-3 activity, and acridine orange staining in wildtype zebrafish embryos, while Wnt/β-catenin signaling was assayed using a transgenic line expressing an EGFP reporter at β-catenin-regulated promoters. We found that Mixture G increased apoptosis, suppressed Wnt/β-catenin signaling in the caudal fin, and altered the shape of the caudal fin at water concentrations only 20-100 times higher than the geometric mean serum concentration in the human cohort. These findings call for awareness that pollutant mixtures like mixture G may interfere with a variety of developmental processes, possibly resulting in adverse health effects.
Collapse
Affiliation(s)
- Anna Smirnova
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Petter Ranefall
- SciLifeLab BioImage Informatics Facility, and Dept of Information Technology, Uppsala University, Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| |
Collapse
|
43
|
Białek A, Białek M, Lepionka T, Pachniewicz P, Czauderna M. Oxysterols and lipidomic profile of myocardium of rats supplemented with pomegranate seed oil and/or bitter melon aqueous extract - Cardio-oncological animal model research. Chem Phys Lipids 2021; 235:105057. [PMID: 33515592 DOI: 10.1016/j.chemphyslip.2021.105057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022]
Abstract
A close link between cardiovascular diseases and cancer results from sharing the same modifiable risk factors (e.g. nutritional) and cardiotoxicity of anti-cancerous therapies. It justifies cardio-oncological preliminary studies on dietary factors, especially on those of possible anti-carcinogenic or cardioprotective properties. The main purpose was to evaluate the effect of pomegranate seed oil (PSO) and/or bitter melon extract (BME) supplementation of the diet of female rats suffering from mammary tumors on lipidomic profile (expressed as fatty acids, conjugated fatty acids (CFA), malondialdehyde (MDA), cholesterol and oxysterols content) of cardiac tissue. Total lipidomic profile and intensity of lipid peroxidation in hearts of DMBA-treated Sprague-Dawley rats and their healthy equivalents, both obtaining diet supplementation, were evaluated with different chromatographic techniques coupled with appropriate detection systems (GC-MS, GC-TOFMS, Ag+-HPLC-DAD, UF-HPLC-DAD). Dietary modifications neither diminished breast cancer incidence nor exerted explicit cardio-protective influence, however, they diminished cholesterol content, i.a. because of inhibition of the endogenous conversion of squalene to cholesterol in cardiac tissue. CFA were incorporated into cardiac tissue to a lesser extent in the cancerous process. PSO and BME anti-oxidant properties in pathological condition were only slightly reflected in MDA levels but not in oxysterols formation. Obtained results indicate considerable changes in dietary supplements' biological activity in pathological conditions and the need for clear distinction of drugs and dietary supplements, which is of utmost importance, especially for cancer survivors.
Collapse
Affiliation(s)
- Agnieszka Białek
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland; Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of Polish Academy of Sciences, Postępu 36A Jastrzębiec, 05-552, Magdalenka, Poland.
| | - Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Tomasz Lepionka
- The Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100, Puławy, Poland
| | - Paulina Pachniewicz
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
44
|
Gan L, Gan Z, Dan Y, Li Y, Zhang P, Chen S, Ye Z, Pan T, Wan C, Hu X, Yu Y. Tetrazanbigen Derivatives as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Partial Agonists: Design, Synthesis, Structure-Activity Relationship, and Anticancer Activities. J Med Chem 2021; 64:1018-1036. [PMID: 33423463 DOI: 10.1021/acs.jmedchem.0c01512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrazanbigen (TNBG) is a novel sterol isoquinoline derivative with poor water solubility and moderate inhibitory effects on human cancer cell lines via lipoapoptosis induction. Herein, we developed a series of novel TNBG analogues with improved water solubility and antiproliferative activities. The CCK-8 assay enabled us to identify a novel compound, 14g, which strongly inhibited HepG2 and A549 cell growth with IC50 values of 0.54 and 0.47 μM, respectively. The anticancer effects might be explained by the partial activation and upregulation of PPARγ expression, as indicated by the transactivation assay and western blotting evaluation. Furthermore, the in vitro antiproliferative activity was verified in an in vivo xenograft model in which 14g strongly reduced tumor growth at a dose of 10 mg/kg. In line with these positive observations, 14g exhibited an excellent water solubility of 31.4 mg/mL, which was more than 1000-fold higher than that of TNBG (4 μg/mL). Together, these results suggest that 14g is a promising anticancer therapeutic that deserves further investigation.
Collapse
Affiliation(s)
- Linling Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zongjie Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yanrong Dan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yaowei Li
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peiming Zhang
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shanwen Chen
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zaijun Ye
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Pan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chunmei Wan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Hu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Yu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
45
|
Blencowe M, Ahn IS, Saleem Z, Luk H, Cely I, Mäkinen VP, Zhao Y, Yang X. Gene networks and pathways for plasma lipid traits via multitissue multiomics systems analysis. J Lipid Res 2021; 62:100019. [PMID: 33561811 PMCID: PMC7873371 DOI: 10.1194/jlr.ra120000713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWASs) have implicated ∼380 genetic loci for plasma lipid regulation. However, these loci only explain 17-27% of the trait variance, and a comprehensive understanding of the molecular mechanisms has not been achieved. In this study, we utilized an integrative genomics approach leveraging diverse genomic data from human populations to investigate whether genetic variants associated with various plasma lipid traits, namely, total cholesterol, high and low density lipoprotein cholesterol (HDL and LDL), and triglycerides, from GWASs were concentrated on specific parts of tissue-specific gene regulatory networks. In addition to the expected lipid metabolism pathways, gene subnetworks involved in "interferon signaling," "autoimmune/immune activation," "visual transduction," and "protein catabolism" were significantly associated with all lipid traits. In addition, we detected trait-specific subnetworks, including cadherin-associated subnetworks for LDL; glutathione metabolism for HDL; valine, leucine, and isoleucine biosynthesis for total cholesterol; and insulin signaling and complement pathways for triglyceride. Finally, by using gene-gene relations revealed by tissue-specific gene regulatory networks, we detected both known (e.g., APOH, APOA4, and ABCA1) and novel (e.g., F2 in adipose tissue) key regulator genes in these lipid-associated subnetworks. Knockdown of the F2 gene (coagulation factor II, thrombin) in 3T3-L1 and C3H10T1/2 adipocytes altered gene expression of Abcb11, Apoa5, Apof, Fabp1, Lipc, and Cd36; reduced intracellular adipocyte lipid content; and increased extracellular lipid content, supporting a link between adipose thrombin and lipid regulation. Our results shed light on the complex mechanisms underlying lipid metabolism and highlight potential novel targets for lipid regulation and lipid-associated diseases.
Collapse
Affiliation(s)
- Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zara Saleem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helen Luk
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ville-Petteri Mäkinen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Shen Y, Sun M, Zhu J, Wei M, Li H, Zhao P, Wang J, Li R, Tian L, Tao Y, Shen P, Zhang J. Tissue metabolic profiling reveals major metabolic alteration in colorectal cancer. Mol Omics 2021; 17:464-471. [PMID: 33881127 DOI: 10.1039/d1mo00022e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer, which is still far from being fully understood in colorectal cancer. In order to characterize the metabolic changes in colorectal cancer, we performed metabolomics analysis of paired colon tissues from colorectal cancer patients by using a liquid chromatography-mass spectrometry (LC-MS)-based method. Bioinformation analysis was used to define important metabolites and metabolic pathways, as well as the prognosis significance and expression levels of the key molecules. The results indicated that the metabolite phenotype in cancerous colon tissues was obviously different from their normal counterpart, and we identified a series of important metabolic changes in colorectal cancer, including decreased trends of glucose, citrate, serotonin, 5-hydroxytryptophol and 5-hydroxyindoleacetate, as well as increased trends of glutamate, glutathione, creatine, proline, lactate, fructose 1,6-bisphosphate, succinate, tryptophan, kynurenine and long chain acyl-carnitines. These metabolites are mainly implicated in energy metabolism, amino acid metabolism, glutathione metabolism and fatty acid metabolism. In addition, we found that the expression levels of several key molecules in these pathways were closely correlated with the prognosis of colorectal cancer patients. This study characterizes the metabolic profile in colorectal cancer tissues and provides more insightful understanding of the metabolic reprogramming of colorectal cancer.
Collapse
Affiliation(s)
- Yao Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Iranparast S, Tayebi S, Ahmadpour F, Yousefi B. Tumor-Induced Metabolism and T Cells Located in Tumor Environment. Curr Cancer Drug Targets 2020; 20:741-756. [PMID: 32691710 DOI: 10.2174/1568009620666200720010647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Several subtypes of T cells are located in a tumor environment, each of which supplies their energy using different metabolic mechanisms. Since the cancer cells require high levels of glucose, the conditions of food poverty in the tumor environment can cause inactivation of immune cells, especially the T-effector cells, due to the need for glucose in the early stages of these cells activity. Different signaling pathways, such as PI3K-AKt-mTOR, MAPK, HIF-1α, etc., are activated or inactivated by the amount and type of energy source or oxygen levels that determine the fate of T cells in a cancerous environment. This review describes the metabolites in the tumor environment and their effects on the function of T cells. It also explains the signaling pathway of T cells in the tumor and normal conditions, due to the level of access to available metabolites and subtypes of T cells in the tumor environment.
Collapse
Affiliation(s)
- Sara Iranparast
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sanaz Tayebi
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Liu G, Liu G, Cui X, Xu Y. Transcriptomic Data Analyses Reveal a Reprogramed Lipid Metabolism in HCV-Derived Hepatocellular Cancer. Front Cell Dev Biol 2020; 8:581863. [PMID: 33195224 PMCID: PMC7652758 DOI: 10.3389/fcell.2020.581863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reprograming lipid metabolism, one of the major metabolic alterations in cancer, is believed to play an essential role in cancer development, but the exact molecular mechanism remains elusive. Here, we present a computational study of transcriptomic data of HCC with HCV etiology to investigate how lipid metabolism alters during HCC progression. Our analyses reveal that: (1) cancer tissue cells tend to synthesize fatty acids de novo and its phospholipid derivatives; (2) lipid catabolism and fatty acid oxidation are remarkably down-regulated in HCC; (3) the lipid metabolism in HCC is largely independent of lipids in blood circulation; (4) stage-specific co-expression networks for lipid metabolic genes were identified during HCC progression; and (5) the expression levels of several lipid metabolic genes that are differentially expressed or co-expressed specifically at the HCC stage have a strong correlation with cancer survival. Overall, the results provide detailed information about the reprogramed lipid metabolism in HCV-derived HCC.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Sciences and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Cancer System Biology Center, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guojun Liu
- School of Life Sciences and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,School of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| | - Xiangjun Cui
- School of Life Sciences and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ying Xu
- Cancer System Biology Center, The China-Japan Union Hospital of Jilin University, Changchun, China.,Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| |
Collapse
|
49
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:E2252. [PMID: 32806533 PMCID: PMC7464784 DOI: 10.3390/cancers12082252] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| |
Collapse
|
50
|
Ali AS, Chen R, Raju R, Kshirsagar R, Gilbert A, Zang L, Karger BL, Ivanov AR. Multi-Omics Reveals Impact of Cysteine Feed Concentration and Resulting Redox Imbalance on Cellular Energy Metabolism and Specific Productivity in CHO Cell Bioprocessing. Biotechnol J 2020; 15:e1900565. [PMID: 32170810 PMCID: PMC7880547 DOI: 10.1002/biot.201900565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Indexed: 12/16/2022]
Abstract
Chinese hamster ovary (CHO) cells are currently the primary host cell lines used in biotherapeutic manufacturing of monoclonal antibodies (mAbs) and other biopharmaceuticals. Cellular energy metabolism and endoplasmic reticulum (ER) stress are known to greatly impact cell growth, viability, and specific productivity of a biotherapeutic; but the molecular mechanisms are not fully understood. The authors previously employed multi-omics profiling to investigate the impact of a reduction in cysteine (Cys) feed concentration in a fed-batch process and found that disruption of the redox balance led to a substantial decline in cell viability and titer. Here, the multi-omics findings are expanded, and the impact redox imbalance has on ER stress, mitochondrial homeostasis, and lipid metabolism is explored. The reduced Cys feed activates the amino acid response (AAR), increases mitochondrial stress, and initiates gluconeogenesis. Multi-omics analysis reveals that together, ER stress and AAR signaling shift the cellular energy metabolism to rely primarily on anaplerotic reactions, consuming amino acids and producing lactate, to maintain energy generation. Furthermore, the pathways are demonstrated in which this shift in metabolism leads to a substantial decline in specific productivity and altered mAb glycosylation. Through this work, meaningful bioprocess markers and targets for genetic engineering are identified.
Collapse
Affiliation(s)
- Amr S Ali
- Cell Culture Development, Biogen Inc., Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Analytical Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Rachel Chen
- Analytical Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Ravali Raju
- Cell Culture Development, Biogen Inc., Cambridge, MA, 02142, USA
| | | | - Alan Gilbert
- Cell Culture Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Li Zang
- Analytical Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Barry L Karger
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|