1
|
Jin B, Miao Z, Pan J, Zhang Z, Yang Y, Zhou Y, Jin Y, Niu Z, Xu Q. The emerging role of glycolysis and immune evasion in ovarian cancer. Cancer Cell Int 2025; 25:78. [PMID: 40045411 PMCID: PMC11881340 DOI: 10.1186/s12935-025-03698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
Ovarian cancer (OC) is one of the three most common malignant tumors of the female reproductive system, with the highest mortality rate among gynecologic malignancies. Like other tumors, OC cells undergo metabolic reprogramming phenomenon and convert glucose metabolism into "aerobic glycolysis" and generate a high concentration of lactate, i.e., the "Warburg effect", which provides a large amount of energy and corresponding intermediary metabolites for their survival, reproduction and metastasis. Numerous studies have shown that targeted inhibition of aerobic glycolysis and lactate metabolism is a promising strategy to enhance the sensitivity of cancer cells to immunotherapy. Therefore, this review summarizes the metabolic features of glycolysis in OC cells and highlights how abnormal lactate concentration affects the differentiation, metabolism, and function of infiltrating immune cells, which contributes to immunosuppression, and how targeted inhibition of this phenomenon may be a potential strategy to enhance the therapeutic efficacy of OC.
Collapse
Affiliation(s)
- Bowen Jin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zehua Miao
- Dalian Medical University, Dalian, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zhang
- Department of Oncology, Hangzhou Cancer Hospital, Zhejiang, Hangzhou, 310002, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yidong Zhou
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanxiang Jin
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Niu
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Zhang X, Wei X, Shi L, Jiang H, Ma F, Li Y, Li C, Ma Y, Ma Y. The latest research progress: Active components of Traditional Chinese medicine as promising candidates for ovarian cancer therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118811. [PMID: 39251149 DOI: 10.1016/j.jep.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ovarian cancer ranks the first in the mortality of gynecological tumors. Because there are no obvious symptoms in the early stage of ovarian cancer, most patients are in the advanced stage of the disease at the time of diagnosis. The incidence of ovarian cancer is increasing year by year, and the incidence of ovarian cancer has a trend of younger age. In recent years. Traditional Chinese medicine (TCM) has a significant impact on improving the quality of life of cancer patients, reducing drug toxicity, preventing metastasis and recurrence, enhancing the efficacy of radiotherapy and chemotherapy, and prolonging survival time, so patients have benefited a lot. AIM OF THE STUDY This review summarizes the mechanisms and molecular pathways through which active ingredients of TCM act in ovarian cancer. It explores the advantages of TCM in treating ovarian cancer. This review provides theoretical support for the use of TCM in the treatment of ovarian cancer, offering new perspectives for its clinical prevention and treatment. MATERIALS AND METHODS This review conducted a literature search on PubMed, Web of Science, Wanfang Database, and China National Knowledge Infrastructure (CNKI) for relevant studies on TCM active ingredients in preventing ovarian cancer. The search terms included "ovarian cancer" combined with "Chinese herbal medicine," "Herbal medicine," "Traditional Chinese medicine," and "Active ingredients of Chinese medicine". Based on existing experimental and clinical research, the paper systematically summarized and analyzed the mechanisms of TCM in treating ovarian cancer. RESULTS Active ingredients of TCM inhibit the occurrence and development of ovarian cancer through inducing tumor cell apoptosis, inhibiting tumor cell proliferation, suppressing tumor cell migration and invasion, inducing tumor cell autophagy, promoting epithelial-mesenchymal transition, and enhancing the efficacy of radiotherapy and chemotherapy drugs. Chinese medicine provides a comprehensive treatment option for ovarian cancer patients, synergizing with radiotherapy and chemotherapy drugs to enhance treatment effectiveness and introduce new hope and possibilities in clinical therapy. CONCLUSIONS Active ingredients of TCM can inhibit the occurrence and development of ovarian cancer, but further clinical research is needed to support their application.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Su Y, Liu L, Lin C, Deng D, Li Y, Huang M, Wang Y, Ling K, Wang H, Chen Q, Huang G. Enhancing cancer therapy: advanced nanovehicle delivery systems for oridonin. Front Pharmacol 2024; 15:1476739. [PMID: 39691396 PMCID: PMC11649421 DOI: 10.3389/fphar.2024.1476739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Oridonin (ORI), an ent-kaurane diterpenoid derived from Rabdosia rubescens (Hemsl.) H.Hara, serves as the primary bioactive component of this plant. It demonstrates a broad spectrum of therapeutic activities, including moderate to potent anticancer properties, alongside anti-inflammatory, antibacterial, antifibrotic, immunomodulatory, and neuromodulatory effects, thus influencing diverse biological processes. However, its clinical potential is significantly constrained by poor aqueous solubility and limited bioavailability. In alignment with the approach of developing drug candidates from natural compounds, various strategies, such as structural modification and nanocarrier systems, have been employed to address these challenges. This review provides an overview of ORI-based nano-delivery systems, emphasizing their potential to improve the clinical applicability of oridonin in oncology. Although some progress has been made in advancing ORI nano-delivery research, it remains insufficient for clinical implementation, necessitating further investigation.
Collapse
Affiliation(s)
- Yilin Su
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Lisha Liu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chongyang Lin
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Dashi Deng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yunfei Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Mou Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yu Wang
- Institute of Pain, The Affiliated Hospital of Southwest Jiaotong University, The Chengdu Third People’s Hospital, Chengdu, China
| | - Kangqiu Ling
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Haobing Wang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Qiyu Chen
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Guixiao Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Feng Y, Wu Y, Yu J, Zhang H, Zheng G, Abudurexiti A, Yao G. Discovery of ent-kaurane diterpenoid glucosides as potent analgesics from the leaves of Pieris formosa. Bioorg Chem 2024; 153:107923. [PMID: 39500216 DOI: 10.1016/j.bioorg.2024.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024]
Abstract
To search for structurally novel analgesics from Ericaceae plants, the leaves of Pieris formosa collected at Yichang, Hubei, China, were phytochemically investigated for the first time. A total of fifteen ent-kaurane diterpene glucosides (1-15) including twelve new ones, named forminosides A-L (1-12), were isolated. Their structures were elucidated by comprehensive spectroscopic data analyses, quantum chemical calculations (13C NMR and ECD calculations and DP4+ analysis), and chemical methods. The absolute configures of 1-3, 5-8, 11, and 13 were further determined by single-crystal X-ray diffraction analysis. Forminoside A (1) represents the first 3α-(β-d-glucopyranosyloxy)-11,16-epoxy-ent-kaurane diterpenoid bearing a unique 12-oxa-pentacyclo[9.3.3.01,10.04,9.013,16]heptadecane core. Forminoside J (10) is the first 17-nor-ent-kaurane type diterpenoid from Ericaceae family, while forminoside L (12) represents the first example of 4,5-seco-ent-kaurane diterpenoid glycoside bearing an unusual α-hydroxyl-α,β-unsaturated ketone block. Notably, the structure of mollisside A was revised to 3β-(β-d-glucopyranosyloxy)-16β,17-dihydroxy-ent-kaurane based on the NMR and single-crystal X-ray diffraction data analysis of forminoside C (3). All the isolates 1-15 showed potent analgesic activity in the HOAc-induced writhing test in mice. Among them, compounds 1-3, 5-12, and 15 exhibited significant analgesic effects at a dose of 5.0 mg/kg with the inhibition rates over 50%. Compounds 1, 5, 7, and 9-12 still displayed significant analgesic effects with the inhibition rates exceeding 50% at a lower dose of 1.0 mg/kg. Forminosides J (10) and L (12) still showed significant analgesic potency even at a lower dose of 0.2 mg/kg, comparable to that of the positive control, morphine. This is first report of the analgesic activity of 11,16-epoxy-ent-kaurane diterpenoid. A preliminary structure-activity relationship was explored, providing new clues to design novel analgesics based on the ent-kaurane and related diterpenoids.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaxing Yu
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Adila Abudurexiti
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, China.
| |
Collapse
|
5
|
Kim Y, Lee S, Park YH. NLRP3 Negative Regulation Mechanisms in the Resting State and Its Implications for Therapeutic Development. Int J Mol Sci 2024; 25:9018. [PMID: 39201704 PMCID: PMC11354250 DOI: 10.3390/ijms25169018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular sensor of the innate immune system that detects various pathogen- and danger-associated molecular patterns, leading to the assembly of the NLRP3 inflammasome and release of interleukin (IL) 1β and IL-18. However, the abnormal activation of the NLRP3 inflammasome has been implicated in the pathogenesis of autoinflammatory diseases such as cryopyrin-associated autoinflammatory syndromes (CAPS) and common diseases such as Alzheimer's disease and asthma. Recent studies have revealed that pyrin functions as an indirect sensor, similar to the plant guard system, and is regulated by binding to inhibitory 14-3-3 proteins. Upon activation, pyrin transitions to its active form. NLRP3 is predicted to follow a similar regulatory mechanism and maintain its inactive form in the cage model, as it also acts as an indirect sensor. Additionally, newly developed NLRP3 inhibitors have been found to inhibit NLRP3 activity by stabilizing its inactive form. Most studies and reviews on NLRP3 have focused on the activation of the NLRP3 inflammasome. This review highlights the molecular mechanisms that regulate NLRP3 in its resting state, and discusses how targeting this inhibitory mechanism can lead to novel therapeutic strategies for NLRP3-related diseases.
Collapse
Affiliation(s)
- YeJi Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.K.); (S.L.)
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Sumin Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.K.); (S.L.)
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.K.); (S.L.)
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Zhang XY, Shi XZ, Yu JY, Wang J, Zhao YM. Functionalized graphene oxide as a nanocarrier for delivering oridonin to improve anti-breast cancer cell activity. Biomed Chromatogr 2024; 38:e5943. [PMID: 38890009 DOI: 10.1002/bmc.5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024]
Abstract
In this study, a targeted nanocarrier was developed by functionalizing graphene oxide with polyethyleneimine and folic acid, intended for loading oridonin. The nanocarrier was successfully synthesized and characterized using an ultraviolet spectrum, Fourier transform infrared spectroscopy and scanning electron microscopy. The nanocarrier demonstrated a remarkable oridonin loading capacity, reaching 424.8 μg/mg, as determined by ultra-high performance liquid chromatography. In vitro drug release experiments exhibited a pH-dependent release profile, with a higher cumulative release in an acidic environment. The release mechanism followed the Ritger-Peppas equation model. Cytotoxicity assays indicated minimal toxicity of the nanocarrier. Enhanced cellular uptake by MCF7 cells was observed for carriers functionalized with folate and polyethyleneimine. These findings highlight the potential of functionalized graphene oxide as a promising carrier for oridonin delivery in biomedical applications.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Xiao-Zi Shi
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Jia-Yuan Yu
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Jin Wang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Yong-Ming Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| |
Collapse
|
7
|
Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, Khan T, Khan K, Armaghan M, Palma‐Morales M, Rodríguez‐Pérez C, Caunii A, Butnariu M, Habtemariam S, Sharifi‐Rad J. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy - A comprehensive review. Food Sci Nutr 2024; 12:3046-3067. [PMID: 38726411 PMCID: PMC11077219 DOI: 10.1002/fsn3.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer incidences are rising each year. In 2020, approximately 20 million new cancer cases and 10 million cancer-related deaths were recorded. The World Health Organization (WHO) predicts that by 2024 the incidence of cancer will increase to 30.2 million individuals annually. Considering the invasive characteristics of its diagnostic procedures and therapeutic methods side effects, scientists are searching for different solutions, including using plant-derived bioactive compounds, that could reduce the probability of cancer occurrence and make its treatment more comfortable. In this regard, oridonin (ORI), an ent-kaurane diterpenoid, naturally found in the leaves of Rabdosia rubescens species, has been found to have antitumor, antiangiogenesis, antiasthmatic, antiinflammatory, and apoptosis induction properties. Extensive research has been performed on ORI to find various mechanisms involved in its anticancer activities. This review article provides an overview of ORI's effectiveness on murine and human cancer populations from 1976 to 2022 and provides insight into the future application of ORI in different cancer therapies.
Collapse
Affiliation(s)
| | - Noohela Khan
- Department of Nutrition SciencesRashid Latif Medical CollegeLahorePakistan
| | - Ahmad Ali
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Hira Akram
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Noushaba Zafar
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Kinza Imran
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Tooba Khan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | | | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | - Marta Palma‐Morales
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
| | - Celia Rodríguez‐Pérez
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Angela Caunii
- “Victor Babes” University of Medicine and PharmacyTimisoaraRomania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from TimisoaraTimisoaraRomania
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKUniversity of GreenwichKentUK
| | | |
Collapse
|
8
|
Kou B, Shi Y, Zhou Z, Yun Y, Wu Q, Zhou J, Liu W. Oridonin inhibited epithelial-mesenchymal transition of laryngeal carcinoma by positively regulating LKB1/AMPK signaling. Int J Med Sci 2024; 21:623-632. [PMID: 38464825 PMCID: PMC10920846 DOI: 10.7150/ijms.92182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/06/2024] [Indexed: 03/12/2024] Open
Abstract
Oridonin is the main bioactive component of Rabdosia rubescens, and its anticancer activity has been reported in a variety of cancers. However, the molecular mechanism of oridonin in laryngeal carcinoma remains unclear. In the present study, the cytotoxic effect of oridonin on laryngeal carcinoma Hep-2 and TU212 cell lines were initially detected by modified MTT assay. The results showed that oridonin had a dose-dependent anti-proliferative effect on laryngeal carcinoma Hep-2 and TU212 cells. Next, we found that oridonin significantly inhibited the migration and invasion of human laryngeal carcinoma Hep-2 and TU212 cell lines by wound healing assay and transwell assay. Subsequently, the results of quantitative real-time PCR assay and western blotting assay confirmed that oridonin upregulated the expression of E-cadherin while downregulated the expression of N-cadherin in a concentration-dependent manner at mRNA and protein levels. In addition, phosphorylation levels of liver kinase B1 (p-LKB1) and AMP-activated protein kinase (p-AMPK) were also elevated upon oridonin treatment. To further verify the role of LKB1/AMPK signaling pathway in laryngeal carcinoma, overexpression of LKB1 was constructed by plasmid transfection. The data exhibited that overexpression of LKB1 could further reinforce the increase of E-cadherin level and decrease of N-cadherin level mediated by oridonin. Additionally, AMPK inhibitor compound C could reverse anti-metastatic effect of oridonin on laryngeal carcinoma, and antagonise EMT expression. In contrast, AMPK activator AICAR presented the opposite effect. In conclusion, our study revealed that oridonin could remarkably reverse the epithelial-mesenchymal transition of laryngeal carcinoma by positively regulating LKB1/AMPK signaling pathway, which suggested that oridonin may be a potential candidate for the treatment of laryngeal carcinoma in the future.
Collapse
Affiliation(s)
- Bo Kou
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuhan Shi
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Legal Affairs, Shaanxi Provincial People's Hospital, Xi 'an 710054, China
| | - Zhaoyue Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Yanning Yun
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qun Wu
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinsong Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Wei Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
9
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
10
|
Wang C, Zhang Y, Jiang Q, Chen S, Zhang L, Qiu H. Oridonin suppresses the growth of glioblastoma cells via inhibiting Hippo/YAP axis. Arch Biochem Biophys 2024; 751:109845. [PMID: 38043888 DOI: 10.1016/j.abb.2023.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Glioma is a brain tumor that originates from brain or spine glial cells. Despite alternative treatments, the overall survival rate remains low. Oridonin (ORI) is purified from the Chinese herb Rabdosia rubescens, which has exhibited positive effects on tumors. This study aimed to investigate the effect of ORI on U87MG glioblastoma cells and whether the Hippo/YAP-related signaling pathway was involved. Malignant glioblastoma U87MG cells and male athymic nude mice (BALB/cnu/nu) were used as the experimental models. The YAP inhibitor Verteporfin (VP) and the overexpression of YAP were used to investigate its potential relation with glioma. Here, we found that ORI inhibited cell proliferation and promoted cell apoptosis in a dose-dependent manner in U87MG cells. Moreover, ORI inhibited Bcl-2, YAP, and c-Myc protein expression but increased Bax, caspase-3, and p-YAP protein expression. Furthermore, the effect of ORI was also confirmed in a mouse model bearing glioma. ORI reversed the effect of overexpression of YAP. Collectively, oridonin suppressed glioblastoma oncogenesis via the Hippo/YAP signaling pathway and could be a potential therapeutic target in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China; Department of Clinical Pharmacy, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400016, China
| | - Yonghong Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
| | - Qingsong Jiang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
| | - Shuang Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
11
|
Arrè V, Scialpi R, Centonze M, Giannelli G, Scavo MP, Negro R. The 'speck'-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. J Biomed Sci 2023; 30:90. [PMID: 37891577 PMCID: PMC10612184 DOI: 10.1186/s12929-023-00983-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular sensor and an essential component of the innate immune system involved in danger recognition. An important hallmark of inflammasome activation is the formation of a single supramolecular punctum, known as a speck, per cell, which is the site where the pro-inflammatory cytokines IL-1β and IL-18 are converted into their bioactive form. Speck also provides the platform for gasdermin D protein activation, whose N-terminus domain perforates the plasma membrane, allowing the release of mature cytokines alongside with a highly inflammatory form of cell death, namely pyroptosis. Although controlled NLRP3 inflammasome-pyroptosis pathway activation preserves mucosal immunity homeostasis and contributes to host defense, a prolonged trigger is deleterious and could lead, in genetically predisposed subjects, to the onset of inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as to gastrointestinal cancer. Experimental evidence shows that the NLRP3 inflammasome has both protective and pathogenic abilities. In this review we highlight the impact of the NLRP3-pyroptosis axis on the pathophysiology of the gastrointestinal tract at molecular level, focusing on newly discovered features bearing pro- and anti-inflammatory and neoplastic activity, and on targeted therapies tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
12
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
13
|
Gao S, Tan H, Li D. Oridonin suppresses gastric cancer SGC-7901 cell proliferation by targeting the TNF-alpha/androgen receptor/TGF-beta signalling pathway axis. J Cell Mol Med 2023; 27:2661-2674. [PMID: 37431884 PMCID: PMC10494293 DOI: 10.1111/jcmm.17841] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Statistics provided by GLOBOCAN list gastric cancer as the sixth most common, with a mortality ranking of third highest for the year 2020. In China, a herb called Rabdosia rubescens (Hemsl.) H.Hara, has been used by local residents for the treatment of digestive tract cancer for hundreds of years. Oridonin, the main ingredient of the herb, has a curative effect for gastric cancer, but the mechanism has not been previously clarified. This study mainly aimed to investigate the role of TNF-alpha/Androgen receptor/TGF-beta signalling pathway axis in mediating the proliferation inhibition of oridonin on gastric cancer SGC-7901 cells. MTT assay, cell morphology observation assay and fluorescence assay were adopted to study the efficacy of oridonin on cell proliferation. The network pharmacology was used to predict the pathway axis regulated by oridonin. Western blot assay was adopted to verify the TNF-α/Androgen receptor/TGF-β signalling pathway axis regulation on gastric cancer by oridonin. The results showed Oridonin could inhibit the proliferation of gastric cancer cells, change cell morphology and cause cell nuclear fragmentation. A total of 11signaling pathways were annotated by the network pharmacology, among them, Tumour necrosis factor alpha (TNF-α) signalling pathway, androgen receptor (AR) signalling pathway and transforming growth factor (TGF-β) signalling pathway account for the largest proportion. Oridonin can regulate the protein expression of the three signalling pathways, which is consistent with the results predicted by network pharmacology. These findings indicated that oridonin can inhibit the proliferation of gastric cancer SGC-7901 cells by regulating the TNF-α /AR /TGF-β signalling pathway axis.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research CenterHarbin University of CommerceHarbinChina
- Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor DrugsHarbinChina
| | - Huixin Tan
- Department of PharmacyFourth Affiliated Hospital of Harbin Medicine UniversityHarbinChina
| | - Dan Li
- Drug Engineering and Technology Research CenterHarbin University of CommerceHarbinChina
- Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor DrugsHarbinChina
| |
Collapse
|
14
|
Hwang TL, Chang CH. Oridonin enhances cytotoxic activity of natural killer cells against lung cancer. Int Immunopharmacol 2023; 122:110669. [PMID: 37480753 DOI: 10.1016/j.intimp.2023.110669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Oridonin is a Chinese herbal medicine exhibiting anti-tumor properties; however, its immune modulation capacity has yet to be elucidated. Our objective in this study was to determine whether oridonin enhances the anti-tumor activity of natural killer (NK) cells against lung cancer cells. METHODS LDH-releasing assays were used to investigate the effects of oridonin on NK-92MI cell activity against lung cancer cells. Flow cytometry and real-time PCR were used to examine the effects of oridonin on degranulation markers, cytotoxic factors, activating receptors on NK-92MI cells, and ligands in lung cancer cells. Western blot analysis provided insight into the mechanisms underlying the observed effects. RESULTS Oridonin enhanced the cytotoxic effects of NK-92MI cells against A549 lung cancer cells. This effect involved upregulating the expression of the degranulation marker CD107a and IFN-γ as well as activating receptors on NK cells and their ligand MICA/B. Oridonin also inhibited STAT3 phosphorylation in A549 cells and NK-92MI cells. A lung cancer mouse model confirmed the anti-tumor effects of oridonin and NK-92MI cells, wherein both treatments alone suppressed tumor growth. Oridonin was also shown to have a synergistic effect on the anti-tumor activity of NK-92MI cells. CONCLUSIONS The ability of oridonin to enhance the cytotoxic effects of NK cells indicates its potential as a novel therapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
15
|
Kazantseva L, Becerra J, Santos-Ruiz L. Traditional Medicinal Plants as a Source of Inspiration for Osteosarcoma Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155008. [PMID: 35956961 PMCID: PMC9370649 DOI: 10.3390/molecules27155008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is one of the most common types of bone cancers among paediatric patients. Despite the advances made in surgery, chemo-, and radiotherapy, the mortality rate of metastatic osteosarcoma remains unchangeably high. The standard drug combination used to treat this bone cancer has remained the same for the last 20 years, and it produces many dangerous side effects. Through history, from ancient to modern times, nature has been a remarkable source of chemical diversity, used to alleviate human disease. The application of modern scientific technology to the study of natural products has identified many specific molecules with anti-cancer properties. This review describes the latest discovered anti-cancer compounds extracted from traditional medicinal plants, with a focus on osteosarcoma research, and on their cellular and molecular mechanisms of action. The presented compounds have proven to kill osteosarcoma cells by interfering with different pathways: apoptosis induction, stimulation of autophagy, generation of reactive oxygen species, etc. This wide variety of cellular targets confer natural products the potential to be used as chemotherapeutic drugs, and also the ability to act as sensitizers in drug combination treatments. The major hindrance for these molecules is low bioavailability. A problem that may be solved by chemical modification or nano-encapsulation.
Collapse
Affiliation(s)
- Liliya Kazantseva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - José Becerra
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
| | - Leonor Santos-Ruiz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence:
| |
Collapse
|
16
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
17
|
Jing T, Guo Y, Wei Y. Carboxymethylated pachyman induces ferroptosis in ovarian cancer by suppressing NRF1/HO‑1 signaling. Oncol Lett 2022; 23:161. [PMID: 35399331 PMCID: PMC8987927 DOI: 10.3892/ol.2022.13281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
Carboxymethylated pachyman (CMP) is characterized by immune regulatory, antitumor and antioxidant activities. However, whether CMP contributes to the treatment of ovarian cancer has yet to be explored. The role of CMP in ovarian cancer cell death was analyzed using CCK-8 and flow cytometry assays. The data showed that CMP induced ovarian cancer cell death in a dose-dependent manner. Furthermore, CMP-induced cell death could be largely reversed by preincubation with ferrostatin-1 (Fer-1) but not 3-methyladenine or necrostatin-1. Reverse transcription-quantitative PCR analysis indicated that CMP significantly increased prostaglandin-endoperoxide synthase 2 (PTGS2) and Chac glutathione specific γ-glutamylcyclotransferase 1 (CHAC1) mRNA levels, but preincubation with Fer-1 obviously reduced PTGS2 and CHAC1 mRNA levels in SKOV3 and Hey cells. The intracellular levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and Fe2+ were then quantified The data showed that 100 and 200 µg/ml CMP enhanced the production of SOD, MDA and Fe2+ but decreased GSH levels in SKOV3 and HEY cells. These data indicated that CMP could induce ferroptosis in ovarian cancer cells. More importantly, in vitro and in vivo studies indicated that CMP significantly suppressed nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), cystine/glutamate antiporter system X(c)(−) (xCT) and glutathione peroxidase 4 (GPX4) expression in ovarian cancer cells and tumors. In conclusion, the present study showed novel data that CMP could induce ferroptotic death in ovarian cancer cells by suppressing Nrf2/HO-1/xCT/GPX4. All these findings indicate that CMP may have great potential in anti-ovarian cancer cell therapy by inducing ferroptosis.
Collapse
Affiliation(s)
- Tiantian Jing
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yanli Guo
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yanqiu Wei
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| |
Collapse
|
18
|
Chen B, Liu X, Li Y, Shan T, Bai L, Li C, Wang Y. iRGD Tumor-Penetrating Peptide-Modified Nano-Delivery System Based on a Marine Sulfated Polysaccharide for Enhanced Anti-Tumor Efficiency Against Breast Cancer. Int J Nanomedicine 2022; 17:617-633. [PMID: 35173433 PMCID: PMC8842734 DOI: 10.2147/ijn.s343902] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background Breast cancer is a common malignancy in women. Conventional clinical therapies for breast cancer all display moderate clinical efficacies and limitations. It is urgent to explore the novel and combined therapeutic strategies for breast cancer to meet clinical demand. Methods An iRGD tumor-penetrating peptide-modified nano-delivery system (denoted as iRGD-PSS@PBAE@JQ1/ORI nanoparticles) based on a marine sulfated polysaccharide was developed by codelivery of JQ1 (BET inhibitor) and oridonin (ORI, bioactive diterpenoid derived from traditional Chinese medicine herb). The iRGD-PSS@PBAE@JQ1/ORI NPs, surface modified with iRGD peptide conjugated propylene glycol alginate sodium sulfate (iRGD-PSS). The antitumor efficacy was evaluated both in vitro and in vivo. Results The prepared iRGD-PSS@PBAE@JQ1/ORI NPs effectively enhanced the tumor targeting and cellular internalization of JQ1 and ORI. Thus, JQ1 exerted the reversal effect on immune tolerance by decreasing the expression of PD-L1, while ORI displayed multiple antitumor effects, such as antiproliferation, inhibition of intracellular ROS production and inhibition of lactic acid secretion. Conclusion Our data revealed that iRGD peptide could significantly improve the cellular internalization and tumor penetration of the nano-delivery system. The combination of JQ1 and ORI could exert synergistic antitumor activities. Taken together, this study provides a multifunctional nanotherapeutic system to enhance the anti-tumor efficiency against breast cancer.
Collapse
Affiliation(s)
- Bowei Chen
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Xiaohong Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Yunan Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Tianhe Shan
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Liya Bai
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Correspondence: Yinsong Wang; Chunyu Li, Email ;
| |
Collapse
|
19
|
Preparation, Characterization, and Evaluation of Liposomes Containing Oridonin from Rabdosia rubescens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030860. [PMID: 35164121 PMCID: PMC8839758 DOI: 10.3390/molecules27030860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Due to the remarkable anti-tumor activities of oridonin (Ori), research on Rabdosia rubescens has attracted more and more attention in the pharmaceutical field. The purpose of this study was to extract Ori from R. rubescens by ultrasound-assisted extraction (UAE) and prepare Ori liposomes as a novel delivery system to improve the bioavailability and biocompatibility. Response surface methodology (RSM), namely Box-Behnken design (BBD), was applied to optimize extraction conditions, formulation, and preparation process. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 75.9%, an extraction time of 35.7 min, and a solid/liquid ratio of 1:32.6. Under these optimal conditions, the extraction yield of Ori was 4.23 mg/g, which was well matched with the predicted value (4.28 mg/g). The optimal preparation conditions of Ori liposomes by RSM, with an ultrasonic time of 41.1 min, a soybean phospholipids/drug ratio of 9.6 g/g, and a water bath temperature of 53.4 °C, had higher encapsulation efficiency (84.1%). The characterization studies indicated that Ori liposomes had well-dispersible spherical shapes and uniform sizes with a particle size of 137.7 nm, a polydispersity index (PDI) of 0.216, and zeta potential of −24.0 mV. In addition, Ori liposomes presented better activity than free Ori. Therefore, the results indicated that Ori liposomes could enhance the bioactivity of Ori, being proposed as a promising vehicle for drug delivery.
Collapse
|
20
|
Liu W, Wang X, Wang L, Mei Y, Yun Y, Yao X, Chen Q, Zhou J, Kou B. Oridonin represses epithelial-mesenchymal transition and angiogenesis of thyroid cancer via downregulating JAK2/STAT3 signaling. Int J Med Sci 2022; 19:965-974. [PMID: 35813296 PMCID: PMC9254367 DOI: 10.7150/ijms.70733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Oridonin, a bioactive diterpenoid isolated from Rabdosia rubescens, has been reported to exert anticancer activity in various cancers. However, the molecular mechanism of oridonin in thyroid cancer has not yet been elucidated. In the present study, oridonin was found to significantly inhibit migration and invasion of thyroid cancer TPC-1 and BCPAP cells, as evidenced by wound healing assay, transwell migration assay and Matrigel invasion assay. In addition, oridonin could partially impede epithelial-mesenchymal transition by upregulating E-Cadherin expression and downregulating N-Cadherin and vimentin expressions in a concentration-dependent manner. Accumulating evidence indicated that JAK2 (Janus kinase-2)/STAT3 (Signal Transducer and Activator of Transcription 3) signaling pathway was associated with epithelial-mesenchymal transition. As expected, the protein levels of phosphorylated-JAK2 and phosphorylated-STAT3 were dramatically reduced upon oridonin treatment in thyroid cancer TPC-1 and BCPAP cells. Subsequently, the findings revealed that JAK2 overexpression could weaken the anti-metastatic effect and partially attenuate MET (mesenchymal-to-epithelial transition) by oridonin, while AG490, a JAK2 antagonist, enhanced the above process in thyroid cancer cells. The subsequent results showed that oridonin inhibited angiogenesis and VEGFA expression in thyroid cancer cells by tube formation assay, western blot and ELISA assay. Meanwhile, AG490 could further attenuate oridonin-treated VEGFA protein level. In addition, the in vivo results further confirmed that oridonin inhibited tumorigenicity in thyroid cancer xenograft. In conclusion, the results demonstrated that oridonin repressed metastatic phenotype, angiogenesis and modulated EMT (epithelial-mesenchymal transition) of thyroid cancer cells via the inactivation of JAK2/STAT3 signaling pathway, suggesting that JAK2 may be a novel therapeutic target of oridonin against thyroid cancer.
Collapse
Affiliation(s)
- Wei Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xindi Wang
- Department of Clinical Medicine, Medical School of Xian Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Le Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu Mei
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanning Yun
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710061, China
| | - Xiaobao Yao
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qian Chen
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinsong Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Bo Kou
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
21
|
Oridonin Dose-Dependently Modulates the Cell Senescence and Apoptosis of Gastric Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5023536. [PMID: 34795783 PMCID: PMC8595004 DOI: 10.1155/2021/5023536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
Gastric cancer (GC) is the fourth most lethal cancer. Effective treatments are lacking, and our knowledge of the pathogenic mechanisms in play is poor. Oridonin from the Chinese herb Rabdosia rubescens exerts various anticancer activities. However, the dose-dependent effects of oridonin on human GC remain unclear. Here, we found that oridonin inhibited GC cell growth in a time- and dose-dependent manner. Low-dose oridonin induced GC cell cycle arrest at G0/G1 and cell senescence by suppressing the c-Myc-AP4 pathway and enhancing p53-p21 signaling. AP4 overexpression partly abrogated the oridonin-induced senescence of GC cells. High-dose oridonin induced apoptosis and autophagy, with the autophagy inhibitor BafA1 attenuating oridonin-induced apoptosis. Together, the findings indicate that oridonin at different doses modulates GC cell senescence and apoptosis; oridonin may thus usefully treat GC.
Collapse
|
22
|
Li X, Zhang CT, Ma W, Xie X, Huang Q. Oridonin: A Review of Its Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2021; 12:645824. [PMID: 34295243 PMCID: PMC8289702 DOI: 10.3389/fphar.2021.645824] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oridonin, as a natural terpenoids found in traditional Chinese herbal medicine Isodon rubescens (Hemsl.) H.Hara, is widely present in numerous Chinese medicine preparations. The purpose of this review focuses on providing the latest and comprehensive information on the pharmacology, pharmacokinetics and toxicity of oridonin, to excavate the therapeutic potential and explore promising ways to balance toxicity and efficacy of this natural compound. Information concerning oridonin was systematically collected from the authoritative internet database of PubMed, Elsevier, Web of Science, Wiley Online Library and Europe PMC applying a combination of keywords involving "pharmacology," "pharmacokinetics," and "toxicology". New evidence shows that oridonin possesses a wide range of pharmacological properties, including anticancer, anti-inflammatory, hepatorenal activities as well as cardioprotective protective activities and so on. Although significant advancement has been witnessed in this field, some basic and intricate issues still exist such as the specific mechanism of oridonin against related diseases not being clear. Moreover, several lines of evidence indicated that oridonin may exhibit adverse effects, even toxicity under specific circumstances, which sparked intense debate and concern about security of oridonin. Based on the current progress, future research directions should emphasize on 1) investigating the interrelationship between concentration and pharmacological effects as well as toxicity, 2) reducing pharmacological toxicity, and 3) modifying the structure of oridonin-one of the pivotal approaches to strengthen pharmacological activity and bioavailability. We hope that this review can provide some inspiration for the research of oridonin in the future.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan-Tao Zhang
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ma
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Che X, Zhan J, Zhao F, Zhong Z, Chen M, Han R, Wang Y. Oridonin Promotes Apoptosis and Restrains the Viability and Migration of Bladder Cancer by Impeding TRPM7 Expression via the ERK and AKT Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4340950. [PMID: 34285910 PMCID: PMC8275389 DOI: 10.1155/2021/4340950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oridonin is a powerful anticancer compound found in Rabdosia rubescens. However, its potential impact on bladder cancer remains uninvestigated. In this work, we aimed to detect the anticancer effect of oridonin on bladder cancer and explore the molecular mechanisms involved. METHODS The anticancer activity of oridonin was assessed in vitro with a CCK8 assay, an annexin V-FITC apoptosis analysis, and colony formation and Transwell migration assays which were performed with the human bladder cancer cell line T24. Levels of apoptosis-related proteins, melastatin transient receptor potential channel 7 (TRPM7), and signaling molecules were examined in oridonin-treated T24 cells by western blotting or RT-PCR. Oridonin anticancer efficacy was further validated in vivo with a T24 xenograft mouse model. RESULTS Oridonin repressed the proliferative, colony-forming, and migratory capacities of T24 cells, triggered extensive apoptosis in vitro, and retarded tumor growth in vivo. Moreover, oridonin treatment significantly increased expression levels of p53 and cleaved caspase-3 and reduced expression of TRPM7, p-AKT, and p-ERK. CONCLUSION Oridonin exhibited outstanding antiproliferative and antimigratory effects on bladder cancer, and these effects were at least partially associated with targeting of TRPM7 through inactivation of the ERK and AKT signaling pathways. These findings provide insight for the clinical application of oridonin in bladder cancer prevention.
Collapse
Affiliation(s)
- Xianping Che
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Jiangtao Zhan
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Fan Zhao
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Zunhe Zhong
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Mianchuan Chen
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Ruifa Han
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, 300211 Tianjin, China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| |
Collapse
|
24
|
Abdullah NA, Md Hashim NF, Ammar A, Muhamad Zakuan N. An Insight into the Anti-Angiogenic and Anti-Metastatic Effects of Oridonin: Current Knowledge and Future Potential. Molecules 2021; 26:775. [PMID: 33546106 PMCID: PMC7913218 DOI: 10.3390/molecules26040775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, with a mortality rate of more than 9 million deaths reported in 2018. Conventional anti-cancer therapy can greatly improve survival however treatment resistance is still a major problem especially in metastatic disease. Targeted anti-cancer therapy is increasingly used with conventional therapy to improve patients' outcomes in advanced and metastatic tumors. However, due to the complexity of cancer biology and metastasis, it is urgent to develop new agents and evaluate the anti-cancer efficacy of available treatments. Many phytochemicals from medicinal plants have been reported to possess anti-cancer properties. One such compound is known as oridonin, a bioactive component of Rabdosia rubescens. Several studies have demonstrated that oridonin inhibits angiogenesis in various types of cancer, including breast, pancreatic, lung, colon and skin cancer. Oridonin's anti-cancer effects are mediated through the modulation of several signaling pathways which include upregulation of oncogenes and pro-angiogenic growth factors. Furthermore, oridonin also inhibits cell migration, invasion and metastasis via suppressing epithelial-to-mesenchymal transition and blocking downstream signaling targets in the cancer metastasis process. This review summarizes the recent applications of oridonin as an anti-angiogenic and anti-metastatic drug both in vitro and in vivo, and its potential mechanisms of action.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Aula Ammar
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow City G61 1BD, UK;
| | - Noraina Muhamad Zakuan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
25
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
26
|
Zhang B, Ma X, Li Y, Li S, Cheng J. Pleuromutilin Inhibits Proliferation and Migration of A2780 and Caov-3 Ovarian Carcinoma Cells and Growth of Mouse A2780 Tumor Xenografts by Down-Regulation of pFAK2. Med Sci Monit 2020; 26:e920407. [PMID: 32041931 PMCID: PMC7034521 DOI: 10.12659/msm.920407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pleuromutilin is a natural tricyclic, derived from the fungus, Pleurotus mutilus. This study aimed to investigate the effects of pleuromutilin on migration and proliferation of A2780 and Caov-3 human ovarian carcinoma cells and the growth of A2780 tumor xenografts in mice and the molecular mechanisms involved. MATERIAL AND METHODS A2780 and Caov-3 human ovarian carcinoma cells were cultured with and without 40, 160, and 200 μM of pleuromutilin. The Edu fluorescence assay, the wound-healing assay, and Matrigel were used to measure A2780 and Caov-3 cell proliferation, migration, invasion, and adhesion in vitro, respectively. Western blot measured protein levels of FAK, p-FAK, MMP-2, and MMP-9. A2780 cells were injected subcutaneously into mice to determine the effects of pleuromutilin on the growth of tumor xenografts. RESULTS Pleuromutilin significantly reduced A2780 and Caov-3 cell proliferation at 48 h in a dose-dependent manner (P<0.05), and at 200 μM, pleuromutilin reduced cell proliferation by 21.43% and 23.65%, respectively. Treatment of A2780 cells with pleuromutilin significantly reduced cell migration, invasion, and adhesion and the expression of p-FAK, MMP-2, and MMP-9 compared with untreated controls. In the mouse tumor xenograft model, treatment with pleuromutilin significantly reduced tumor size compared with the untreated group and inhibited tumor metastasis to the intestine, spleen, and peritoneal cavity. CONCLUSIONS In A2780 and Caov-3 human ovarian carcinoma cells, pleuromutilin inhibited cell proliferation, migration, invasion, and adhesion in a dose-dependent manner, and reduced tumor growth and metastases in a mouse A2780 cell tumor xenograft model.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Minimally Invasive Gynecological Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaoli Ma
- Department of Minimally Invasive Gynecological Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Yuan Li
- Department of Perinatal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Sijing Li
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Jiumei Cheng
- Department of Minimally Invasive Gynecological Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
27
|
Liu J, Zhang N, Li N, Fan X, Li Y. Influence of verapamil on the pharmacokinetics of oridonin in rats. PHARMACEUTICAL BIOLOGY 2019; 57:787-791. [PMID: 31747844 PMCID: PMC6882484 DOI: 10.1080/13880209.2019.1688844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context: Oridonin has been traditionally used in Chinese treatment of various cancers, but its poor bioavailability limits its therapeutic uses. Verapamil can enhance the absorption of some drugs with poor oral bioavailability. Whether verapamil can enhance the bioavailability of oridonin is still unclear.Objective: This study investigated the effect of verapamil on the pharmacokinetics of oridonin in rats and clarified its main mechanism.Materials and methods: The pharmacokinetic profiles of oral administration of oridonin (20 mg/kg) in Sprague-Dawley rats with two groups of six animals each, with or without pre-treatment of verapamil (10 mg/kg/day for 7 days) were investigated. The effects of verapamil on the transport and metabolic stability of oridonin were also investigated using Caco-2 cell transwell model and rat liver microsomes.Results: The results showed that verapamil could significantly increase the peak plasma concentration (from 146.9 ± 10.17 to 193.97 ± 10.53 ng/mL), and decrease the oral clearance (from 14.69 ± 4.42 to 8.09 ± 3.03 L/h/kg) of oridonin. The Caco-2 cell transwell experiments indicated that verapamil could decrease the efflux ratio of oridonin from 1.67 to 1.15, and the intrinsic clearance rate of oridonin was decreased by the pre-treatment with verapamil (40.06 ± 2.5 vs. 36.09 ± 3.7 µL/min/mg protein).Discussion and conclusions: These results indicated that verapamil could significantly change the pharmacokinetic profile of oridonin in rats, and it might exert these effects through increasing the absorption of oridonin by inhibiting the activity of P-gp, or through inhibiting the metabolism of oridonin in rat liver. In addition, the potential drug-drug interaction should be given special attention when verapamil is used with oridonin. Also, the dose of oridonin should be carefully selected in the clinic.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Shandong, China
| | - Ning Zhang
- Department of Neonatology, Yidu Central Hospital of Weifang, Shandong, China
| | - Na Li
- Department of Neonatology, Yidu Central Hospital of Weifang, Shandong, China
| | - Xiaocheng Fan
- Department of Oncology, Jining Traditional Chinese Medicine Hospital, Jining, China
| | - Ying Li
- Department of Oncology, Jining Traditional Chinese Medicine Hospital, Jining, China
- CONTACT Ying Li Department of Oncology, Jining Traditional Chinese Medicine Hospital, No. 3, Huancheng Road, Jining, Shandong 272000, China
| |
Collapse
|