1
|
Sharma A, Balde A, Nazeer RA. A review on animal venom-based matrix metalloproteinase modulators and their therapeutic implications. Int Immunopharmacol 2025; 157:114703. [PMID: 40300352 DOI: 10.1016/j.intimp.2025.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/03/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Matrix Metalloproteinases (MMPs) belong to a family of proteolytic enzymes that degrade extracellular matrix components, such as collagen, elastin, laminin, and fibronectin. They also play a part in tissue remodeling by cleaving and rejoining the tissue proteins. Cancer, neurodegenerative disorders, cardiovascular diseases, arthritis, and chronic inflammatory conditions are just some of the diseases that can start or get worse when different MMPs are not working properly. Venomous Animals such as honeybees, toads, snakes, spiders, scorpions, jellyfish, and sea anemones contain venom-secreting glands, which help them defend against predators and immobilize their prey. The molecules that come from animal venom are a complicated mix of bioactive molecules, such as peptides, enzymes, proteins, and small organic compounds that do a number of biological things. Venom-derived molecules have been found to modulate MMP. These venoms and their components target specific signaling pathways, modifying MMP expression levels to either induce inflammation or exhibit anti-inflammatory effects. In this review, we study and explore different MMPs, such as MMP1, MMP2, MMP3, MMP7, MMP8, and MMP9, and their roles in the progression of certain diseases. We also look at different types of molecules derived from marine and land animal venom that are used as MMP modulators. We look at how they work by targeting specific signaling pathways to change MMPs and how they might be used as a medicine to stop diseases by decreasing MMPs.
Collapse
Affiliation(s)
- Ansumaan Sharma
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Rabea EY, Mahmoud ED, Mohamed NK, Ansary ER, Alrouby MR, Shehata RR, Mokhtar YY, Arullampalam P, Hegazy AM, Al-Sabi A, Abd El-Aziz TM. Potential of Venom-Derived Compounds for the Development of New Antimicrobial Agents. Toxins (Basel) 2025; 17:238. [PMID: 40423321 DOI: 10.3390/toxins17050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
The emergence of antimicrobial resistance is a significant challenge in global healthcare, necessitating innovative techniques to address multidrug-resistant pathogens. Multidrug-resistant pathogens like Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa pose significant public health threats, as they are increasingly resistant to common antibiotics, leading to more severe and difficult-to-treat infections. These pathogens are part of the ESKAPE group, which includes Enterococcus faecium, Staphylococcus aureus, and Enterobacter species. Animal venoms, derived from a wide range of species such as snakes, scorpions, spiders, bees, wasps, and ants, represent a rich source of bioactive peptides. Venoms have been a valuable source for drug discovery, providing unique compounds with therapeutic potential. Venom-derived drugs are known for their increased bioactivity, specificity, and stability compared to synthetic alternatives. These compounds are being investigated for various conditions, including treatments for diabetes, pain relief, cancer, and infections, showcasing their remarkable antimicrobial efficacy. In this review, we provide a comprehensive investigation into the potential of venom-derived compounds for developing new antimicrobial agents, including antibacterial, antifungal, antiviral, and antiparasitic therapeutics. Key venom components, including melittin from bee venom, phospholipase A2 from snake venom, and chlorotoxin from scorpion venom, exhibit potent antimicrobial effects through mechanisms such as membrane disruption, enzymatic inhibition, and immune modulation. We also explore the challenges related to the development and clinical use of venom-derived antimicrobials, including toxicity, stability, and delivery mechanisms. These compounds hold immense promise as transformative tools against resistant pathogens, offering a unique avenue for groundbreaking advancements in antimicrobial research and therapeutic development.
Collapse
Affiliation(s)
- Esraa Yasser Rabea
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Esraa Dakrory Mahmoud
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Nada Khaled Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Erada Rabea Ansary
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mahmoud Roushdy Alrouby
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Rabab Reda Shehata
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Youssef Yasser Mokhtar
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Prakash Arullampalam
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ahmed M Hegazy
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ahmed Al-Sabi
- College of Integrative Studies, Abdullah Al Salem University, Khaldiya 72303, Kuwait
| | - Tarek Mohamed Abd El-Aziz
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
3
|
Balde A, Benjakul S, Nazeer RA. A review on NLRP3 inflammasome modulation by animal venom proteins/peptides: mechanisms and therapeutic insights. Inflammopharmacology 2025; 33:1013-1031. [PMID: 39934538 DOI: 10.1007/s10787-025-01656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The venom peptides from terrestrial as well as aquatic species have demonstrated potential in regulating the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a sophisticated assemblage present in immune cells responsible for detecting and responding to external mediators. The NLRP3 inflammasome plays a role in several pathological conditions such as type 2 diabetes, hyperglycemia, Alzheimer's disease, obesity, autoimmune disorders, and cardiovascular disorders. Venom peptides derived from animal venoms have been discovered to selectively induce certain signalling pathways, such as the NLRP3 inflammasome, mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Experimental evidence has demonstrated that venom peptides can regulate the expression and activation of the NLRP3 inflammasome, resulting in the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Furthermore, these peptides have been discovered to impede the activation of the NLRP3 inflammasome, therefore diminishing inflammation and tissue injury. The functional properties of venom proteins and peptides obtained from snakes, bees, wasps, and scorpions have been thoroughly investigated, specifically targeting the NLRP3 inflammasome pathway, venom proteins and peptides have shown promise as therapeutic agents for the treatment of certain inflammatory disorders. This review discusses the pathophysiology of NLRP3 inflammasome in the onset of various diseases, role of venom as therapeutics. Further, various venom components and their role in the modulation of NLRP3 inflammasome are discoursed. A substantial number of venomous animals and their toxins are yet unexplored, and to comprehensively grasp the mechanisms of action of them and their potential as therapeutic agents, additional research is required which can lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
4
|
Xin K, Sun R, Xiao W, Lu W, Sun C, Lou J, Xu Y, Chen T, Wu D, Gao Y. Short Peptides from Asian Scorpions: Bioactive Molecules with Promising Therapeutic Potential. Toxins (Basel) 2025; 17:114. [PMID: 40137887 PMCID: PMC11946205 DOI: 10.3390/toxins17030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Scorpion venom peptides, particularly those derived from Asian species, have garnered significant attention, offering therapeutic potential in pain management, cancer, anticoagulation, and infectious diseases. This review provides a comprehensive analysis of scorpion venom peptides, focusing on their roles as voltage-gated sodium (Nav), potassium (Kv), and calcium (Cav) channel modulators. It analyzed Nav1.7 inhibition for analgesia, Kv1.3 blockade for anticancer activity, and membrane disruption for antimicrobial effects. While the low targeting specificity and high toxicity of some scorpion venom peptides pose challenges to their clinical application, recent research has made strides in overcoming these limitations. This review summarizes the latest progress in scorpion venom peptide research, discussing their mechanisms of action, therapeutic potential, and challenges in clinical translation. This work aims to provide new insights and directions for the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Kaiyun Xin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Ruize Sun
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Wanyang Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Weijie Lu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Chenhui Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Jietao Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yanyan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| |
Collapse
|
5
|
Bhattacharya B, Bhattacharya S, Khatun S, Bhaktham NA, Maneesha M, Subathra Devi C. Wasp Venom: Future Breakthrough in Production of Antimicrobial Peptides. Protein J 2025; 44:35-47. [PMID: 39633224 DOI: 10.1007/s10930-024-10242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
The emergence of multi-drug-resistant pathogens and the decrease in the discovery of newer antibiotics have led to a quest for novel alternatives. Recently, wasp venom has spiked interest due to the presence of various active compounds, showcasing a diverse range of therapeutic effects. Wasps are creatures of the Hymenoptera order, and their venom chemically comprises antimicrobial peptides such as Anoplin, Mastoparan, Polybia-CP, Polydim-I, and Polybia MP1 that play a significant role in the biological effects of the venom. AMPs belong to the family of cationic peptides with α-helical structure, which exhibits a diversity of structural motifs and are crucial for innate immunity and defence in these creatures. These peptides demonstrate not only antimicrobial properties but also a wide range of other biological activities like anti-biofilm and anti-inflammatory, linked to their varying capacity to interact with biological membranes. Although wasp venom has the potential to be a cutting-edge natural source for the creation of new drugs, its usage is still restricted due to its availability and the lack of sophisticated methods for synthesizing its therapeutic components. Therefore, this review article provides insights about the therapeutic use of the wasp venom peptides against the antimicrobial-resistant pathogens, as well as its constraints and opportunities for future pharmacological development.
Collapse
Affiliation(s)
- Bikramjit Bhattacharya
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Shreshtha Bhattacharya
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Srinjana Khatun
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Namitha A Bhaktham
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - M Maneesha
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C Subathra Devi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Bala AA, Oukkache N, Sanchez EE, Suntravat M, Galan JA. Venoms and Extracellular Vesicles: A New Frontier in Venom Biology. Toxins (Basel) 2025; 17:36. [PMID: 39852989 PMCID: PMC11769160 DOI: 10.3390/toxins17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as environmental and biological toxins, contaminants, and drugs. Notably, EVs present a unique opportunity to deepen our understanding of the pathophysiology of envenomation by natural toxins. Recent advancements in isolating and purifying EV cargo, mass spectrometry techniques, and bioinformatics have positioned EVs as potential biomarkers that could elucidate biological signaling pathways and provide valuable information on the relationship between venomous toxins, their mechanisms of action, and the effectiveness of antivenoms. Additionally, EVs hold promise as proxies for various aspects of envenomation, including the toxin dosage, biological characterization, injury progression, and prognosis during therapeutic interventions. These aspects can be explored through multi-omics technology applied to EV contents from the plasma, saliva, or urine samples of envenomated individuals, offering a comprehensive integrative approach to understanding and managing envenomation cases.
Collapse
Affiliation(s)
- Auwal A. Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco;
| | - Elda E. Sanchez
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Montamas Suntravat
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Jacob A. Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| |
Collapse
|
7
|
So YJ, Jeong H, Kim KH, Ko SG. In Vitro Assays for the Assessment of Safety and Toxicity in Pharmacopuncture Derived from Animal. J Pharmacopuncture 2024; 27:308-321. [PMID: 39741569 PMCID: PMC11656061 DOI: 10.3831/kpi.2024.27.4.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/05/2024] [Accepted: 09/19/2024] [Indexed: 01/03/2025] Open
Abstract
Objectives Among the various treatment methods involving the use of natural substances, pharmacopuncture using animal venom is a relatively new form of acupuncture that has been developed in South Korea and is gaining popularity worldwide. Pharmacopuncture with animal venom is widely used in clinical practice; therefore, ensuring its procedural safety is crucial. This study aimed to evaluate the safety and toxicity of pharmacopuncture using animal venom. Methods In October 2021, nine samples of animal venom-derived pharmacopuncture products were randomly collected from four External Herbal Dispensaries (EHDs). These samples underwent sterility and microbial limit testing to ensure they were free from microbial contamination. Toxicity tests were conducted using three different cell lines to evaluate cytotoxic effects. Results The sterility and microbial limit tests showed no microbial growth in any of the pharmacopuncture samples. However, the toxicity tests revealed that bee venom exhibited strong cytotoxicity. Furthermore, samples containing Bovis Calculus, Fel Ursi, and Moschus also demonstrated varying degrees of cytotoxic effects. Conclusion This study is the first to analyze the safety and toxicity of animal venom-derived pharmacopuncture products, providing evidence for its procedural safety. Although the samples analyzed were limited to four EHDs, these findings highlight the importance of further research on the safety and toxicity of pharmacopuncture to ensure its clinical application is both effective and safe.
Collapse
Affiliation(s)
- Yu-Jin So
- College of Korean Medicine, Woosuk University, Wanju, Republic of Korea
| | - Hyein Jeong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyeong Han Kim
- Department of Preventive Medicine, College of Korean Medicine, Woosuk University, Wanju, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Suntrarachun S, Laoungbua P, Khunsap S, Noiporm J, Suttisee R. Evaluation of cellular immune response in rabbits after exposure to cobra venom and purified toxin fraction. Environ Anal Health Toxicol 2024; 39:e2024029-0. [PMID: 39973075 PMCID: PMC11852295 DOI: 10.5620/eaht.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/29/2024] [Indexed: 02/21/2025] Open
Abstract
Snakebite by a cobra is considered neurotoxic as the cause of neuromuscular paralysis mediated by low molecular weight toxins, which are major toxin components of cobra. However, these toxins represent a problem in generating antibodies owing to their low immunogenicity. Developing complementary strategies to improve the antibody response could be a useful approach to creating better therapeutic antivenoms with higher neutralizing potencies. To develop simple immunization strategies for more potent antivenoms by studying the effects of combining crude cobra venom and toxin fraction in a complementary way. The evaluation of specific cell immunology and cytokine mediators for relevant immune responses will be measured in a rabbit model using four simple immunization strategies. Flow cytometry will be used to quantify the number of B and T cells, and qRT-PCR will be used to ascertain the cytokine genes expressed. B cells with anti-CD20 were seen on D14, and a booster dose was insufficient to maximize the antibodies. Conversely, anti-CD5 for T cells decreased periodically but remained stable. Using a mixture of crude cobra venom and its <10 kDa fraction, peak expression of pro-inflammatory cytokine genes was seen in D42 or D58, with a rise of 4 and 6 folds. Similarly, gene expression of pro-inflammatory cytokines was greater than that of anti-inflammatory cytokines (IL-4 and IL-10), which were up-regulated after D42. Thus, immunization with both the crude and its <10 kDa fraction of cobra venom seems to have synergistic effects that boost cytokines, activate the immune system, and cause lymphocyte differentiation.
Collapse
Affiliation(s)
- Sunutcha Suntrarachun
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Panithi Laoungbua
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Suchitra Khunsap
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Jureeporn Noiporm
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Rattana Suttisee
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
9
|
Hboub H, Ben Mrid R, Bouchmaa N, Oukkache N, El Fatimy R. An in-depth exploration of snake venom-derived molecules for drug discovery in advancing antiviral therapeutics. Heliyon 2024; 10:e37321. [PMID: 39323826 PMCID: PMC11422003 DOI: 10.1016/j.heliyon.2024.e37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Snake venom is a cocktail and rich source of various bioactive compounds that have been extensively studied for their potential as pharmaceutical agents due to their diverse chemical structures and wide range of biological activities. In light of the emergency and the re-emergence of viral infectious diseases that threaten human health and economic systems, exploring new fertile and rich fields such as snake venom is an attractive path for anti-viral drug discovery, especially in the lack of effective vaccines. Although 85 % of reported antiviral molecules belong to the phospholipase A2 (PLA2) family, other protein families including L-amino acid oxidases (LAAO), disintegrins, metalloproteases (SVMPs), and cathelicidins have also shown antiviral activity. Thus, in this review, we have highlighted the antiviral properties of compounds derived from snake venom and their mechanisms of action against virus classes like HIV, Coronaviridae, Flaviviridae, and Paramyxoviridae. Although the initial research emphasis has been on Retroviridae (HIV) and Flaviviridae viruses, it is crucial to extend the exploration of the potential of these compounds to other viruses. The utilization of snake venom-derived compounds as antivirals shows significant promise for the development of novel therapeutics to address viral infections. However, a more in-depth investigation is necessary to fully assess the potential of these compounds against other viruses and unveil the mechanisms underlying their action.
Collapse
Affiliation(s)
- Hicham Hboub
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, 20360, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
10
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
11
|
Lino-López GJ, Ruiz-May E, Elizalde-Contreras JM, Jiménez-Vargas JM, Rodríguez-Vázquez A, González-Carrillo G, Bojórquez-Velázquez E, García-Villalvazo PE, Bermúdez-Guzmán MDJ, Zatarain-Palacios R, Vázquez-Vuelvas OF, Valdez-Velázquez LL, Corzo G. Proteomic Analysis of Heloderma horridum horridum Venom: Assessment to Its Transcriptome and Newfound Proteins. J Proteome Res 2024; 23:3638-3648. [PMID: 39038168 DOI: 10.1021/acs.jproteome.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Heloderma horridum horridum, a venomous reptile native to America, has a venom with potential applications in treating type II diabetes. In this work, H. h. horridum venom was extracted, lyophilized, and characterized using enzymatic assays for hyaluronidase, phospholipase, and protease. Proteomic analysis of the venom was conducted employing bottom-up/shotgun approaches, SDS-PAGE, high-pH reversed-phase chromatography, and fractionation of tryptic peptides using nano-LC-MS/MS. The proteins found in H. h. horridum venom were reviewed according to the classification of the transcriptome previously reported. The proteomic approach identified 101 enzymes, 36 other proteins, 15 protein inhibitors, 11 host defense proteins, and 1 toxin, including novel venom components such as calcium-binding proteins, phospholipase A2 inhibitors, serpins, cathepsin, subtilases, carboxypeptidase-like, aminopeptidases, glycoside hydrolases, thioredoxin transferases, acid ceramidase-like, enolase, multicopper oxidases, phosphoglucose isomerase (PGI), fructose-1,6-bisphosphatase class 1, pentraxin-related, peptidylglycine α-hydroxylating monooxygenase/peptidyl-hydroxyglycine α-amidating lyase, carbonic anhydrase, acetylcholinesterase, dipeptidylpeptidase, and lysozymes. These findings contribute to understanding the venomous nature of H. h. horridum and highlight its potential as a source of bioactive compounds. Data are available via PRoteomeXchange with the identifier PXD052417.
Collapse
Affiliation(s)
- Gisela J Lino-López
- Facultad de Ciencias Químicas, Universidad de Colima, 28400 Coquimatlan, Colima, México
- Departamento de Control Biológico, CNRF-DGSV-SENASICA-SADER, Km 1.5 Carretera Tecomán-Estación FFCC, Col. Tepeyac, 28110 Tecomán, Colima, México
| | - Eliel Ruiz-May
- Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz,México
| | | | | | - Armando Rodríguez-Vázquez
- Centro de Conservación de Vida Silvestre El Palapo, Parcela No. 75 Z-1 P2/2, Predio Las Cuevas del Ejido Agua Zarca, 28400 Coquimatlan, Colima, México
| | - Gabino González-Carrillo
- Tecnológico Nacional de México/ITJMMPyH, U.A. Tamazula. Carretera Tamazula Santa Rosa No. 329, 49650 Tamazula de Gordiano, Jalisco, México
| | | | | | - Manuel de J Bermúdez-Guzmán
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), 28100 Tecomán, Colima, México
| | | | | | | | - Gerardo Corzo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, México
| |
Collapse
|
12
|
Mabunda IG, Zinyemba NK, Pillay S, Offor BC, Muller B, Piater LA. The geographical distribution of scorpions, implication of venom toxins, envenomation, and potential therapeutics in Southern and Northern Africa. Toxicol Res (Camb) 2024; 13:tfae118. [PMID: 39100857 PMCID: PMC11298049 DOI: 10.1093/toxres/tfae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Scorpions are predatory arachnids whose venomous sting primarily affects people in tropical and subtropical regions. Most scorpion stings can only cause localized pain without severe envenomation. Less than one-third of the stings cause systemic envenoming and possibly lead to death. About 350,000 scorpion stings in Northern Africa are recorded yearly, resulting in about 810 deaths. In Eastern/Southern Africa, there are about 79,000 stings recorded yearly, resulting in 245 deaths. Farmers and those living in poverty-stricken areas are among the most vulnerable to getting stung by scorpions. However, compared to adults, children are at greater risk of severe envenomation. Scorpion venom is made up of complex mixtures dominated by peptides and proteins that confer its potency and toxicity. These venom toxins have intra- and interspecies variations associated with the scorpion's habitat, sex, diet, and age. These variations alter the activity of antivenoms used to treat scorpion sting envenomation. Thus, the study of the proteome composition of medically important scorpion venoms needs to be scaled up along their geographical distribution and contributions to envenomation in Southern and Northern Africa. This will help the production of safer, more effective, and broad-spectrum antivenoms within these regions. Here, we review the clinical implications of scorpion sting envenomation in Southern and Northern Africa. We further highlight the compositions of scorpion venoms and tools used in scorpion venomics. We discuss current antivenoms used against scorpion sting envenomation and suggestions for future production of better antivenoms or alternatives. Finally, we discuss the therapeutic properties of scorpion venom.
Collapse
Affiliation(s)
- Isac G Mabunda
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Nodji K Zinyemba
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Shanelle Pillay
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Benedict C Offor
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Beric Muller
- South Africa Venom Suppliers cc, 41 Louis, Trichardt 0920, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| |
Collapse
|
13
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
14
|
Dias NB, de Souza BM, Cid-Alda F, Dorce VAC, Cocchi FK, Palma MS. Profiling the Linear Peptides of Venom from the Brazilian Scorpion Tityus serrulatus: Structural and Functional Characterization. JOURNAL OF NATURAL PRODUCTS 2024; 87:480-490. [PMID: 38408354 DOI: 10.1021/acs.jnatprod.3c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Scorpion venoms are a rich source of bioactive peptides, most of which are neurotoxic, with 30 to 70 amino acid residues in their sequences. There are a scarcity of reports in the literature concerning the short linear peptides found in scorpion venoms. This type of peptide toxin may be selectively extracted from the venom using 50% (v/v) acetonitrile. The use of LC-MS and MS/MS enabled the detection of 12 bioactive short linear peptides, of which six were identified as cryptides. These peptides were shown to be multifunctional, causing hemolysis, mast cell degranulation and lysis, edema, pain, and anxiety, increasing the complexity of the envenomation mechanism. Apparently, the natural functions of these peptide toxins are to induce inflammation and discomfort in the victims of scorpion stings.
Collapse
Affiliation(s)
- Nathalia Baptista Dias
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera (UFRO), Temuco 4811230, Chile
| | - Bibiana Monson de Souza
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), São Paulo 13506-900, Brazil
| | - Fernanda Cid-Alda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera (UFRO), Temuco 4811230, Chile
| | | | - Fernando Kamimura Cocchi
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), São Paulo 13506-900, Brazil
| | - Mario Sergio Palma
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), São Paulo 13506-900, Brazil
| |
Collapse
|
15
|
Guo Q, Huang M, Li M, Chen J, Cheng S, Ma L, Gao B. Diversity and Evolutionary Analysis of Venom Insulin Derived from Cone Snails. Toxins (Basel) 2024; 16:34. [PMID: 38251250 PMCID: PMC10819828 DOI: 10.3390/toxins16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Cone snails possess a diverse array of novel peptide toxins, which selectively target ion channels and receptors in the nervous and cardiovascular systems. These numerous novel peptide toxins are a valuable resource for future marine drug development. In this review, we compared and analyzed the sequence diversity, three-dimensional structural variations, and evolutionary aspects of venom insulin derived from different cone snail species. The comparative analysis reveals that there are significant variations in the sequences and three-dimensional structures of venom insulins from cone snails with different feeding habits. Notably, the venom insulin of some piscivorous cone snails exhibits a greater similarity to humans and zebrafish insulins. It is important to emphasize that these venom insulins play a crucial role in the predatory strategies of these cone snails. Furthermore, a phylogenetic tree was constructed to trace the lineage of venom insulin sequences, shedding light on the evolutionary interconnections among cone snails with diverse diets.
Collapse
Affiliation(s)
- Qiqi Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Q.G.); (M.H.); (M.L.); (J.C.); (S.C.)
| | - Meiling Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Q.G.); (M.H.); (M.L.); (J.C.); (S.C.)
| | - Ming Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Q.G.); (M.H.); (M.L.); (J.C.); (S.C.)
| | - Jiao Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Q.G.); (M.H.); (M.L.); (J.C.); (S.C.)
| | - Shuanghuai Cheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Q.G.); (M.H.); (M.L.); (J.C.); (S.C.)
| | - Linlin Ma
- Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Bingmiao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Q.G.); (M.H.); (M.L.); (J.C.); (S.C.)
| |
Collapse
|
16
|
Bastos V, Pascoal S, Lopes K, Mortari M, Oliveira H. Cytotoxic effects of Chartergellus communis wasp venom peptide against melanoma cells. Biochimie 2024; 216:99-107. [PMID: 37879427 DOI: 10.1016/j.biochi.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Cancer is a huge public health problem being one of the main causes of death globally. Specifically, melanoma is one of the most threatening cancer types due to the metastatic capacity, treatment resistance and mortality rates. It is evident the urgent need for research on new agents with pharmacological potential for cancer treatment, in order to develop new cancer therapeutic strategies and overcome drug resistance. The present work investigated the anti-tumoral potential of Chartergellus-CP1 peptide, isolated from Chartergellus communis wasp venom on human melanoma cell lines with different pigmentation degrees, namely the amelanotic cell line A375 and pigmented cell line MNT-1. Chartergellus-CP1 induced selective cytotoxicity to melanoma cell lines when compared to the lower induced cytotoxicity towards to nontumorigenic keratinocytes. Chartergellus-CP1 peptide induced apoptosis in both melanoma cell lines, cell cycle impairment in amelanotic A375 cells and intracellular ROS increase in pigmented MNT-1 cells. The amelanotic A375 cell line showed higher sensitivity to the peptide than the pigmented cell line MNT-1. From our knowledge, this is the first study reporting the cytotoxic effects of Chartergellus-CP1 on melanoma cells.
Collapse
Affiliation(s)
- Verónica Bastos
- CESAM & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Simone Pascoal
- CESAM & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Kamila Lopes
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Márcia Mortari
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Helena Oliveira
- CESAM & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Barros YVR, de Andrade AO, da Silva LPD, Pedroza LAL, Bezerra IC, Cavalcanti IDL, de Britto Lira Nogueira MC, Mousinho KC, Antoniolli AR, Alves LC, de Lima Filho JL, Moura AV, Rosini Silva ÁA, de Melo Porcari A, Gubert P. Bee Venom Toxic Effect on MDA-MB-231 Breast Cancer Cells and Caenorhabditis Elegans. Anticancer Agents Med Chem 2024; 24:798-811. [PMID: 38500290 DOI: 10.2174/0118715206291634240312062957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Bee venom has therapeutics and pharmacological properties. Further toxicological studies on animal models are necessary due to the severe allergic reactions caused by this product. METHOD Here, Caenorhabditis elegans was used as an in vivo toxicity model, while breast cancer cells were used to evaluate the pharmacological benefits. The bee venom utilized in this research was collected from Apis mellifera species found in Northeast Brazil. The cytotoxicity caused by bee venom was measured by MTT assay on MDA-MB-231 and J774 A.1 cells during 24 - 72 hours of exposure. C. elegans at the L4 larval stage were exposed for three hours to M9 buffer or bee venom. Survival, behavioral parameters, reproduction, DAF-16 transcription factor translocation, the expression of superoxide dismutase (SOD), and metabolomics were analyzed. Bee venom suppressed the growth of MDA-MB-231 cancer cells and exhibited cytotoxic effects on macrophages. Also, decreased C. elegans survival impacted its behaviors by decreasing C. elegans feeding behavior, movement, and reproduction. RESULTS Bee venom did not increase the expression of SOD-3, but it enhanced DAF-16 translocation from the cytoplasm to the nucleus. C. elegans metabolites differed after bee venom exposure, primarily related to aminoacyl- tRNA biosynthesis, glycine, serine and threonine metabolism, and sphingolipid and purine metabolic pathways. Our findings indicate that exposure to bee venom resulted in harmful effects on the cells and animal models examined. CONCLUSION Thus, due to its potential toxic effect and induction of allergic reactions, using bee venom as a therapeutic approach has been limited. The development of controlled-release drug strategies to improve this natural product's efficacy and safety should be intensified.
Collapse
Affiliation(s)
| | | | | | | | | | - Iago Dillion Lima Cavalcanti
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| | - Mariane Cajuba de Britto Lira Nogueira
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Academic Center of Vitória, Federal University of Pernambuco, Pernambuco, Brazil
| | | | | | - Luiz Carlos Alves
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology and Experimental Therapy, Recife, Brazil.cr
| | - José Luiz de Lima Filho
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Alexandre Varão Moura
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Álex Aparecido Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Andréia de Melo Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Department of Biochemistry, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| |
Collapse
|
18
|
Shin MK, Hwang IW, Jang BY, Bu KB, Han DH, Lee SH, Oh JW, Yoo JS, Sung JS. The Identification of a Novel Spider Toxin Peptide, Lycotoxin-Pa2a, with Antibacterial and Anti-Inflammatory Activities. Antibiotics (Basel) 2023; 12:1708. [PMID: 38136742 PMCID: PMC10740532 DOI: 10.3390/antibiotics12121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
With the increasing challenge of controlling infectious diseases due to the emergence of antibiotic-resistant strains, the importance of discovering new antimicrobial agents is rapidly increasing. Animal venoms contain a variety of functional peptides, making them a promising platform for pharmaceutical development. In this study, a novel toxin peptide with antibacterial and anti-inflammatory activities was discovered from the spider venom gland transcriptome by implementing computational approaches. Lycotoxin-Pa2a (Lytx-Pa2a) showed homology to known-spider toxin, where functional prediction indicated the potential of both antibacterial and anti-inflammatory peptides without hemolytic activity. The colony-forming assay and minimum inhibitory concentration test showed that Lytx-Pa2a exhibited comparable or stronger antibacterial activity against pathogenic strains than melittin. Following mechanistic studies revealed that Lytx-Pa2a disrupts both cytoplasmic and outer membranes of bacteria while simultaneously inducing the accumulation of reactive oxygen species. The peptide exerted no significant toxicity when treated to human primary cells, murine macrophages, and bovine red blood cells. Moreover, Lytx-Pa2a alleviated lipopolysaccharide-induced inflammation in mouse macrophages by suppressing the expression of inflammatory mediators. These findings not only suggested that Lytx-Pa2a with dual activity can be utilized as a new antimicrobial agent for infectious diseases but also demonstrated the implementation of in silico methods for discovering a novel functional peptide, which may enhance the future utilization of biological resources.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - In-Wook Hwang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Bo-Young Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Kyung-Bin Bu
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Dong-Hee Han
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Seung-Ho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Jung Sun Yoo
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| |
Collapse
|
19
|
Shin MK, Park HR, Hwang IW, Bu KB, Jang BY, Lee SH, Oh JW, Yoo JS, Sung JS. In Silico-Based Design of a Hybrid Peptide with Antimicrobial Activity against Multidrug-Resistant Pseudomonas aeruginosa Using a Spider Toxin Peptide. Toxins (Basel) 2023; 15:668. [PMID: 38133172 PMCID: PMC10747792 DOI: 10.3390/toxins15120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The escalating prevalence of antibiotic-resistant bacteria poses an immediate and grave threat to public health. Antimicrobial peptides (AMPs) have gained significant attention as a promising alternative to conventional antibiotics. Animal venom comprises a diverse array of bioactive compounds, which can be a rich source for identifying new functional peptides. In this study, we identified a toxin peptide, Lycotoxin-Pa1a (Lytx-Pa1a), from the transcriptome of the Pardosa astrigera spider venom gland. To enhance its functional properties, we employed an in silico approach to design a novel hybrid peptide, KFH-Pa1a, by predicting antibacterial and cytotoxic functionalities and incorporating the amino-terminal Cu(II)- and Ni(II) (ATCUN)-binding motif. KFH-Pa1a demonstrated markedly superior antimicrobial efficacy against pathogens, including multidrug-resistant (MDR) Pseudomonas aeruginosa, compared to Lytx-Pa1a. Notably, KFH-Pa1a exerted several distinct mechanisms, including the disruption of the bacterial cytoplasmic membrane, the generation of intracellular ROS, and the cleavage and inhibition of bacterial DNA. Additionally, the hybrid peptide showed synergistic activity when combined with conventional antibiotics. Our research not only identified a novel toxin peptide from spider venom but demonstrated in silico-based design of hybrid AMP with strong antimicrobial activity that can contribute to combating MDR pathogens, broadening the utilization of biological resources by incorporating computational approaches.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Hye-Ran Park
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - In-Wook Hwang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Kyung-Bin Bu
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Bo-Young Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Seung-Ho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Jung Sun Yoo
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| |
Collapse
|
20
|
Yao A, Ma Y, Sun R, Zou W, Chen X, Zhou M, Ma C, Chen T, Shaw C, Wang L. A Designed Analog of an Antimicrobial Peptide, Crabrolin, Exhibits Enhanced Anti-Proliferative and In Vivo Antimicrobial Activity. Int J Mol Sci 2023; 24:14472. [PMID: 37833918 PMCID: PMC10572522 DOI: 10.3390/ijms241914472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial peptides have gradually attracted interest as promising alternatives to conventional agents to control the worldwide health threats posed by antibiotic resistance and cancer. Crabrolin is a tridecapeptide extracted from the venom of the European hornet (Vespa crabro). Its antibacterial and anticancer potentials have been underrated compared to other peptides discovered from natural resources. Herein, a series of analogs were designed based on the template sequence of crabrolin to study its structure-activity relationship and enhance the drug's potential by changing the number, type, and distribution of charged residues. The cationicity-enhanced derivatives were shown to have improved antibacterial and anticancer activities with a lower toxicity. Notably, the double-arginine-modified product, crabrolin-TR, possessed a potent capacity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 4 μM), which was around thirty times stronger than the parent peptide (MIC = 128 μM). Furthermore, crabrolin-TR showed an in vivo treatment efficacy in a Klebsiella-pneumoniae-infected waxworm model and was non-toxic under its maximum MBC value (MIC = 8 μM), indicating its therapeutic potency and better selectivity. Overall, we rationally designed functional peptides by progressively increasing the number and distribution of charged residues, demonstrating new insights for developing therapeutic molecules from natural resources with enhanced properties, and proposed crabrolin-TR as an appealing antibacterial and anticancer agent candidate for development.
Collapse
Affiliation(s)
- Aifang Yao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Yingxue Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Ruize Sun
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Wanchen Zou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| |
Collapse
|
21
|
Alves-Mondini C, Beltramino M, Jiacomini IG, Karim-Silva S, Dos Santos Antunes N, de Moura J, Aubrey N, Billiald P, Machado-de-Ávila RA, Alvarenga LM, Becker-Finco A. Identification of a common epitope in knottins and phospholipases D present in Loxosceles sp venom by a monoclonal antibody. Int J Biol Macromol 2023; 246:125588. [PMID: 37399872 DOI: 10.1016/j.ijbiomac.2023.125588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
In the Americas and specially in Brazil, the Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta are the three most medically relevant brown spider species, and whose bites can lead to the condition known as loxoscelism. Here, we report the development of a tool capable of identifying a common epitope amongst Loxosceles sp. venom's toxins. A murine monoclonal antibody (LmAb12) and its recombinant fragments (scFv12P and diabody12P) have been produced and characterized. This antibody and its recombinant constructs were able to recognize proteins of Loxosceles spider venoms with specificity. The scFv12P variant was also able to detect low concentrations of Loxosceles venom in a competitive ELISA assay, displaying potential as a venom identification tool. The primary antigenic target of LmAb12 is a knottin, a venom neurotoxin, that has a shared identity of 100 % between the L. intermedia and L. gaucho species and high similarity to L. laeta. Furthermore, we observed LmAb12 was able to partially inhibit in vitro hemolysis, a cellular event typically induced by the Loxosceles sp. venoms. Such behavior might be due to LmAb12 cross-reactivity between the antigenic target of LmAb12 and the venom's dermonecrotic toxins, the PLDs, or even the existence of synergism between these two toxins.
Collapse
Affiliation(s)
- Camila Alves-Mondini
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Martina Beltramino
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Isabella Gizzi Jiacomini
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil; Université de Tours - INRA, UMR 1282, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours Cedex, France
| | - Sabrina Karim-Silva
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Nicolle Dos Santos Antunes
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Juliana de Moura
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Nicolas Aubrey
- Université de Tours - INRA, UMR 1282, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours Cedex, France
| | - Philippe Billiald
- LVTS, INSERM UMR S1148, Paris & Université Paris-Saclay, School of Pharmacy, 91400 Orsay, France
| | - Ricardo Andrez Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Universitário, 88806-000 Criciúma, Santa Catarina, Brazil
| | - Larissa M Alvarenga
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil.
| | - Alessandra Becker-Finco
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| |
Collapse
|
22
|
Shin MK, Hwang IW, Jang BY, Bu KB, Yoo JS, Sung JS. In silico identification of novel antimicrobial peptides from the venom gland transcriptome of the spider Argiope bruennichi (Scopoli, 1772). Front Microbiol 2023; 14:1249175. [PMID: 37577428 PMCID: PMC10416796 DOI: 10.3389/fmicb.2023.1249175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
As the emergence and prevalence of antibiotic-resistant strains have resulted in a global crisis, there is an urgent need for new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit inhibitory activity against a wide spectrum of pathogens and can be utilized as an alternative to conventional antibiotics. In this study, two novel AMPs were identified from the venom transcriptome of the spider Argiope bruennichi (Scopoli, 1772) using in silico methods, and their antimicrobial activity was experimentally validated. Aranetoxin-Ab2a (AATX-Ab2a) and Aranetoxin-Ab3a (AATX-Ab3a) were identified by homology analysis and were predicted to have high levels of antimicrobial activity based on in silico analysis. Both peptides were found to have antibacterial effect against Gram-positive and -negative strains, and, in particular, showed significant inhibitory activity against multidrug-resistant Pseudomonas aeruginosa isolates. In addition, AATX-Ab2a and AATX-Ab3a inhibited animal and vegetable fungal strains, while showing low toxicity to normal human cells. The antimicrobial activity of the peptides was attributed to the increased permeability of microbial membranes. The study described the discovery of novel antibiotic candidates, AATX-Ab2a and AATX-Ab3a, using the spider venom gland transcriptome, and validated an in silico-based method for identifying functional substances from biological resources.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - In-Wook Hwang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Bo-Young Jang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kyung-Bin Bu
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Jung Sun Yoo
- Species Diversity Research Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
23
|
Salimo ZM, Barros AL, Adrião AAX, Rodrigues AM, Sartim MA, de Oliveira IS, Pucca MB, Baia-da-Silva DC, Monteiro WM, de Melo GC, Koolen HHF. Toxins from Animal Venoms as a Potential Source of Antimalarials: A Comprehensive Review. Toxins (Basel) 2023; 15:375. [PMID: 37368676 DOI: 10.3390/toxins15060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health problem due to its high rates of morbidity and mortality. At present, drug therapies and vector control with insecticides are respectively the most commonly used methods for the treatment and control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies to discover new antimalarial molecules as lead compounds for the development of new medicines. In this sense, in the last few decades, animal venoms have attracted attention as a potential source for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom toxins with antimalarial activity found in the literature. From this research, 50 isolated substances, 4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes, and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of Plasmodium and may be important in the context of the resistance of Plasmodium to currently available antimalarial drugs.
Collapse
Affiliation(s)
- Zeca M Salimo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - André L Barros
- Setor de Medicina Veterinária, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Asenate A X Adrião
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Aline M Rodrigues
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Marco A Sartim
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Pro-Reitoria de Pesquisa e Pós-Graduação, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Isadora S de Oliveira
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Manuela B Pucca
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Faculdade de Medicina, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
| | - Djane C Baia-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Faculdade de Farmácia, Universidade Nilton Lins, Manaus 69058-030, Brazil
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus 69057-070, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69080-900, Brazil
| | - Wuelton M Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Gisely C de Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Hector H F Koolen
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| |
Collapse
|
24
|
Diniz-Sousa R, Silva CCA, Pereira SS, da Silva SL, Fernandes PA, Teixeira LMC, Zuliani JP, Soares AM. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int J Biol Macromol 2023; 238:124357. [PMID: 37028634 DOI: 10.1016/j.ijbiomac.2023.124357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil
| | - Cleópatra C A Silva
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil
| | - Soraya S Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Saulo L da Silva
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Faculty of Chemical Sciences, University of Cuenca, Cuenca, Azuay, Ecuador
| | - Pedro A Fernandes
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Luís M C Teixeira
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil; Faculdade Católica de Rondônia (FCR), Porto Velho, Rondônia, Brazil.
| |
Collapse
|
25
|
Gritti MA, González KY, Tavares FL, Teibler GP, Peichoto ME. Exploring the antibacterial potential of venoms from Argentinian animals. Arch Microbiol 2023; 205:121. [PMID: 36934358 DOI: 10.1007/s00203-023-03465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023]
Abstract
The resistance to antimicrobials developed by several bacterial species has become one of the main health problems in recent decades. It has been widely reported that natural products are important sources of antimicrobial compounds. Considering that animal venoms are under-explored in this line of research, in this study, we screened the antibacterial activity of venoms of eight snake and five lepidopteran species from northeastern Argentina. Twofold serial dilutions of venoms were tested by the agar well-diffusion method and the minimum inhibitory concentration (MIC) determination against seven bacterial strains. We studied the comparative protein profile of the venoms showing antibacterial activity. Only the viperid and elapid venoms showed remarkable dose-dependent antibacterial activity towards most of the strains tested. Bothrops diporus venom showed the lowest MIC values against all the strains, and S. aureus ATCC 25923 was the most sensitive strain for all the active venoms. Micrurus baliocoryphus venom was unable to inhibit the growth of Enterococcus faecalis. Neither colubrid snake nor lepidopteran venoms exhibited activity on any bacterial strain tested. The snake venoms exhibiting antibacterial activity showed distinctive protein profiles by SDS-PAGE, highlighting that we could reveal for the first time the main protein families which may be thought to contribute to the antibacterial activity of M. baliocoryphus venom. This study paves the way to search for new antibacterial agents from Argentinian snake venoms, which may be a further opportunity to give an added value to the local biodiversity.
Collapse
Affiliation(s)
- Micaela A Gritti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370, Puerto Iguazú, Argentina
| | - Karen Y González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400, Corrientes, Argentina
| | - Flavio L Tavares
- Universidade Federal da Integração Latino-Americana (UNILA), Av. Tarquínio Joslin dos Santos, nº. 1.000, Jd. Universitário, Foz do Iguaçu, PR, CEP 85870-901, Brazil
| | - Gladys P Teibler
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400, Corrientes, Argentina
| | - María E Peichoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370, Puerto Iguazú, Argentina.
- Universidade Federal da Integração Latino-Americana (UNILA), Av. Tarquínio Joslin dos Santos, nº. 1.000, Jd. Universitário, Foz do Iguaçu, PR, CEP 85870-901, Brazil.
| |
Collapse
|
26
|
Zhang E, Ji X, Ouyang F, Lei Y, Deng S, Rong H, Deng X, Shen H. A minireview of the medicinal and edible insects from the traditional Chinese medicine (TCM). Front Pharmacol 2023; 14:1125600. [PMID: 37007003 PMCID: PMC10060509 DOI: 10.3389/fphar.2023.1125600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Entomoceuticals define a subset of pharmaceuticals derived from insects. The therapeutic effect of insect-derived drugs has been empirically validated by the direct use of various folk medicines originating from three sources in particular: the glandular secretions of insects (e.g., silk, honey, venom), the body parts of the insect or the whole used live or by various processing (e.g., cooked, toasted, ground), and active ingredients extracted from insects or insect-microbe symbiosis. Insects have been widely exploited in traditional Chinese medicine (TCM) relative to other ethnomedicines, especially in the prospect of insect species for medicinal uses. It is noticeable that most of these entomoceuticals are also exploited as health food for improving immune function. In addition, some edible insects are rich in animal protein and have high nutritional value, which are used in the food field, such as insect wine, health supplements and so on. In this review, we focused on 12 insect species that have been widely used in traditional Chinese herbal formulae but have remained less investigated for their biological properties in previous studies. We also combined the entomoceutical knowledge with recent advances in insect omics. This review specifies the underexplored medicinal insects from ethnomedicine and shows their specific medicinal and nutritional roles in traditional medicine.
Collapse
Affiliation(s)
- Enming Zhang
- School of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Xin Ji
- School of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Fang Ouyang
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Yang Lei
- College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Shun Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
- *Correspondence: Shun Deng, ; Haibo Rong,
| | - Haibo Rong
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
- *Correspondence: Shun Deng, ; Haibo Rong,
| | - Xuangen Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Hai Shen
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| |
Collapse
|
27
|
Mortari MR, Cunha AOS, dos Anjos LC, Amaral HO, Quintanilha MVT, Gelfuso EA, Homem-de-Mello M, de Almeida H, Rego S, Maigret B, Lopes NP, dos Santos WF. A new class of peptides from wasp venom: a pathway to antiepileptic/neuroprotective drugs. Brain Commun 2023; 5:fcad016. [PMID: 36844150 PMCID: PMC9945850 DOI: 10.1093/braincomms/fcad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/12/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The ability of venom-derived peptides to disrupt physiological processes in mammals provides an exciting source for pharmacological development. Our research group has identified a new class of neuroactive peptides from the venom of a Brazilian social wasp, Polybia occidentalis, with the potential pharmacological profile to treat epilepsies. The study was divided into five phases: Phase 1 concerned the extraction, isolation and purification of Occidentalin-1202(n) from the crude venom, followed by the synthesis of an identical analogue peptide, named Occidentalin-1202(s). In Phase 2, we described the effects of both peptides in two acute models of epilepsy-kainic acid and pentylenetetrazole-induced model of seizures-and measured estimated ED50 and therapeutic index values, electroencephalographic studies and C-fos evaluation. Phase 3 was a compilation of advanced tests performed with Occidentalin-1202(s) only, reporting histopathological features and its performance in the pilocarpine-induced status epilepticus. After the determination of the antiepileptic activity of Occidentalin-1202(s), Phase 4 consisted of evaluating its potential adverse effects, after chronic administration, on motor coordination (Rotarod) and cognitive impairment (Morris water maze) tests. Finally, in Phase 5, we proposed a mechanism of action using computational models with kainate receptors. The new peptide was able to cross the blood-brain barrier and showed potent antiseizure effects in acute (kainic acid and pentylenetetrazole) and chronic (temporal lobe epilepsy model induced by pilocarpine) models. Motor and cognitive behaviour were not adversely affected, and a potential neuroprotective effect was observed. Occidentalin-1202 can be a potent blocker of the kainate receptor, as assessed by computational analysis, preventing glutamate and kainic acid from binding to the receptor's active site. Occidentalin-1202 is a peptide with promising applicability to treat epilepsy and can be considered an interesting drug model for the development of new medicines.
Collapse
Affiliation(s)
- Márcia Renata Mortari
- Correspondence to: Márcia Renata Mortari Neuropharmacology Laboratory Department of Physiological Sciences, Institute of Biological Sciences University of Brasília, Campus Darcy Ribeiro Asa Norte, Brasília 70910-900, Brazil E-mail:
| | - Alexandra O S Cunha
- Neurobiology and Venoms Laboratory, Department of Biology, Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
| | - Lilian C dos Anjos
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 71910-900, Brazil
| | - Henrique O Amaral
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 71910-900, Brazil
| | - Maria Varela Torres Quintanilha
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 71910-900, Brazil
| | - Erica A Gelfuso
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 71910-900, Brazil
| | - Mauricio Homem-de-Mello
- in Silico Toxicology Laboratory (inSiliTox), Department of Pharmacy, Health Sciences School, University of Brasilia, Brasilia 71910-900, Brazil
| | - Hugo de Almeida
- Team CAPSID, Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA), Vandoeuvre Les Nancy F-54506, France
| | - Solange Rego
- Team CAPSID, Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA), Vandoeuvre Les Nancy F-54506, France
| | - Bernard Maigret
- Team CAPSID, Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA), Vandoeuvre Les Nancy F-54506, France
| | - Norberto P Lopes
- Organic Chemistry Laboratory, Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
| | - Wagner F dos Santos
- Neurobiology and Venoms Laboratory, Department of Biology, Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
| |
Collapse
|
28
|
Cassani NM, Santos IA, Grosche VR, Ferreira GM, Guevara-Vega M, Rosa RB, Pena LJ, Nicolau-Junior N, Cintra ACO, Mineo TP, Sabino-Silva R, Sampaio SV, Jardim ACG. Roles of Bothrops jararacussu toxins I and II: Antiviral findings against Zika virus. Int J Biol Macromol 2023; 227:630-640. [PMID: 36529220 DOI: 10.1016/j.ijbiomac.2022.12.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022]
Abstract
Zika virus is the etiologic agent of Zika fever, and has been previously associated with cases of microcephaly, drawing the attention of the health authorities worldwide. However, no vaccine or antiviral are currently available. Phospholipases A2 (PLA2) isolated from snake venoms have demonstrated antiviral activity against several viruses. Here we demonstrated the anti-ZIKV activity of bothropstoxins-I and II (BthTX-I and II) isolated from Bothrops jararacussu venom. Vero E6 cells were infected with ZIKVPE243 in the presence of compounds for 72 h, when virus titers were evaluated. BthTX-I and II presented strong dose-dependent inhibition of ZIKV, with a SI of 149.1 and 1.44 × 105, respectively. These toxins mainly inhibited the early stages of the replicative cycle, such as during the entry of ZIKV into host cells, as shown by the potent virucidal effect, suggesting the action of these toxins on the virus particles. Moreover, BthTX-I and II presented significant activity towards post-entry stages of the ZIKV replicative cycle. Molecular docking analyses showed that BthTX-I and II potentially interact with DII and DIII domains from ZIKV Envelope protein. Our findings show that these PLA2s could be used as useful templates for the development of future antiviral candidate drugs against Zika fever.
Collapse
Affiliation(s)
- Natasha Marques Cassani
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil; Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil
| | - Giulia Magalhães Ferreira
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Marco Guevara-Vega
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Rafael Borges Rosa
- Rodents Animal Facilities Complex, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil; Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Lindomar José Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Adélia Cristina Oliveira Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Tiago Patriarca Mineo
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil; Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil.
| |
Collapse
|
29
|
Yang Y, Zhu Y, Luo Y, Liu Q, Hua X, Li J, Gao F, Hofer J, Gao X, Xiao L, Song X, Gao S, Hao R. Transcriptome analysis of Mesobuthus martensii revealed the differences of their toxins between females and males. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2143584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Y. Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| | - Y. Zhu
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Y. Luo
- Central Medical District of Chinese PLA General Hospital, Beijing, China
| | - Q. Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| | - X. Hua
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - J. Li
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - F. Gao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - J. Hofer
- Instituto de Ciencias Marinas Y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - X. Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| | - L. Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - X. Song
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - S. Gao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - R. Hao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| |
Collapse
|
30
|
Wells M, Fossépré M, Hambye S, Surin M, Blankert B. Uncovering the antimalarial potential of toad venoms through a bioassay-guided fractionation process. Int J Parasitol Drugs Drug Resist 2022; 20:97-107. [PMID: 36343571 PMCID: PMC9772263 DOI: 10.1016/j.ijpddr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Malaria remains to date one of the most devastating parasitic diseases worldwide. The fight against this disease is rendered more difficult by the emergence and spread of drug-resistant strains. The need for new therapeutic candidates is now greater than ever. In this study, we investigated the antiplasmodial potential of toad venoms. The wide array of bioactive compounds present in Bufonidae venoms has allowed researchers to consider many potential therapeutic applications, especially for cancers and infectious diseases. We focused on small molecules, namely bufadienolides, found in the venom of Rhinella marina (L.). The developed bio-guided fractionation process includes a four solvent-system extraction followed by fractionation using flash chromatography. Sub-fractions were obtained through preparative TLC. All samples were characterized using chromatographic and spectrometric techniques and then underwent testing on in vitro Plasmodium falciparum cultures. Two strains were considered: 3D7 (chloroquine-sensitive) and W2 (chloroquine-resistant). This strategy highlighted a promising activity for one compound named resibufogenin. With IC50 values of (29 ± 8) μg/mL and (23 ± 1) μg/mL for 3D7 and W2 respectively, this makes it an interesting candidate for further investigation. A molecular modelling approach proposed a potential binding mode of resibufogenin to Plasmodium falciparum adenine-triphosphate 4 pump as antimalarial drug target.
Collapse
Affiliation(s)
- Mathilde Wells
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Faculty of Sciences, Research Institute for Biosciences and Research Institute for Materials, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Stéphanie Hambye
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Faculty of Sciences, Research Institute for Biosciences and Research Institute for Materials, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium.
| |
Collapse
|
31
|
Shekarabi SM, Parsian H, Pooshang Bagheri K, Shahbazzadeh D. Oxilipin, a New Anti-cancer Phospholipase A2-like Protein from Iranian Caspian Cobra, Naja Naja Oxiana. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e129616. [PMID: 36937210 PMCID: PMC10016118 DOI: 10.5812/ijpr-129616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
Abstract
The discovery of novel anti-cancer agents from natural resources is highly necessary. Concerning the above problem, the purpose of this study was to discover an anti-cancer compound from Caspian cobra venom. Fractionation of Caspian cobra venom was performed by gel filtration and IEX chromatography. The results showed an anti-cancer protein nominated as Oxilipin. Activity and toxicity of Oxilipin were studied on the colon SW480 cancer cell line using MTT, LDH release, PI staining, morphological cell analysis, hemolysis, and anti-proliferation assays. Oxilipin, an 11kDa protein purified from the venom of the Caspian cobra. LC/MS/MS analysis of obtained protein showed homology with Phospholipase A2 from Naja naja oxiana. 40 µg/ml of Oxilipin can induce an apoptotic effect in SW480 cell line up to 90%; meanwhile, this amount can induce only one-third of cytotoxicity on a normal cell. In this study, Iranian cobra venom was found to have cytotoxic effects on SW480 colon cancer tumor cells, with the least cytotoxicity on normal cells on HEK-293. Given that Oxilipin has slight toxicity on normal cells, it can be hypothesized that the obtained peptide can be considered as a drug lead in an animal model study of colon cancer.
Collapse
Affiliation(s)
- Seyed Mahdi Shekarabi
- Biotechnology Research Center, Medical Biotechnology Department, Venom and Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Kamran Pooshang Bagheri
- Biotechnology Research Center, Medical Biotechnology Department, Venom and Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Delavar Shahbazzadeh
- Biotechnology Research Center, Medical Biotechnology Department, Venom and Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
- Corresponding Author: Biotechnology Research Center, Medical Biotechnology Department, Venom and Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
32
|
Soumoy L, Ghanem GE, Saussez S, Journe F. Bufalin for an innovative therapeutic approach against cancer. Pharmacol Res 2022; 184:106442. [PMID: 36096424 DOI: 10.1016/j.phrs.2022.106442] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium.
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium; Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| |
Collapse
|
33
|
Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933-2022). Animals (Basel) 2022; 12:2058. [PMID: 36009648 PMCID: PMC9405337 DOI: 10.3390/ani12162058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Snake envenomation is a severe economic and health concern affecting countries worldwide. Snake venom carries a wide variety of small peptides and proteins with various immunological and pharmacological properties. A few key research areas related to snake venom, including its applications in treating cancer and eradicating antibiotic-resistant bacteria, have been gaining significant attention in recent years. The goal of the current study was to analyze the global profile of literature in snake venom research. This study presents a bibliometric review of snake venom-related research documents indexed in the Scopus database between 1933 and 2022. The overall number of documents published on a global scale was 2999, with an average annual production of 34 documents. Brazil produced the highest number of documents (n = 729), followed by the United States (n = 548), Australia (n = 240), and Costa Rica (n = 235). Since 1963, the number of publications has been steadily increasing globally. At a worldwide level, antivenom, proteomics, and transcriptomics are growing hot issues for research in this field. The current research provides a unique overview of snake venom research at global level from 1933 through 2022, and it may be beneficial in guiding future research.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
34
|
Analysis of Structural Determinants of Peptide MS 9a-1 Essential for Potentiating of TRPA1 Channel. Mar Drugs 2022; 20:md20070465. [PMID: 35877758 PMCID: PMC9320628 DOI: 10.3390/md20070465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
The TRPA1 channel is involved in a variety of physiological processes and its activation leads to pain perception and the development of inflammation. Peptide Ms 9a-1 from sea anemone Metridium senile is a positive modulator of TRPA1 and causes significant analgesic and anti-inflammatory effects by desensitization of TRPA1-expressing sensory neurons. For structural and functional analysis of Ms 9a-1, we produced four peptides—Ms 9a-1 without C-terminal domain (abbreviated as N-Ms), short C-terminal domain Ms 9a-1 alone (C-Ms), and two homologous peptides (Ms 9a-2 and Ms 9a-3). All tested peptides possessed a reduced potentiating effect on TRPA1 compared to Ms 9a-1 in vitro. None of the peptides reproduced analgesic and anti-inflammatory properties of Ms 9a-1 in vivo. Peptides N-Ms and C-Ms were able to reduce pain induced by AITC (selective TRPA1 agonist) but did not decrease AITC-induced paw edema development. Fragments of Ms 9a-1 did not effectively reverse CFA-induced thermal hyperalgesia and paw edema. Ms 9a-2 and Ms 9a-3 possessed significant effects and anti-inflammatory properties in some doses, but their unexpected efficacy and bell-shape dose–responses support the hypothesis of other targets involved in their effects in vivo. Therefore, activity comparison of Ms 9a-1 fragments and homologues peptides revealed structural determinants important for TRPA1 modulation, as well as analgesic and anti-inflammatory properties of Ms9a-1.
Collapse
|
35
|
Abstract
The deleterious consequences of snake envenomation are due to the extreme protein complexity of snake venoms. Therefore, the identification of their components is crucial for understanding the clinical manifestations of envenomation pathophysiology and for the development of effective antivenoms. In addition, snake venoms are considered as libraries of bioactive molecules that can be used to develop innovative drugs. Numerous separation and analytical techniques are combined to study snake venom composition including chromatographic techniques such as size exclusion and RP-HPLC and electrophoretic techniques. Herein, we present in detail these existing techniques and their applications in snake venom research. In the first part, we discuss the different possible technical combinations that could be used to isolate and purify SV proteins using what is known as bioassay-guided fractionation. In the second part, we describe four different proteomic strategies that could be applied for venomics studies to evaluate whole venom composition, including the mostly used technique: RP-HPLC. Eventually, we show that to date, there is no standard technique used for the separation of all snake venoms. Thus, different combinations might be developed, taking into consideration the main objective of the study, the available resources, and the properties of the target molecules to be isolated.
Collapse
|
36
|
Antitumoral potential of Chartergellus-CP1 peptide from Chartergellus communis wasp venom in two different breast cancer cell lines (HR+ and triple-negative). Toxicon 2022; 216:148-156. [PMID: 35839869 DOI: 10.1016/j.toxicon.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer represents the most incident cancer in women. Surgery, chemotherapy, radiation therapy, and hormone therapy remain the main treatment for this type of cancer. However, increasing resistance to anti-cancer drugs through poor response for some types of breast cancer to treatments highlights the need to develop new therapeutic agents to fight the disease. In this study, we evaluated the anti-tumor potential of the Chartergellus-CP1 peptide isolated from the wasp venom of Chartergellus communis in human breast cancer cell lines MCF-7 (HR+) and MDA-MB-231 (triple-negative). Cells viability, morphology, cell cycle dynamics, reactive oxygen species (ROS) production, and apoptosis were assessed for both cell lines after exposure to Chartergellus-CP1 during 24 and 48h. The results showed that Chartergellus-CP1 led to a significant increase of cells in the S phase in addition to a high generation of ROS (being more evident in the MCF-7 cell line) associated with apoptotic cell death. This work demonstrates, for the first time, the cytotoxic effects of Chatergellus-CP1 on human breast cancer cell lines including cell cycle profile, oxidative stress generation, and cell death mechanisms.
Collapse
|
37
|
Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review. Arch Virol 2022; 167:1763-1772. [PMID: 35723756 DOI: 10.1007/s00705-022-05494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Arthropod-borne viruses (arboviruses), such as Zika virus (ZIKV), chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and West Nile virus (WNV), are pathogens of global importance. Therefore, there has been an increasing need for new drugs for the treatment of these viral infections. In this context, antimicrobial peptides (AMPs) obtained from animal venoms stand out as promising compounds because they exhibit strong antiviral activity against emerging arboviral pathogens. Thus, we systematically searched and critically analyzed in vitro and in vivo studies that evaluated the anti-arbovirus effect of peptide derivatives from toxins produced by vertebrates and invertebrates. Thirteen studies that evaluated the antiviral action of 10 peptides against arboviruses were included in this review. The peptides were derived from the venom of scorpions, spiders, wasps, snakes, sea snails, and frogs and were tested against DENV, ZIKV, YFV, WNV, and CHIKV. Despite the high structural variety of the peptides included in this study, their antiviral activity appears to be associated with the presence of positive charges, an excess of basic amino acids (mainly lysine), and a high isoelectric point (above 8). These peptides use different antiviral mechanisms, the most common of which is the inhibition of viral replication, release, entry, or fusion. Moreover, peptides with virucidal and cytoprotective (pre-treatment) effects were also identified. In conclusion, animal-venom-derived peptides stand out as a promising alternative in the search and development of prototype antivirals against arboviruses.
Collapse
|
38
|
Joglekar AV, Dehari D, Anjum MM, Dulla N, Chaudhuri A, Singh S, Agrawal AK. Therapeutic potential of venom peptides: insights in the nanoparticle-mediated venom formulations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00415-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Venoms are the secretions produced by animals, generally for the purpose of self-defense or catching a prey. Biochemically venoms are mainly composed of proteins, lipids, carbohydrates, ions, etc., and classified into three major classes, viz. neurotoxic, hemotoxic and cytotoxic based upon their mode of action. Venoms are composed of different specific peptides/toxins which are responsible for their unique biological actions. Though venoms are generally seen as a source of death, scientifically venom is a complex biochemical substance having a specific pharmacologic action which can be used as agents to diagnose and cure a variety of diseases in humans.
Main body
Many of these venoms have been used since centuries, and their specified therapies can also be found in ancient texts such as Charka Samhita. The modern-day example of such venom therapeutic is captopril, an antihypertensive drug developed from venom of Bothrops jararaca. Nanotechnology is a modern-day science of building materials on a nanoscale with advantages like target specificity, increased therapeutic response and diminished side effects. In the present review we have introduced the venom, sources and related constituents in brief, by highlighting the therapeutic potential of venom peptides and focusing more on the nanoformulations-based approaches. This review is an effort to compile all such report to have an idea about the future direction about the nanoplatforms which should be focused to have more clinically relevant formulations for difficult to treat diseases.
Conclusion
Venom peptides which are fatal in nature if used cautiously and effectively can save life. Several research findings suggested that many of the fatal diseases can be effectively treated with venom peptides. Nanotechnology has emerged as novel strategy in diagnosis, treatment and mitigation of diseases in more effective ways. A variety of nanoformulation approaches have been explored to enhance the therapeutic efficacy and reduce the toxicity and targeted delivery of the venom peptide conjugated with it. We concluded that venom peptides along with nanoparticles can evolve as the new era for potential treatments of ongoing and untreatable diseases.
Graphical Abstract
Collapse
|
39
|
Kowalski K, Marciniak P, Rychlik L. A new, widespread venomous mammal species: hemolytic activity of Sorex araneus venom is similar to that of Neomys fodiens venom. ZOOLOGICAL LETTERS 2022; 8:7. [PMID: 35672837 PMCID: PMC9172195 DOI: 10.1186/s40851-022-00191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Venom production has evolved independently many times in the animal kingdom, although it is rare among mammals. Venomous shrews produce toxins in their salivary glands and use their venoms to hunt and store prey. Thus far, the toxicity and composition of shrew venoms have been studied only in two shrew species: the northern short-tailed shrew, Blarina brevicauda, and the Eurasian water shrew, Neomys fodiens. Venom of N. fodiens has potent paralytic activity which enables hunting and storing prey in a comatose state. Here, we assayed the hemolytic effects of extracts from salivary glands of N. fodiens and the common shrew, Sorex araneus, in erythrocytes of Pelophylax sp. frogs. We identified toxins in shrew venom by high-performance liquid chromatography coupled to tandem mass spectrometry. RESULTS Our results prove, confirming a suggestion made four centuries ago, that S. araneus is venomous. We also provide the first experimental evidence that shrew venoms produce potent hemolysis in frog erythrocytes. We found significant concentration-dependent effects of venoms of N. fodiens and S. araneus on hemolysis of red blood cells evaluated as hemoglobin release. Treatment of erythrocytes with N. fodiens venom at concentrations of 1.0 and 0.5 mg/ml and with S. araneus venom at concentration of 1.0 mg/ml caused an increased release of hemoglobin. Our findings confirm that hemolytic effects of N. fodiens venom are stronger than those produced by S. araneus venom. We identified four toxins in the venom of N. fodiens: proenkephalin, phospholipase A2 (PLA2), a disintegrin and metalloproteinase domain-containing protein (ADAM) and lysozyme C, as well as a non-toxic hyaluronidase. In the venom of S. araneus we found five toxins: proenkephalin, kallikrein 1-related peptidase, beta-defensin, ADAM and lysozyme C. PLA2 and ADAMs are likely to produce hemolysis in frog erythrocytes. CONCLUSIONS Our results clearly show that shrew venoms possess hemolytic action that may allow them to hunt larger prey. Since a member of the numerous genus Sorex is venomous, it is likely that venom production among shrews and other eulipotyphlans may be more widespread than it has previously been assumed.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Vertebrate Zoology and Ecology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
40
|
Guido-Patiño JC, Plisson F. Profiling hymenopteran venom toxins: Protein families, structural landscape, biological activities, and pharmacological benefits. Toxicon X 2022; 14:100119. [PMID: 35372826 PMCID: PMC8971319 DOI: 10.1016/j.toxcx.2022.100119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hymenopterans are an untapped source of venom secretions. Their recent proteo-transcriptomic studies have revealed an extraordinary pool of toxins that participate in various biological processes, including pain, paralysis, allergic reactions, and antimicrobial activities. Comprehensive and clade-specific campaigns to collect hymenopteran venoms are therefore needed. We consider that data-driven bioprospecting may help prioritise sampling and alleviate associated costs. This work established the current protein landscape from hymenopteran venoms to evaluate possible sample bias by studying their origins, sequence diversity, known structures, and biological functions. We collected all 282 reported hymenopteran toxins (peptides and proteins) from the UniProt database that we clustered into 21 protein families from the three studied clades - wasps, bees, and ants. We identified 119 biological targets of hymenopteran toxins ranging from pathogen membranes to eukaryotic proteases, ion channels and protein receptors. Our systematic study further extended to hymenopteran toxins' therapeutic and biotechnological values, where we revealed promising applications in crop pests, human infections, autoimmune diseases, and neurodegenerative disorders. The hymenopteran toxin diversity includes 21 protein families from 81 species. Some toxins are shared across wasps, bees and ants, others are clade-specific. Their venoms contain membrane-active peptides, neurotoxins, allergens and enzymes. Hymenopteran toxins have been tested against a total of 119 biological targets. Hymenopteran toxins were predominantly evaluated as anti-infective agents.
Collapse
Affiliation(s)
- Juan Carlos Guido-Patiño
- Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
- Corresponding author.
| |
Collapse
|
41
|
Hwang SM, Jo YY, Cohen CF, Kim YH, Berta T, Park CK. Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. Int J Mol Sci 2022; 23:ijms23105772. [PMID: 35628583 PMCID: PMC9147560 DOI: 10.3390/ijms23105772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Youn-Yi Jo
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon 21565, Korea;
| | - Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
| | - Yong-Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
- Correspondence: (T.B.); (C.-K.P.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
- Correspondence: (T.B.); (C.-K.P.)
| |
Collapse
|
42
|
Gorai B, Vashisth H. Structures and interactions of insulin-like peptides from cone snail venom. Proteins 2022; 90:680-690. [PMID: 34661928 PMCID: PMC8816879 DOI: 10.1002/prot.26265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
The venomous insulin-like peptides released by certain cone snails stimulate hypoglycemic shock to immobilize fish and catch the prey. Compared to human insulin (hIns), the cone snail insulins (Con-Ins) are typically monomeric and shorter in sequence, yet they exhibit moderate hIns-like biological activity. We have modeled six variants of Con-Ins (G3, K1, K2, T1A, T1B, and T2) and carried out explicit-solvent molecular dynamics (MD) simulations of eight types of insulins, two with known structures (hIns and Con-Ins-G1) and six Con-Ins with modeled structures, to characterize key residues of each insulin that interact with the truncated human insulin receptor (μIR). We show that each insulin/μIR complex is stable during explicit-solvent MD simulations and hIns interactions indicate the highest affinity for the "site 1" of IR. The residue contact maps reveal that each insulin preferably interacts with the αCT peptide than the L1 domain of IR. Through analysis of the average nonbonded interaction energy contribution of every residue of each insulin for the μIR, we probe the residues establishing favorable interactions with the receptor. We compared the interaction energy of each residue of every Con-Ins to the μIR and observed that γ-carboxylated glutamate (Gla), His, Thr, Tyr, Tyr/His, and Asn in Con-Ins are favorable substitutions for GluA4, AsnA21, ValB12, LeuB15, GlyB20, and ArgB22 in hIns, respectively. The identified insulin analogs, although lacking the last eight residues of the B-chain of hIns, bind strongly to μIR. Our findings are potentially useful in designing potent fast-acting therapeutic insulin.
Collapse
Affiliation(s)
- Biswajit Gorai
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
43
|
NEERATI P, MUNIGADAPA S. Novel Indole Derivative as the First P-glycoprotein Inhibitor from the Skin of Indian Toad <i>(Bufo melanostictus)</i>. Turk J Pharm Sci 2022; 19:63-69. [DOI: 10.4274/tjps.galenos.2021.47417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Evaluation of the effects of Loxosceles intermedia’s venom in zebrafish. Toxicol Rep 2022; 9:1410-1418. [DOI: 10.1016/j.toxrep.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/21/2022] Open
|
45
|
Alvarenga LM, Cardenas GAC, Jiacomini IG, Ramírez MI. A new insight into the cellular mechanisms of envenomation: Elucidating the role of extracellular vesicles in Loxoscelism. Toxicol Lett 2021; 350:202-212. [PMID: 34314803 DOI: 10.1016/j.toxlet.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023]
Abstract
Envenomation by the Loxosceles genus spiders is a recurring health issue worldwide and specially in the Americas. The physiopathology of the envenomation is tightly associated to the venom's rich toxin composition, able to produce a local dermonecrotic lesion that can evolve systemically and if worsened, might result in multiple organ failure and lethality. The cellular and molecular mechanisms involved with the physiopathology of Loxoscelism are not completely understood, however, the venom's Phospholipases D (PLDs) are known to trigger membrane injury in various cell types. Here, we report for the first time the Loxosceles venom's ability to stimulate the production of extracellular vesicles (EVs) in various human cell lineages. Components of the Loxosceles venom were also detectable in the cargo of these vesicles, suggesting that they may be implicated in the process of extracellular venom release. EVs from venom treated cells exhibited phospholipase D activity and were able to induce in vitro hemolysis in human red blood cells and alter the HEK cell membranes' permeability. Nonetheless, the PLD activity was inhibited when an anti-venom PLDs monoclonal antibody was co-administered with the whole venom. In summary, our findings shed new light on the mechanisms underlying cellular events in the context of loxoscelism and suggest a crucial role of EVs in the process of envenomation.
Collapse
Affiliation(s)
- Larissa Magalhães Alvarenga
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | - Isabella Gizzi Jiacomini
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcel Ivan Ramírez
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de Tripanossomatideos, Instituto Carlos Chagas-Fiocruz, Curitiba, PR, Brazil
| |
Collapse
|
46
|
Ding W, Zhang X, Zhao X, Jing W, Cao Z, Li J, Huang Y, You X, Wang M, Shi Q, Bing X. A Chromosome-Level Genome Assembly of the Mandarin Fish ( Siniperca chuatsi). Front Genet 2021; 12:671650. [PMID: 34249093 PMCID: PMC8262678 DOI: 10.3389/fgene.2021.671650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
The mandarin fish, Siniperca chuatsi, is an economically important perciform species with widespread aquaculture practices in China. Its special feeding habit, acceptance of only live prey fishes, contributes to its delicious meat. However, little is currently known about related genetic mechanisms. Here, we performed whole-genome sequencing and assembled a 758.78 Mb genome assembly of the mandarin fish, with the scaffold and contig N50 values reaching 2.64 Mb and 46.11 Kb, respectively. Approximately 92.8% of the scaffolds were ordered onto 24 chromosomes (Chrs) with the assistance of a previously established genetic linkage map. The chromosome-level genome contained 19,904 protein-coding genes, of which 19,059 (95.75%) genes were functionally annotated. The special feeding behavior of mandarin fish could be attributable to the interaction of a variety of sense organs (such as vision, smell, and endocrine organs). Through comparative genomics analysis, some interesting results were found. For example, olfactory receptor (OR) genes (especially the beta and delta types) underwent a significant expansion, and endocrinology/vision related npy, spexin, and opsin genes presented various functional mutations. These may contribute to the special feeding habit of the mandarin fish by strengthening the olfactory and visual systems. Meanwhile, previously identified sex-related genes and quantitative trait locis (QTLs) were localized on the Chr14 and Chr17, respectively. 155 toxin proteins were predicted from mandarin fish genome. In summary, the high-quality genome assembly of the mandarin fish provides novel insights into the feeding habit of live prey and offers a valuable genetic resource for the quality improvement of this freshwater fish.
Collapse
Affiliation(s)
- Weidong Ding
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xiaomeng Zhao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wu Jing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zheming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Min Wang
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xuwen Bing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
47
|
Fernandes CFC, Pereira SS, Luiz MB, Silva NKRL, Silva MCS, Marinho ACM, Fonseca MHG, Furtado GP, Trevizani R, Nicolete R, Soares AM, Zuliani JP, Stabeli RG. Engineering of single-domain antibodies for next-generation snakebite antivenoms. Int J Biol Macromol 2021; 185:240-250. [PMID: 34118288 DOI: 10.1016/j.ijbiomac.2021.06.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Given the magnitude of the global snakebite crisis, strategies to ensure the quality of antivenom, as well as the availability and sustainability of its supply are under development by several research groups. Recombinant DNA technology has allowed the engineering of monoclonal antibodies and recombinant fragments as alternatives to conventional antivenoms. Besides having higher therapeutic efficacy, with broad neutralization capacity against local and systemic toxicity, novel antivenoms need to be safe and cost-effective. Due to the biological and physical chemical properties of camelid single-domain antibodies, with high volume of distribution to distal tissue, their modular format, and their versatility, their biotechnological application has grown considerably in recent decades. This article presents the most up-to-date developments concerning camelid single-domain-based antibodies against major toxins from snake venoms, the main venomous animals responsible for reported envenoming cases and related human deaths. A brief discussion on the composition, challenges, and perspectives of antivenoms is presented, as well as the road ahead for next-generation antivenoms based on single-domain antibodies.
Collapse
Affiliation(s)
| | - Soraya S Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Nauanny K R L Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcela Cristina S Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | | | | | | | | | | | - Andreimar M Soares
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil; Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | - Rodrigo G Stabeli
- Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
48
|
Bevalian P, Pashaei F, Akbari R, Pooshang Bagheri K. Eradication of vancomycin-resistant Staphylococcus aureus on a mouse model of third-degree burn infection by melittin: An antimicrobial peptide from bee venom. Toxicon 2021; 199:49-59. [PMID: 34087287 DOI: 10.1016/j.toxicon.2021.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 01/10/2023]
Abstract
Third-degree burn infections caused by antibiotic-resistant bacteria are of high clinical concern. Chemical antibiotics are not promising in eradication of bacterial infections. In this challenging condition, antimicrobial peptides (AMPs) are recently introduced as novel promising agents to overcome the issue. Accordingly, our study aimed to evaluate the efficiency of 'melittin' as natural peptide in bee venom, in eradicating vancomycin resistant Staphylococcus aureus (VRSA) on a mouse model of third-degree burn infection. In vitro pharmacological value of melittin was determined by examining its inhibitory and killing activities on VRSA isolates at different doses and time periods. The action mechanism of 'melittin' was evaluated by fluorescent release assay and Field Emission Scanning Electron Microscopy (FE-SEM) analyses. In vivo activity and toxicity of melittin were also examined on a mouse model of third-degree burn infection. The Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC) of melittin on all isolates ranged from '0.125-2 μg/mL' and '0.125-4 μg/mL', respectively. Rapid antibacterial activity of melittin on VRSA isolates was demonstrated by killing kinetics assays. Fluorometric and FE-SEM analyses indicated the membranolytic effects of melittin on VRSA isolates. The colonized VRSA bacteria were eradicated by melittin at 16 μg, in a single dose. No dermal toxicity and in vivo hemolysis were observed in the examined mice. The lack of in vivo toxicity of melittin along with its potent antibacterial activity indicated its promising therapeutic value as a topical drug against S. aureus associated third-degree burn infections.
Collapse
Affiliation(s)
- Parvaneh Bevalian
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Pashaei
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Akbari
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
49
|
Biotechnological Application of Animal Toxins as Potential Treatments for Diabetes and Obesity. CURRENT TROPICAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40475-021-00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Bagheri-Ziari S, Shahbazzadeh D, Sardari S, Sabatier JM, Pooshang Bagheri K. Discovery of a New Analgesic Peptide, Leptucin, from the Iranian Scorpion, Hemiscorpius lepturus. Molecules 2021; 26:molecules26092580. [PMID: 33925223 PMCID: PMC8124257 DOI: 10.3390/molecules26092580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Hemiscorpius lepturus scorpion stings do not induce considerable pain based on epidemiological surveys conducted in the southwest part of Iran. Accordingly, this study was aimed to identify the analgesic molecule in H. lepturus venom by analyzing a cDNA library of the scorpion venom gland looking for sequences having homology with known animal venom analgesic peptides. The analgesic molecule is a cysteine rich peptide of 55 amino acids. the synthetic peptide was deprotected and refolded. RP-HPLC, Ellman's, and DLS assays confirmed the refolding accuracy. Circular dichroism (CD) showed helix and beta sheet contents. This peptide, called leptucin, demonstrated 95% analgesic activity at the dose of 0.48 mg/kg in hot plate assay. Leptucin at the doses of 0.32, 0.48, and 0.64 mg/kg showed 100% activity in thermal tail flick test. No hemolysis or cytotoxicity was observed at 8 and 16 µg. Histopathology evaluations indicated no hepatotoxicity, nephrotoxicity, and cardiotoxicity. We thus report that leptucin is the analgesic agent of H. lepturus venom. Regarding the high in vivo efficacy of leptucin and the fact it shows no observable toxicity, it could be suggested as a drug lead in a preclinical study of acute pain as well as the study of its mechanism of action.
Collapse
Affiliation(s)
- Sedigheh Bagheri-Ziari
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.B.-Z.); (D.S.)
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.B.-Z.); (D.S.)
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology (INP), Faculté de Pharmacie, Université d’Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, CEDEX, 13385 Marseille, France;
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.B.-Z.); (D.S.)
- Correspondence:
| |
Collapse
|