1
|
Gaikwad A, Parizi MK, Winkel A, Stiesch M. Osteoblast cell behavior on polyetheretherketone dental implant surfaces treated with different grit size aluminum oxide particles: An in vitro analysis. J Prosthet Dent 2025; 133:531-539. [PMID: 38594087 DOI: 10.1016/j.prosdent.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/11/2024]
Abstract
STATEMENT OF PROBLEM The hydrophobic and bioinert nature of polyetheretherketone (PEEK) implants needs to be addressed for successful osseointegration. PURPOSE The purpose of this in vitro study was to evaluate the osteoblast cell behavior on PEEK implant surfaces treated with airborne-particle abrasion using different grit size aluminum oxide (Al2O3) particles. MATERIAL AND METHODS Disk-shaped specimens (n=96) were prepared from medical grade PEEK rods and were distributed into 4 groups (n=24) of untreated PEEK (PEEK 0), airborne-particle abrasion using 50-μm Al2O3 particles (PEEK 50), airborne-particle abrasion using 110-μm Al2O3 particles (PEEK 110), and airborne-particle abrasion using 150-μm Al2O3 particles (PEEK 150). The surface characteristics were assessed using water contact angle (WCA) measurements and scanning electron microscopy (SEM). MG-63 osteoblast cells were cultured, and the biocompatibility of PEEK was assessed using a CellTiter-blue cell viability assay and florescence staining at day 1, 3, and 7. The specimens were stained with Alizarin red to assess the osteoblast cell differentiation on day 10 and 14. The Levene test was used to test the homogeneity of variances. One-way and Welch ANOVA with post hoc corrections were used to assess the overall statistical significance of differences among the groups (α=.05). RESULTS The lowest mean WCA was demonstrated in PEEK 150 (49.25 ±5.51) and the highest in PEEK 0 (89.14 ±4.24) (P<.001). SEM images of PEEK 150 illustrated a more complex structure with a large area of globular outcroppings throughout the surface. PEEK 150 showed the highest cell metabolic activity at each time point with florescence staining showing a substantial cell confluence at day 3 and 7. Although PEEK 150 did not show a significant increase in cell proliferation, the number of cells attached was significantly higher than other groups (P<.05). PEEK 110 and 150 also showed a substantial increase in the extent of mineralization. CONCLUSIONS Airborne-particle abrasion using moderate Al2O3 grit size (110- or 150-μm) improved the hydrophilicity and osteoblast cell behavior on PEEK implants.
Collapse
Affiliation(s)
- Amit Gaikwad
- Doctoral Researcher, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany and Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Marjan Kheirmand Parizi
- Doctoral Researcher, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany and Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Andreas Winkel
- Postdoctoral Researcher, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany and Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.
| | - Meike Stiesch
- Professor and Head, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany and Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
2
|
Lu W, Xu Y, Luo H, Wang H, Yin F, Dong L, He F. Comprehensive process optimization for rapidly vascularized osseointegration by dual ions effects. CHEMICAL ENGINEERING JOURNAL 2024; 497:154520. [DOI: 10.1016/j.cej.2024.154520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Wang X, Zhou K, Li Y, Xie H, Wang B. Preparation, modification, and clinical application of porous tantalum scaffolds. Front Bioeng Biotechnol 2023; 11:1127939. [PMID: 37082213 PMCID: PMC10110962 DOI: 10.3389/fbioe.2023.1127939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Porous tantalum (Ta) implants have been developed and clinically applied as high-quality implant biomaterials in the orthopedics field because of their excellent corrosion resistance, biocompatibility, osteointegration, and bone conductivity. Porous Ta allows fine bone ingrowth and new bone formation through the inner space because of its high porosity and interconnected pore structure. It contributes to rapid bone integration and long-term stability of osseointegrated implants. Porous Ta has excellent wetting properties and high surface energy, which facilitate the adhesion, proliferation, and mineralization of osteoblasts. Moreover, porous Ta is superior to classical metallic materials in avoiding the stress shielding effect, minimizing the loss of marginal bone, and improving primary stability because of its low elastic modulus and high friction coefficient. Accordingly, the excellent biological and mechanical properties of porous Ta are primarily responsible for its rising clinical translation trend. Over the past 2 decades, advanced fabrication strategies such as emerging manufacturing technologies, surface modification techniques, and patient-oriented designs have remarkably influenced the microstructural characteristic, bioactive performance, and clinical indications of porous Ta scaffolds. The present review offers an overview of the fabrication methods, modification techniques, and orthopedic applications of porous Ta implants.
Collapse
Affiliation(s)
| | | | | | - Hui Xie
- *Correspondence: Hui Xie, ; Benjie Wang,
| | | |
Collapse
|
4
|
Chen J, Cao G, Li L, Cai Q, Dunne N, Li X. Modification of polyether ether ketone for the repairing of bone defects. Biomed Mater 2022; 17:042001. [PMID: 35395651 DOI: 10.1088/1748-605x/ac65cd] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/08/2022] [Indexed: 11/12/2022]
Abstract
Bone damage as a consequence of disease or trauma is a common global occurrence. For bone damage treatment-bone implant materials are necessary across three classifications of surgical intervention (i.e. fixation, repair, and replacement). Many types of bone implant materials have been developed to meet the requirements of bone repair. Among them, polyether ether ketone (PEEK) has been considered as one of the next generation of bone implant materials, owing to its advantages related to good biocompatibility, chemical stability, x-ray permeability, elastic modulus comparable to natural bone, as well as the ease of processing and modification. However, as PEEK is a naturally bioinert material, some modification is needed to improve its integration with adjacent bones after implantation. Therefore, it has become a very hot topic of biomaterials research and various strategies for the modification of PEEK including blending, 3D printing, coating, chemical modification and the introduction of bioactive and/or antibacterial substances have been proposed. In this systematic review, the recent advances in modification of PEEK and its application prospect as bone implants are summarized, and the remaining challenges are also discussed.
Collapse
Affiliation(s)
- Junfeng Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| | - Qiang Cai
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
5
|
Wu YQ, Liu Z, Xu Z, Zhang Y, Ye H, Wang X. Macrophage responses to selective laser-melted Ti-6Al-4V scaffolds of different pore geometries and the corresponding osteoimmunomodulatory effects toward osteogenesis. J Biomed Mater Res A 2021; 110:873-883. [PMID: 34816584 DOI: 10.1002/jbm.a.37335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Following recent advances in osteoimmunology, there is growing recognition of the vital role of immune cells in the osteogenesis process. The 3D-printed scaffold, as a substitute for injured and/or diseased bone tissues, has demonstrated satisfactory pro-osteogenetic performance. However, whether immune cells prompt the above pro-osteogenetic performance has not been elucidated in detail. In the present study, highly controllable Ti-6Al-4V scaffolds with different pore geometries were fabricated using a selective laser-melting technique, to reveal their osteoimmunological functions with macrophages. The results showed that macrophages displayed characteristics of M2 phenotype in response to scaffolds. As a result, an anti-inflammatory microenvironment was generated. When the pore geometry was considered, such observations were more apparent with the hexagonal pore scaffold than with the triangular one. In addition, inhibition of the toll-like receptor signaling pathway in macrophages has been proposed to cause the above phenomenon. Upon applying conditioned media derived from macrophages on pre-osteoblasts, the hexagonal pore scaffold group was found to significantly enhance osteoblastic differentiation, via macrophage-to-implant interactions. However, the effect of triangular pore scaffold was not statistically significant compared to that of hexagonal pore scaffolds or nonporous samples. In an attempt to quantify scaffold pore geometries, it was suggested that pores with higher circularity values tended to induce M2 polarization of macrophages, promote an anti-inflammatory milieu, and therefore, achieve better osteogenetic performance via immunomodulation.
Collapse
Affiliation(s)
- Yun-Qi Wu
- Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Liu
- Department of Orthopedic Surgery, Hunan Children's Hospital, Changsha, China
| | - Zhenchao Xu
- Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, China
| | - Yilu Zhang
- Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, China
| | - Hongru Ye
- Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, China
| | - Xiyang Wang
- Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, China
| |
Collapse
|
6
|
Abstract
This review aims to discuss the advantages and disadvantages of zirconia implants compared with titanium implants. Moreover, it intends to review the relevant available long-term literature of these two materials regarding osteointegration, soft-tissue, microbiota, and peri-implantitis, focusing on clinical results. Briefly, titanium implants are a reliable alternative for missing teeth; however, they are not incapable of failure. In an attempt to provide an alternative implant material, implants made from ceramic-derivate products were developed. Owing to its optimal osseointegration competence, biocompatibility, and esthetic proprieties, zirconium dioxide (ZrO2), also known as zirconia, has gained popularity among researchers and clinicians, being a metal-free alternative for titanium implants with its main use in the anterior esthetic zones. This type of implant may present similar osseointegration as those noted on titanium implants with a greater soft-tissue response. Furthermore, this material does not show corrosion as its titanium analog, and it is less susceptible to bacterial adhesion. Lastly, even presenting a similar inflammatory response to titanium, zirconia implants offer less biofilm formation, suggesting less susceptibility to peri-implantitis. However, it is a relatively new material that has been commercially available for a decade; consequently, the literature still lacks studies with long follow-up periods.
Collapse
|
7
|
Huang G, Pan ST, Qiu JX. The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2647. [PMID: 34070153 PMCID: PMC8158527 DOI: 10.3390/ma14102647] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment of individual patients who need specially designed implants or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.
Collapse
Affiliation(s)
| | | | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (G.H.); (S.-T.P.)
| |
Collapse
|
8
|
Florian F, Guastaldi FPS, Cominotte MA, Pires LC, Guastaldi AC, Cirelli JA. Behavior of rat bone marrow stem cells on titanium surfaces modified by laser-beam and deposition of calcium phosphate. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:57. [PMID: 33999340 PMCID: PMC8128786 DOI: 10.1007/s10856-021-06528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the behavior of rat bone marrow stem cells seeded on a Ti-15Mo alloy surface modified by laser-beam irradiation followed by calcium phosphate deposition. MATERIALS AND METHODS A total of four groups were evaluated: polished commercially pure titanium (cpTi): Ti-P; laser irradiation + calcium phosphate deposition on cpTi: Ti-LCP; polished Ti-15Mo alloy: Ti15Mo-P; and laser irradiation + calcium phosphate deposition on Ti-15Mo alloy: Ti15Mo-LCP. Before and after laser irradiation and calcium phosphate deposition on the surfaces, physicochemical and morphological analyses were performed: Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDX). The wettability of the samples was evaluated by contact angle measurement. In addition, the behavior of osteoblast-like cells to these surfaces was evaluated for cell morphology, adhesion, proliferation and viability, evaluation of alkaline phosphatase formation and gene expression of osteogenesis markers. RESULTS Surfaces wet-abrade with grit paper (P) showed oriented groves, while the laser irradiation and calcium phosphate deposition (LCP) produced porosity on both cpTi and Ti15Mo alloy groups with deposits of hydroxyapatite (HA) crystals (SEM). EDX showed no contamination after surface modification in both metal samples. A complete wetting was observed for both LCP groups, whereas P surfaces exhibited high degree of hydrophobicity. There was a statistical difference in the intragroup comparison of proliferation and viability (p < 0.05). The ALP activity showed higher values in the Ti15Mo alloy at 10 days of culture. The gene expression of bone related molecules did not present significant differences at 7 and 14 days among different metals and surface treatments. CONCLUSION Ti15-Mo seems to be an alternative alloy to cpTi for dental implants. Surface treatment by laser irradiation followed by phosphate deposition seems to positively interact with bone cells. CLINICAL RELEVANCE Ti-15Mo alloy surface modified by laser-beam irradiation followed by calcium phosphate deposition may improve and accelerate the osseointegration process of dental implants.
Collapse
Affiliation(s)
- F Florian
- Departament of Morphology - Anatomy, Araraquara Dental School, UNESP, Araraquara, SP, Brazil
| | - F P S Guastaldi
- Department of Diagnosis and Surgery, Araraquara Dental School, UNESP, Araraquara, SP, Brazil
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA
| | - M A Cominotte
- Department of Diagnosis and Surgery, Araraquara Dental School, UNESP, Araraquara, SP, Brazil
| | - L C Pires
- Department of Diagnosis and Surgery, Araraquara Dental School, UNESP, Araraquara, SP, Brazil
| | - A C Guastaldi
- Department of Physical Chemistry, Institute of Chemistry of Araraquara, UNESP, Araraquara, SP, Brazil
| | - J A Cirelli
- Department of Diagnosis and Surgery, Araraquara Dental School, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
9
|
Cao NJ, Zhu YH, Gao F, Liang C, Wang ZB, Zhang Y, Hao CP, Wang W. Gradient nanostructured titanium stimulates cell responses in vitro and enhances osseointegration in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:531. [PMID: 33987229 DOI: 10.21037/atm-20-7588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Though titanium (Ti) is widely used as dental materials in the clinic, effective methods to treat Ti for higher surface biological activity still lack. Through Surface mechanical attrition treatment (SMAT) technology we could endow Ti with gradient nanostructured surface (GNS Ti). To investigate the biocompatibility of GNS Ti for its further application in dental implant field, we study the effects of GNS Ti on cell responses in vitro and osseointegration of the implant with surrounding bone tissues in vivo. Methods In this study, GNS Ti was fabricated by SMAT. In vitro experiment, we co-cultured GNS Ti with bone mesenchymal stem cells (BMSCs), surface characterization was detected by transmission electron microscope (TEM). Adhesion, proliferation and differentiation of BMSCs were evaluated by scanning electron microscope (SEM), MTT, flow cytometry (FCM), alkaline phosphatase (ALP) and osteocalcin (OCN) tests. In vivo experiment, the GNS Ti was implanted into the rabbit mandible. Osteogenesis and osseointegration were evaluated by Micro CT, toluidine blue staining, and immunohistochemical staining at 4, 8, and 12 weeks postoperatively. Results Both results showed that compared with the coarse grained (CG) Ti, the GNS Ti stimulated the adhesion, proliferation, and differentiation of BMSCs and improved osteogenesis and osseointegration. Conclusions This study indicates that gradient nanostructured Ti is a promising material for dental implant application.
Collapse
Affiliation(s)
- Nan-Jue Cao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yu-He Zhu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fei Gao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Chen Liang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Zhen-Bo Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Yue Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Chun-Ping Hao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wei Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
10
|
Nanoparticles and Nanostructured Surface Fabrication for Innovative Cranial and Maxillofacial Surgery. MATERIALS 2020; 13:ma13235391. [PMID: 33260938 PMCID: PMC7731022 DOI: 10.3390/ma13235391] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
A novel strategy to improve the success of soft and hard tissue integration of titanium implants is the use of nanoparticles coatings made from basically any type of biocompatible substance, which can advantageously enhance the properties of the material, as compared to its similar bulk material. So, most of the physical methods approaches involve the compaction of nanoparticles versus micron-level particles to yield surfaces with nanoscale grain boundaries, simultaneously preserving the chemistry of the surface among different topographies. At the same time, nanoparticles have been known as one of the most effective antibacterial agents and can be used as effective growth inhibitors of various microorganisms as an alternative to antibiotics. In this paper, based on literature research, we present a comprehensive review of the mechanical, physical, and chemical methods for creating nano-structured titanium surfaces along with the main nanoparticles used for the surface modification of titanium implants, the fabrication methods, their main features, and the purpose of use. We also present two patented solutions which involve nanoparticles to be used in cranioplasty, i.e., a cranial endoprosthesis with a sliding system to repair the traumatic defects of the skull, and a cranial implant based on titanium mesh with osteointegrating structures and functional nanoparticles. The main outcomes of the patented solutions are: (a) a novel geometry of the implant that allow both flexible adaptation of the implant to the specific anatomy of the patient and the promotion of regeneration of the bone tissue; (b) porous structure and favorable geometry for the absorption of impregnated active substances and cells proliferation; (c) the new implant model fit 100% on the structure of the cranial defect without inducing mechanical stress; (d) allows all kinds of radiological examinations and rapid osteointegration, along with the patient recover in a shorter time.
Collapse
|
11
|
Umehara H, Doi K, Oki Y, Kobatake R, Makihara Y, Kubo T, Tsuga K. Development of a novel bioactive titanium membrane with alkali treatment for bone regeneration. Dent Mater J 2020; 39:877-882. [PMID: 32448849 DOI: 10.4012/dmj.2019-222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study evaluates a bioactive titanium membrane with alkali treatment for stimulating apatite formation and promoting bone regeneration. The titanium thin membranes were either treated with NaOH (alkali-group) or untreated (control). Each sample were incubated in simulated body fluid. Subsequently, the composition of the surface calcium deposition, its weight increase ratio, and optical absorbance were evaluated. Then, the bone defect was trephined on the rats calvaria and covered with each sample membrane or no membrane, and the bone tissue area ratio (BTA) and bone membrane contact ratio (BMC) were evaluated. The spherical crystalline precipitates formed in both groups. In the alkali-group after 21 days, the precipitates matured, forming apatite-like precipitates. The alkali-group showed higher Ca and P contents and weight increase ratios than the control. The alkali-group exhibited a higher BMC than the control in the central area. Thus, this novel membrane has high apatite-forming and bone regeneration abilities.
Collapse
Affiliation(s)
- Hanako Umehara
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical Sciences
| | - Kazuya Doi
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical Sciences
| | - Yoshifumi Oki
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical Sciences
| | - Reiko Kobatake
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical Sciences
| | - Yusuke Makihara
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical Sciences
| | - Takayasu Kubo
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical Sciences
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical Sciences
| |
Collapse
|
12
|
Amerian M, Amerian M, Sameti M, Seyedjafari E. Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment. J Biomed Mater Res A 2019; 107:2806-2813. [PMID: 31430022 DOI: 10.1002/jbm.a.36783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022]
Abstract
The recent study focused on the improvement of polydimethylsiloxane (PDMS) surface biocompatibility as the most commonly used biomaterial in maxillofacial prostheses for intraoral defects. Biocompatibility enhances tissue-prosthesis integration to prevent implant dislocation; to evaluate the parameter the study conducted at different times of oxygen plasma exposure. Scanning electron microscopy, contact angle measurement, atomic force microscopy and above all, cell cultivation-as a crucial factor in biocompatibility-carried out to investigate the samples' characteristics. An improved PDMS biocompatibility is expected; referring to the fact that an "optimal range"-not necessarily the maximum values-of surface hydrophilicity and roughness could induce an enhanced cell attachment on the PDMS surface, an "optimum time" of O2 plasma exposure is required to meet this goal. Considering the O2 plasma setup items, the ratio of PDMS components and fabrication process in the current survey, 2.5-min O2 plasma exposure well suited to PDMS surface cell adhesion.
Collapse
Affiliation(s)
- Mehrnaz Amerian
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mahshid Amerian
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mahyar Sameti
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, Melbourne, Florida
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Zhu WQ, Yu YJ, Xu LN, Ming PP, Shao SY, Qiu J. Regulation of osteoblast behaviors via cross-talk between Hippo/YAP and MAPK signaling pathway under fluoride exposure. J Mol Med (Berl) 2019; 97:1003-1017. [PMID: 31055605 DOI: 10.1007/s00109-019-01785-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Titanium is widely used in implant materials, while excessive fluoride may have negative effects on the osseointegration between the titanium and osteoblasts. Although the underlying mechanisms are still not clear, the mitogen-activated protein kinase (MAPK) or Yes-associated protein (YAP) signaling pathways are thought to be involved. This study evaluated the role of Hippo/YAP and MAPK signaling pathway in osteoblast behaviors under excessive fluoride exposure in vitro and in vivo. Commercially pure Ti (cp-Ti) samples were exposed to fluoride (0, 0.1, and 1.0 mM NaF) for 7 days. Cell adhesion was observed using a laser scanning confocal microscope. Cell viability and apoptosis were evaluated by CCK-8 assay and flow cytometry, respectively. The expressions of osteoblast markers and key molecules in MAPK and YAP pathway were detected by Western blot. In vivo studies were evaluated by histology methods in C57/BL6 mice model. Our results showed that 1.0 mM NaF destroyed the passivation film on cp-Ti surface, which further inhibited the osteoblast adhesion and spreading. Meanwhile, compared to other groups, 1.0 mM NaF led to a remarkable reduction in cell viability (P < 0.05), as well as increased apoptosis (P < 0.05) and downregulation of osteogenesis protein expression (P < 0.05). MAPK and YAP signaling pathways were also activated under 1.0 mM NaF exposure, and JNK seemed to regulate YAP phosphorylation in response to NaF impacts on osteoblasts. In vivo fluorosis mouse model further indicated that 100 ppm NaF group (high fluoride group) increased bone resorption and inhibited the nuclear translocation of YAP. The osteoblast behaviors were negatively altered under excessive fluoride, and MAPK/JNK axis contributed to YAP signaling activation in regulating NaF-induced osteoblast behaviors. KEY MESSAGES: • Excessive fluoride inhibited osteoblast behaviors and bone formation. • YAP and MAPK signaling pathways were activated in osteoblasts under fluoride exposure. • Fluoride regulated osteoblast behaviors via the cross-talk between YAP and MAPK.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying-Juan Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li-Na Xu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Pan-Pan Ming
- Department of Stomatology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
14
|
Jeon C, Oh KC, Park KH, Moon HS. Effects of ultraviolet treatment and alendronate immersion on osteoblast-like cells and human gingival fibroblasts cultured on titanium surfaces. Sci Rep 2019; 9:2581. [PMID: 30796313 PMCID: PMC6385364 DOI: 10.1038/s41598-019-39355-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/23/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, we evaluated the effects of ultraviolet (UV) treatment and alendronate (ALN) immersion on the proliferation and differentiation of MG-63 osteoblast-like cells and human gingival fibroblasts (HGFs) cultured on titanium surfaces. MG-63 cells were used for sandblasted, large grit, and acid-etched (SLA) titanium surfaces, and HGFs were used for machined (MA) titanium surfaces. SLA and MA specimens were subdivided into four groups (n = 12) according to the combination of surface treatments (UV treatment and/or ALN immersion) applied. After culturing MG-63 cells and HGFs on titanium discs, cellular morphology, proliferation, and differentiation were evaluated. The results revealed that UV treatment of titanium surfaces did not alter the proliferation of MG-63 cells; however, HGF differentiation and adhesion were increased in response to UV treatment. In contrast, ALN immersion of titanium discs reduced MG-63 cell proliferation and changed HGFs into a more atrophic form. Simultaneous application of UV treatment and ALN immersion induced greater differentiation of MG-63 cells. Within the limitations of this cellular level study, simultaneous application of UV treatment and ALN immersion of titanium surfaces was shown to improve the osseointegration of titanium implants; in addition, UV treatment may be used to enhance mucosal sealing of titanium abutments.
Collapse
Affiliation(s)
- Changjoo Jeon
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, 03722, Korea
| | - Kyung Chul Oh
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, 03722, Korea
| | - Kyu-Hyung Park
- Department of Prosthodontics, Oral Science Research Center, BK21 Plus Project, College of Dentistry, Yonsei University, Seoul, 03722, Korea
| | - Hong Seok Moon
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
15
|
Patelli A, Mussano F, Brun P, Genova T, Ambrosi E, Michieli N, Mattei G, Scopece P, Moroni L. Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39512-39523. [PMID: 30359523 DOI: 10.1021/acsami.8b15886] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Implantable devices need specific tailored surface morphologies and chemistries to interact with the living systems or to actively induce a biological response also by the release of drugs or proteins. These customized requirements foster technologies that can be implemented in additive manufacturing systems. Here, we present a novel approach based on spraying processes that allow to control separately topographic features in the submicron range (∼60 nm to 2 μm), ammine or carboxylic chemistry, and fluorophore release even on temperature-sensitive biodegradable polymers such as polycaprolactone (PCL). We developed a two-steps process with a first deposition of 220 nm silica and poly(lactic- co-glycolide) (PLGA) fluorescent nanoparticles by aerosol followed by the deposition of a fixing layer by an atmospheric pressure plasma jet (APPJ). The nanoparticles can be used to create the nanoroughness and to include active molecule release, while the capping layer ensures stability and the chemical functionalities. The process is enabled by a novel APPJ which allows deposition rates of 10-20 nm·s-1 at temperatures lower than 50 °C using argon as the process gas. This approach was assessed on titanium alloys for dental implants and on PCL films. The surfaces were characterized by Fourier transform infrared, atomic force microscopy, and scanning electron microscopy (SEM). Titanium alloys were tested with the preosteoblast murine cells line, while the PCL film was tested with fibroblasts. Cell behavior was evaluated by viability and adhesion assays, protein adsorption, cell proliferation, focal adhesion formation, and SEM. The release of a fluorophore molecule was assessed in the cell growing media, simulating a drug release. Osteoblast adhesion on the plasma-treated materials increased by 20% with respect to commercial titanium alloy implants. Fibroblast adhesion increased by a 100% compared to smooth PCL substrates. The release of the fluorophore by the dissolution of the PLGA nanoparticles was verified, and the integrity of the encapsulated drug model was confirmed.
Collapse
Affiliation(s)
- Alessandro Patelli
- Department Physics and Astronomy , Padova University , via Marzolo 8 , 35131 Padova , Italy
| | - Federico Mussano
- CIR Dental School, Department Surgical Sciences , Torino University , 10126 Torino , Italy
| | - Paola Brun
- Department Molecular Medicine, Unit of Microbiology , Padova University , 35121 Padova , Italy
| | - Tullio Genova
- CIR Dental School, Department Surgical Sciences , Torino University , 10126 Torino , Italy
- Department Life Sciences and Systems Biology , Torino University , 10124 Torino , Italy
| | - Emmanuele Ambrosi
- Department Molecular Sciences and Nanosystems , Venezia University , 30172 Venezia , Italy
| | - Niccoló Michieli
- Department Physics and Astronomy , Padova University , via Marzolo 8 , 35131 Padova , Italy
| | - Giovanni Mattei
- Department Physics and Astronomy , Padova University , via Marzolo 8 , 35131 Padova , Italy
| | | | - Lorenzo Moroni
- MERLN-Institute for Technology-Inspired Regenerative Medicine , Maastricht University , 6229 ER Maastricht , The Netherlands
| |
Collapse
|
16
|
Lin DJ, Fuh LJ, Chen CY, Chen WC, Lin JHC, Chen CC. Rapid nano-scale surface modification on micro-arc oxidation coated titanium by microwave-assisted hydrothermal process. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:236-247. [PMID: 30573246 DOI: 10.1016/j.msec.2018.10.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/07/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
Nano to submicron scaled surface possesses excellent biological affinity and several processes have been undertaken to develop titanium implant with specific surface chemical and phase composition and nano-scale features. A simple process was used to modify the nano topographies on a micro-arc-oxidation (MAO) surface which shortens the time for the conventional hydrothermal process (HT). Nano-scaled anatase precipitates on the MAO surface with different crystallinities and morphologies were regulated via microwave-assisted hydrothermal in pure water (MWDD) or in pH conditioned mediums containing calcium and phosphorus ions (MWCP, MWCP9, MWCP11). The surface morphologies and structures were investigated by SEM, XRD, FTIR, and TEM. Anatase crystals as nano-spikes along [001] direction were observed on the surface of the MWDD and MWCP groups. Increasing the pH of the conditioned medium leads the precipitate to lose its crystallinity; the surface of MWCP11 is covered with amorphous anatase which has a 3D nano-sheet architecture. The MW treated surfaces possess superior hydrophilicity can adsorb more proteins (fibronectin and bovine serum albumin), and the osteoblasts-like MG63 cells on these surfaces have higher spreading ratios than on the MAO and HT groups. The cell viabilities in the MW groups were significantly higher than in the MAO and HT groups on the 7th day (P < 0.05), although their cell viabilities were similar on the first day. MWCP and MWCP11 have higher alkaline phosphatase activity on days 7 and 14 compared to other groups (P < 0.05). The MW treatment produces different nanomorphologies on the MAO surface and retains the original micro/submicron pores and surface calcium and phosphorus contents, thus it is expected to promote osseointegration without compromising the bond strength.
Collapse
Affiliation(s)
- Dan-Jae Lin
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan, ROC; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan, ROC; Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan, ROC; Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan, ROC.
| | - Lih-Jyh Fuh
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan, ROC; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan, ROC.
| | - Cheng-Yu Chen
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composite Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan, ROC.
| | - Jiin-Huey Chern Lin
- Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan, ROC.
| | - Chiing-Chang Chen
- Department of Science Education and Application, National Taichung University of Education, Taichung, Taiwan, ROC.
| |
Collapse
|
17
|
Histological and Bone Morphometric Evaluation of Osseointegration Aspects by Alkali Hydrothermally-Treated Implants. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Mangano F, Raspanti M, Maghaireh H, Mangano C. Scanning Electron Microscope (SEM) Evaluation of the Interface between a Nanostructured Calcium-Incorporated Dental Implant Surface and the Human Bone. MATERIALS 2017; 10:ma10121438. [PMID: 29258208 PMCID: PMC5744373 DOI: 10.3390/ma10121438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
Abstract
Purpose. The aim of this scanning electron microscope (SEM) study was to investigate the interface between the bone and a novel nanostructured calcium-incorporated dental implant surface in humans. Methods. A dental implant (Anyridge®, Megagen Implant Co., Gyeongbuk, South Korea) with a nanostructured calcium-incorporated surface (Xpeed®, Megagen Implant Co., Gyeongbuk, South Korea), which had been placed a month earlier in a fully healed site of the posterior maxilla (#14) of a 48-year-old female patient, and which had been subjected to immediate functional loading, was removed after a traumatic injury. Despite the violent trauma that caused mobilization of the fixture, its surface appeared to be covered by a firmly attached, intact tissue; therefore, it was subjected to SEM examination. The implant surface of an unused nanostructured calcium-incorporated implant was also observed under SEM, as control. Results. The surface of the unused implant showed a highly-structured texture, carved by irregular, multi-scale hollows reminiscent of a fractal structure. It appeared perfectly clean and devoid of any contamination. The human specimen showed trabecular bone firmly anchored to the implant surface, bridging the screw threads and filling the spaces among them. Conclusions. Within the limits of this human histological report, the sample analyzed showed that the nanostructured calcium-incorporated surface was covered by new bone, one month after placement in the posterior maxilla, under an immediate functional loading protocol.
Collapse
Affiliation(s)
- Francesco Mangano
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy.
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy.
| | | | - Carlo Mangano
- Department of Dental Sciences, University Vita Salute S. Raffaele, Milan 20132, Italy.
| |
Collapse
|
19
|
Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants. MATERIALS 2017; 10:ma10111302. [PMID: 29137166 PMCID: PMC5706249 DOI: 10.3390/ma10111302] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of “smaller, faster, cheaper”, nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.
Collapse
|
20
|
Oliveira WF, Arruda IRS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:597-606. [PMID: 28888015 DOI: 10.1016/j.msec.2017.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/06/2017] [Accepted: 08/02/2017] [Indexed: 01/21/2023]
Abstract
Titanium (Ti) and its alloys are extensively used in the manufacture of implants because they have biocompatibility. The production of a nanostructured surface can be achieved by means of titanium dioxide nanotubes (TNTs) which can have dimensions equivalent to the nanometric components of human bone, in addition to increasing the efficiency of such implants. The search is ongoing for ways to improve the performance of these TNTs in terms of their functionalization through coating these nanotubular matrices with biomolecules. The biocompatibility of the functionalized TNTs can be improved by promoting rapid osseointegration, by preventing the adhesion of bacteria on such surfaces and/or by promoting a more sustained local release of drugs that are loaded into such TNTs. In addition to the implants, these nanotubular matrices have been used in the manufacture of high-performance biosensors capable of immobilizing principally enzymes on their surfaces, which has possible use in disease diagnosis. The objective of this review is to show the main techniques of immobilization of biomolecules in TNTs, evidencing the most recent applications of bioactive molecules that have been functionalized in the nanotubular matrices for use in implants and biosensors. This surveillance also proposes a new class of biomolecules that can be used to functionalize these nanostructured surfaces, lectins.
Collapse
Affiliation(s)
- Weslley F Oliveira
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, PE, Brazil
| | - Isabel R S Arruda
- Laboratório de Nanotecnologia, Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01, Cidade Universitária, CEP: 50740-540 Recife, PE, Brazil
| | - Germana M M Silva
- Laboratório de Nanotecnologia, Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01, Cidade Universitária, CEP: 50740-540 Recife, PE, Brazil
| | - Giovanna Machado
- Laboratório de Nanotecnologia, Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01, Cidade Universitária, CEP: 50740-540 Recife, PE, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, PE, Brazil
| | - Maria T S Correia
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, PE, Brazil.
| |
Collapse
|
21
|
Tsukanaka M, Fujibayashi S, Takemoto M, Matsushita T, Kokubo T, Nakamura T, Sasaki K, Matsuda S. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology. Dent Mater J 2017; 35:118-25. [PMID: 26830832 DOI: 10.4012/dmj.2015-127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.
Collapse
Affiliation(s)
- Masako Tsukanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vega-Figueroa K, Santillán J, García C, González-Feliciano JA, Bello SA, Rodríguez YG, Ortiz-Quiles E, Nicolau E. Assessing the Suitability of Cellulose-Nanodiamond Composite As a Multifunctional Biointerface Material for Bone Tissue Regeneration. ACS Biomater Sci Eng 2017; 3:960-968. [DOI: 10.1021/acsbiomaterials.7b00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Karlene Vega-Figueroa
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - Jaime Santillán
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - Carlos García
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - José A. González-Feliciano
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | | | - Yaiel G. Rodríguez
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - Edwin Ortiz-Quiles
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
23
|
Early osseointegration of implants with cortex-like TiO 2 coatings formed by micro-arc oxidation: A histomorphometric study in rabbits. ACTA ACUST UNITED AC 2017; 37:122-130. [PMID: 28224420 DOI: 10.1007/s11596-017-1705-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/01/2016] [Indexed: 01/01/2023]
Abstract
In our previous studies, a novel cortex-like TiO2 coating was prepared on Ti surface through micro-arc oxidation (MAO) by using sodium tetraborate as electrolyte, and the effects of the coating on cell attachment were testified. This study aimed to investigate the effects of this cortex-like MAO coating on osseointegration. A sand-blasting and acid-etching (SLA) coating that has been widely used in clinical practice served as control. Topographical and chemical characterizations were conducted by scanning electron microscopy, energy dispersive X-ray spectrometer, X-ray diffraction, contact angle meter, and step profiler. Results showed that the cortex-like coating had microslots and nanopores and it was superhydrophilic, whereas the SLA surface was hydrophobic. The roughness of MAO was similar to that of SLA. The MAO and SLA implants were implanted into the femoral condyles of New Zealand rabbits to evaluate their in-vivo performance through micro-CT, histological analysis, and fluorescent labeling at the bone-implant interface four weeks after surgery. The micro-CT showed that the bone volume ratio and mean trabecular thickness were similar between MAO and SLA groups four weeks after implantation. Histological analysis and fluorescent labeling showed no significant differences in the bone-implant contact between the MAO and SLA surfaces. It was suggested that with micro/nanostructure and superhydrophilicity, the cortex-like MAO coating causes excellent osseointegration, holding a promise of an application to implant modification.
Collapse
|
24
|
Itabashi T, Narita K, Ono A, Wada K, Tanaka T, Kumagai G, Yamauchi R, Nakane A, Ishibashi Y. Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 2017; 6:108-112. [PMID: 28246094 PMCID: PMC5331176 DOI: 10.1302/2046-3758.62.2000619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022] Open
Abstract
Objectives The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Materials and Methods Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted. Results No colonies were observed when UV irradiation was performed after the bacteria were added to the disks. When the bacteria were seeded after UV irradiation, the amount of surviving bacteria on the Ti and Ti6Al4V disks decreased at 0 hours and then gradually increased. However, the antimicrobial activity was maintained for seven days after UV irradiation. Conclusion Antimicrobial activity was induced for seven days after UV irradiation on both types of disk. Irradiated Ti6Al4V and Ti had similar antimicrobial properties. Cite this article: T. Itabashi, K. Narita, A. Ono, K. Wada, T. Tanaka, G. Kumagai, R. Yamauchi, A. Nakane, Y. Ishibashi. Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 2017;6:108–112. DOI: 10.1302/2046-3758.62.2000619.
Collapse
Affiliation(s)
- T Itabashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - K Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - A Ono
- Department of Orthopaedic Surgery, Hirosaki Memorial Hospital, 59-1, Sakaizeki, Nishida, Hirosaki, Aomori, 036-8076, Japan
| | - K Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - T Tanaka
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - G Kumagai
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - R Yamauchi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - A Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Y Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
25
|
Lumetti S, Manfredi E, Ferraris S, Spriano S, Passeri G, Ghiacci G, Macaluso G, Galli C. The response of osteoblastic MC3T3-E1 cells to micro- and nano-textured, hydrophilic and bioactive titanium surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:68. [PMID: 26886816 DOI: 10.1007/s10856-016-5678-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
The aim of the present work was to investigate the morphology and activity of the murine osteoblastic cell line MC3T3 on control smooth (Machined), commercially available rough (ZT) titanium discs, and on titanium samples obtained by modifying the ZT treatment protocol, and herein labelled as ZTF, ZTM and ZTFM. Cells were evaluated at SEM and immunofluorescence for morphology and cell-to-cell interactions and by MTT assay and real time PCR for cell growth and function. Microscopy showed that ZT modified protocols could differently affect cell shape and distribution. All the tested surfaces showed good biocompatibility by viability assay. However, cells on smoother surfaces appeared to express higher levels of transcript for Collagen 1a1, the main component of extracellular matrix, by real time PCR. Expression of the early differentiation marker Alkaline Phosphatase was higher on ZTF surfaces and ZTM enhanced the expression of later osteoblastic markers Osteoprotegerin and Osteocalcin. Noteworthy, the expression of Connexin 43, a component of cell-to-cell contacts and hemichannels, followed a similar pattern to differentiation marker genes and was higher in cells on ZTM surfaces, consistently with the microscopic observation of cell clusters. Taken together, this data showed that ZTF and ZTM treatment protocols appeared to improve the basal sand-blasting/acid-etching ZT procedure with ZTM surfaces promoting the most mature stage of differentiation.
Collapse
Affiliation(s)
- S Lumetti
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - E Manfredi
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - S Ferraris
- Dip. DISAT, Politecnico di Torino, University of Parma, Parma, Italy
| | - S Spriano
- Dip. DISAT, Politecnico di Torino, University of Parma, Parma, Italy
| | - G Passeri
- Dip. Medicina Clinica e Sperimentale, University of Parma, Parma, Italy
| | - G Ghiacci
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - G Macaluso
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Istituto per l'Elettronica e il Magnetismo IMEM-CNR, Parma, Italy.
| | - C Galli
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Istituto per l'Elettronica e il Magnetismo IMEM-CNR, Parma, Italy.
| |
Collapse
|