1
|
Kim SE, Hwang SY, Park YH, Davis WC, Park KT. The anti-inflammatory effect of a magnoliae cortex and Zea mays L. extract mixture in a canine model of ligature-induced periodontitis. BMC Vet Res 2024; 20:437. [PMID: 39342169 PMCID: PMC11437871 DOI: 10.1186/s12917-024-04243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Periodontitis is common in dogs. It is characterized by destruction of the supporting tissues of the teeth due to the host-immune response triggered by plaque. Magnoliae cortex and Zea mays L. extract showed anti-inflammatory and anti-microbial effects, respectively. This study aimed to evaluate improvement in periodontitis following the administration of Magnoliae cortex and Zea mays L. extract in dogs. Periodontitis was experimentally induced in 10 beagle dogs. Five dogs were administered 40 mg of Magnoliae cortex extract and 20 mg of Zea mays L. extract orally once per day for 2 months (MZ group), whereas the other group received empty gelatin capsules (control group). Periodontal clinical parameters, complete blood count, serum chemistry parameters, and tissue inflammatory cytokines and chemokine expression were assessed before and after combined oral extracts administration. RESULTS The complete blood count and serum chemistry results of all dogs were within normal ranges. Gingival inflammation in MZ group was significantly better than that in the control group at 4 and 8 weeks post-medication (PM; p < 0.05). The periodontal pocket depth and clinical attachment loss at 8 weeks PM in the MZ group were significantly lower than the baseline values (p < 0.05). The incidence of bleeding on probing in the MZ group was significantly lower than that in the control group at 4 weeks PM (p < 0.05). Throughout the medication period, the percentages of CD4 + and CD8 + T cells were higher and lower, respectively, in the MZ group. However, these differences were only significant at 8 weeks PM. The expression of the inflammatory cytokines IL-1β, IL-6, IL-17, and TNF-α and the chemokine IL-8 in the inflamed tissues was lower in the MZ group, and the two groups showed a significant difference in TNF-α expression. CONCLUSIONS Combined administration of Magnoliae cortex and Zea mays L. extract improved the clinical symptoms of periodontal disease in dogs. This beneficial effect may be partly due to the inhibitory effects of these extracts on the inflammatory response.
Collapse
Affiliation(s)
- Se Eun Kim
- Small Animal Clinical Research Institute, Haemaru Referral Animal Hospital, Seongnam, 13590, Korea
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Sun Young Hwang
- Small Animal Clinical Research Institute, Haemaru Referral Animal Hospital, Seongnam, 13590, Korea
| | - Yong Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Kun Taek Park
- Department of Biotechnology, Inje University, Gimhae, 50834, Korea.
| |
Collapse
|
2
|
Hao KX, Hao YF, Zhang J, Xu XL, Jiang JG. Comparative Anti-Cancer and Anti-Inflammatory Activities of Essential Oils from the Bark and Flower of Magnolia officinalis Rehd. et Wils. Foods 2024; 13:2074. [PMID: 38998580 PMCID: PMC11241728 DOI: 10.3390/foods13132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 07/14/2024] Open
Abstract
This study was designed to compare the antioxidant, antitumor and anti-inflammatory effects of essential oils from the bark and flower of Magnolia officinalis Rehd. et Wils. Distillation extraction and steam distillation were used to extract EOs from the bark and flower. The results showed that the contents of EOs of SDE-F and SDE-B were much higher than that of SD-F and SD-B. EOs from the bark were rich in eudesmol (especially α-eudesmol) and exhibited a stronger antioxidant effect than the flower. The anti-tumor effects of SD-B and SD-F on HepG2 and MDA-MB-231 cells were better than that of SDE-B and SDE-F. The inhibitory rates of SD-B and SD-F on MDA-MB-231 cells were 59.21% and 48.27%, exceeding that of positive control 5-fluorouracil (47.04%) at 50 μg/mL. All four EOs exhibited excellent anti-inflammatory activities through the regulation of nitric oxide production and pro-inflammation cytokines in LPS-induced RAW 264.7 cells and they also remarkably suppressed the mRNA expressions of nitric oxide synthase, IL-6 and TNF-α at the concentration higher than that of positive control dexamethasone. These results indicated significant differences in the composition, and anti-inflammatory and anti-tumor activities of EOs extracted by different methods and provided a theoretical basis for their development and utilization.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
| | - Yun-Fang Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
- Jiangmen Key Laboratory of Traditional Chinese Medicine Ingredients and Their Mechanisms of Action, Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China
| | - Jie Zhang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
| | - Xi-Lin Xu
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
| |
Collapse
|
3
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Han Y, Kim HI, Park J. The Role of Natural Products in the Improvement of Cancer-Associated Cachexia. Int J Mol Sci 2023; 24:ijms24108772. [PMID: 37240117 DOI: 10.3390/ijms24108772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The enormous library of natural products and herbal medicine prescriptions presents endless research avenues. However, the lack of research evidence and trials on cancer-induced cachexia limit the therapeutic potential of natural products. Cancer-induced cachexia is a systemic wasting syndrome characterized by continuous body weight loss with skeletal muscle and adipose tissue atrophy. Cancer cachexia is a problem in itself and reduces the quality of life by lessening the treatment efficacy of anticancer drugs. This review summarizes single natural product extracts for cancer-induced cachexia, not compounds derived from natural products and herbal medicine prescriptions. This article also discusses the effect of natural products on cachexia induced by anticancer drugs and the role of AMPK in cancer-induced cachexia. The article included the mice model used in each experiment to encourage researchers to utilize animal models for research on cancer-induced cachexia in the future.
Collapse
Affiliation(s)
- Yohan Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Lee HJ, Lee SJ, Lee SK, Choi BK, Lee DR. Magnolia kobus Extract Inhibits Periodontitis-Inducing Mediators in Porphyromonas gingivalis Lipopolysaccharide-Activated RAW 264.7 Cells. Curr Issues Mol Biol 2023; 45:538-554. [PMID: 36661522 PMCID: PMC9858207 DOI: 10.3390/cimb45010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Periodontitis, a disease caused by inflammation of oral bacteria, contributes to the loss of alveolar bone and destruction of connective tissues. Porphyromonas gingivalis, a Gram-negative bacterium, is known to possess important pathogenic factors for periodontal disease. In this study, we investigated the anti-periodontitis effects of Magnolia kobus extract (MKE) and magnolin as a component of Magnolia kobus (MK) in murine macrophage RAW 264.7 cells stimulated with Porphyromonas gingivalis lipopolysaccharide (LPS). Effects of MKE and magnolin on the mechanism of RAW 264.7 cellular inflammation were determined by analyzing nitric oxide (NO) production and Western blot protein expression (n = 3). MKE/magnolin inhibited NO production without affecting cell survival. MKE/magnolin treatment inhibited LPS-induced pro-inflammatory cytokines, expression levels of matrix metalloproteinases (MMPs such as MMP-1, 3, 8, 9, and 13), and protein levels of inflammatory mediators (such as TNF-α, IL-1β, and mPGES-1). MKE/magnolin also suppressed NF-κB activation by inhibiting the TLR4 signaling pathway. These findings suggest that MKE has a therapeutic effect on inflammatory periodontal disease caused by oral bacterium P. gingivalis and that magnolin is a major functional component in the anti-inflammatory effect of MKE.
Collapse
|
6
|
Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review. Pharmaceutics 2021; 13:pharmaceutics13122185. [PMID: 34959467 PMCID: PMC8705740 DOI: 10.3390/pharmaceutics13122185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases are one of the most significant challenges in dental health. It is estimated that only a few percent of the worldwide population have entirely healthy teeth, and according to WHO, oral diseases may affect up to 3.5 billion people worldwide. One of the most serious oral diseases is periodontitis, an inflammatory disease affecting periodontal tissues, caused by pathogenic bacteria and environmental factors such as the ageing population, abuse of tobacco products, and lack of adequate oral hygiene due low public awareness. Plant materials are widely and successfully used in the management of many conditions, including periodontitis. Plant materials for periodontitis exhibit antibacterial, anti-inflammatory, antioxidant activities and affect the periodontium structure. Numerous studies demonstrate the advantages of phytotherapy for periodontitis relief and indicate the usefulness of Baikal skullcap root, Pomegranate fruit peel and root cortex, Tea leaves, Chamomile flowers, Magnolia bark, Blackberry leaves and fruits, Cranberry fruits and Lippia sidoides essential oil. This review aims to analyze the use and applicability of selected plant materials in periodontitis management since it is of paramount importance to evaluate the evidence of the traditionally used plant materials in light of continuously growing interest in phytotherapy and its adjuvant role in the treatment of periodontitis.
Collapse
|
7
|
Lin Y, Li Y, Zeng Y, Tian B, Qu X, Yuan Q, Song Y. Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update. Front Pharmacol 2021; 12:632767. [PMID: 33815113 PMCID: PMC8010308 DOI: 10.3389/fphar.2021.632767] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Magnolol (MG) is one of the primary active components of Magnoliae officinalis cortex, which has been widely used in traditional Chinese and Japanese herbal medicine and possesses a wide range of pharmacological activities. In recent years, attention has been drawn to this component due to its potential as an anti-inflammatory and antitumor drug. To summarize the new biological and pharmacological data on MG, we screened the literature from January 2011 to October 2020. In this review, we provide an actualization of already known anti-inflammatory, cardiovascular protection, antiangiogenesis, antidiabetes, hypoglycemic, antioxidation, neuroprotection, gastrointestinal protection, and antibacterial activities of MG. Besides, results from studies on antitumor activity are presented. We also summarized the molecular mechanisms, toxicity, bioavailability, and formulations of MG. Therefore, we provide a valid cognition of MG.
Collapse
Affiliation(s)
- Yiping Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanlian Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolan Qu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianghua Yuan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Song
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Cho G, Park HM, Jung WM, Cha WS, Lee D, Chae Y. Identification of candidate medicinal herbs for skincare via data mining of the classic Donguibogam text on Korean medicine. Integr Med Res 2020; 9:100436. [PMID: 32742921 PMCID: PMC7388188 DOI: 10.1016/j.imr.2020.100436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022] Open
Abstract
Background Korean cosmetics are widely exported throughout Asia. Cosmetics exploiting traditional Korean medicine lead this trend; thus, the traditional medicinal literature has been invaluable in terms of cosmetic development. We sought candidate medicinal herbs for skincare. Methods We used data mining to investigate associations between medicinal herbs and skin-related keywords (SRKs) in a classical text. We selected 26 SRKs used in the Donguibogam text; these referred to 626 medicinal herbs. Using a term frequency-inverse document frequency approach, we extracted data on herbal characteristics by assessing the co-occurrence frequencies of 52 medicinal herbs and the 26 SRKs. Results We extracted the characteristics of the 52 herbs, each of which exhibited a distinct skin-related action profile. For example Ginseng Radix was associated at a high-level with tonification and anti-aging, but Rehmanniae Radix exhibited a stronger association with anti-aging. Of the 52 herbs, 46 had been subjected to at least one modern study on skincare-related efficacy. Conclusions We made a comprehensive list of candidate medicinal herbs for skincare via data mining a classical medical text. This enhances our understanding of such herbs and will help with discovering new candidate herbs.
Collapse
Affiliation(s)
- Gayoung Cho
- Department of Medical History, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Amore Pacific Research and Development Center, Yongin, Republic of Korea
| | - Hyo-Min Park
- Amore Pacific Research and Development Center, Yongin, Republic of Korea
| | - Won-Mo Jung
- Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woong-Seok Cha
- Department of Medical History, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Younbyoung Chae
- Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Kavasi RM, Berdiaki A, Spyridaki I, Papoutsidakis A, Corsini E, Tsatsakis A, Tzanakakis GN, Nikitovic D. Contact allergen (PPD and DNCB)-induced keratinocyte sensitization is partly mediated through a low molecular weight hyaluronan (LMWHA)/TLR4/NF-κB signaling axis. Toxicol Appl Pharmacol 2019; 377:114632. [PMID: 31226360 DOI: 10.1016/j.taap.2019.114632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Allergic contact dermatitis (ACD) is caused by topical exposure to chemical allergens. Keratinocytes play a key role in innate immunity, as well as in ACD progression. The transmembrane Toll-like receptor 4 (TLR4), strongly implicated in skin inflammation, has the ability to bind Damage Associated Molecular Patterns (DAMPs), like Low Molecular Weight Hyaluronan (LMWHA). Previously, we had determined that p-phenylenediamine (PPD) and 2,4-dinitrochlorobenzene (DNCB) modulate keratinocyte HA deposition in a manner correlated to their sensitization. In the present study, we aimed to investigate putative co-operation of HA and TLR4 in the process of PPD and DNCB-induced keratinocyte activation. Contact sensitizers were shown to significantly increase the expression of Hyaluronan Synthases (HAS) and TLR4 in NCTC2544 human keratinocytes, as demonstrated by western blot and Real-Time PCR. These data, in correlation to earlier shown enhanced HA degradation suggest that the contact sensitizers facilitate HA turnover of keratinocytes and increase the release of pro-inflammatory, LMWHA fragments. Treatment with exogenous LMWHA enhanced TLR4, HAS levels and Nuclear factor-kappa beta (NF-κΒ) activation. PPD, DNCB and LMWHA-effects were shown to be partly executed through TLR4 downstream signaling as shown by Real-Time, western blot, siRNA and confocal microscopy approaches. Specifically, PPD and DNCB stimulated the activation of the TLR4 downstream mediator NF-κB. Therefore, the shown upregulation of TLR4 expression is suggested to further facilitate the release of endogenous, bioactive HA fragments and sustain keratinocyte activation. In conclusion, keratinocyte contact allergen-dependent sensitization is partly mediated through a LMWHA/TLR4/ NF-κB signaling axis.
Collapse
Affiliation(s)
- Rafaela-Maria Kavasi
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Spyridaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Papoutsidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Emanuela Corsini
- Laboratory of Toxicology, ESP, Università degli Studi di Milano, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
10
|
Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv Healthc Mater 2019; 8:e1801106. [PMID: 30328293 DOI: 10.1002/adhm.201801106] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/19/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials with suitable surface modification strategies are contributing significantly to the rapid development of the field of bone tissue engineering. Despite these encouraging results, utilization of biomaterials is poorly translated to human clinical trials potentially due to lack of knowledge about the interaction between biomaterials and the body defense mechanism, the "immune system". The highly complex immune system involves the coordinated action of many immune cells that can produce various inflammatory and anti-inflammatory cytokines. Besides, bone fracture healing initiates with acute inflammation and may later transform to a regenerative or degenerative phase mainly due to the cross-talk between immune cells and other cells in the bone regeneration process. Among various immune cells, macrophages possess a significant role in the immune defense, where their polarization state plays a key role in the wound healing process. Growing evidence shows that the macrophage polarization state is highly sensitive to the biomaterial's physiochemical properties, and advances in biomaterial research now allow well controlled surface properties. This review provides an overview of biomaterial-mediated modulation of the immune response for regulating key bone regeneration events, such as osteogenesis, osteoclastogenesis, and inflammation, and it discusses how these strategies can be utilized for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | | | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
11
|
Jin S, Lee MY. Kaempferia parviflora Extract as a Potential Anti-Acne Agent with Anti-Inflammatory, Sebostatic and Anti- Propionibacterium acnes Activity. Int J Mol Sci 2018; 19:ijms19113457. [PMID: 30400322 PMCID: PMC6274695 DOI: 10.3390/ijms19113457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023] Open
Abstract
Kaempferia parviflora, referred to as black ginger, has traditionally been used as a health-promoting alternative medicine. In this study, we examined the anti-inflammatory, sebostatic, and anti-Propionibacterium acnes activities of K. parviflora extract. The extract significantly down-regulated the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), and pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) level. Moreover, the phosphorylation of IĸBα and nuclear factor-kappa B (NF-κB), and the enhanced nuclear translocation of NF-κB p65 in lipopolysaccharide-stimulated murine macrophage-like cell line (RAW 264.7) cells were markedly decreased by the extract. Notably, the main component of K. parviflora, 5,7-dimethoxyflavone, also modulated the expression of iNOS and NF-κB signal molecules in P. acnes-stimulated human keratinocyte (HaCaT) cells. Additionally, K. parviflora extract inhibited the lipogenesis of sebocytes, as evidenced by a reduced level of triglyceride and lipid accumulation in the sebocytes. The sebostatic effect was also confirmed by a reduced expression of peroxisome proliferation-activating receptors (PPAR-γ) and oil-red O staining in sebocytes. Taken together, this study suggests for the first time that K. parviflora extract could be developed as a potential natural anti-acne agent with anti-inflammatory, sebostatic, and anti-P. acnes activity.
Collapse
Affiliation(s)
- Solee Jin
- Department of Medical Science, College of Medical Science, SoonChunHyang University, 22 SoonChunHyang-ro, Asan, Chungnam 31538, Korea.
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Science, SoonChunHyang University, 22 SoonChunHyang-ro, Asan, Chungnam 31538, Korea.
- Department of Medical Biotechnology, College of Medical Science, SoonChunHyang University, 22 SoonChunHyang-ro, Asan, Chungnam 31538, Korea.
| |
Collapse
|
12
|
Bai L, Zhao J, Gao J, Li F, Wei F, Li J, Xiao Y, Han X, Wang Y, Wang D, Wu F, Wei J. Effects of Shuganjianpihuatanxingqi decoction on mild subclinical hypothyroidism: A SPIRIT compliant randomized controlled trial study protocol. Medicine (Baltimore) 2018; 97:e13183. [PMID: 30407354 PMCID: PMC6250494 DOI: 10.1097/md.0000000000013183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Mild subclinical hypothyroidism (SCH) can cause depression, fatigue, cognitive dysfunction, or other hypothyroid symptoms, and even progress to hypothyroidism. The treatment of mild SCH is controversial. Shuganjianpihuatanxingqi decoction (SD) is a frequently prescribed Chinese herbal medicine in patients with mild SCH. However, scientific evidence is needed to confirm the therapeutic effect of SD. METHODS AND ANALYSIS This study is a randomized, double-blind, and controlled clinical trial. A total of 228 participants with the diagnosis of mild SCH will be randomly assigned to the SD or placebo group in a ratio of 1:1. Participants will receive treatment for 12 weeks and undergo 12-month follow-up. The primary outcome measure is the thyroid-stimulating hormone level, and secondary outcomes will be the differences in the results of Thyroid-related Quality of Life Questionnaire, blood lipids, and Traditional Chinese Medicine Symptom Score Scale between baseline and at 12 weeks after intervention. ETHICS AND DISSEMINATION The study has been approved by Guang'anmen Hospital of China Academy of Chinese Medical Sciences (no.2018-005-ky-01). The trial results will be published via peer-reviewed journals and the Clinical Research Information Service. TRIAL REGISTRATION NUMBER ChiCTR1800015781 (approval date: 20 April 2018).
Collapse
Affiliation(s)
- Litao Bai
- Department of Endocrinology, Guang’anmen Hospital
- China Academy of Chinese Medical Sciences
| | - Jing Zhao
- Department of Endocrinology, Guang’anmen Hospital
- China Academy of Chinese Medical Sciences
| | - Jialiang Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences
| | - Fei Li
- Department of Endocrinology, Guang’anmen Hospital
- Department of Endocrinology, Beijing University of Chinese Medicine
| | - Fan Wei
- Department of Endocrinology, Guang’anmen Hospital
| | - Jun Li
- Department of Endocrinology, Guang’anmen Hospital
- Department of Endocrinology, Beijing University of Chinese Medicine
| | - Yao Xiao
- Department of Endocrinology, Guang’anmen Hospital
- Department of Endocrinology, Beijing University of Chinese Medicine
| | - Xu Han
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai
| | - Yaoli Wang
- Department of Endocrinology, Beijing Changping District Integrated Traditional Chinese Medicine and Western Medicine Hospital Beijing, People's Republic of China
| | - Danwei Wang
- Department of Endocrinology, Guang’anmen Hospital
- Department of Endocrinology, Beijing University of Chinese Medicine
| | - Fangying Wu
- Department of Endocrinology, Guang’anmen Hospital
- Department of Endocrinology, Beijing University of Chinese Medicine
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital
| |
Collapse
|