1
|
Abreo Medina ADP, Shi M, Wang Y, Wang Z, Huang K, Liu Y. Exploring Extracellular Vesicles: A Novel Approach in Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2717-2731. [PMID: 39846785 DOI: 10.1021/acs.jafc.4c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication. An imbalance in the gut microbiota composition may contribute to the progression of NAFLD, making the gut-liver axis a promising target for therapeutic strategies. This review aims to provide a comprehensive overview of EVs in NAFLD. Additionally, exosome-like nanovesicles derived from plants (PELNs) and probiotics-derived extracellular vesicles (postbiotics) have demonstrated the potential to re-establish intestinal equilibrium and modulate gut microbiota, thus offering the potential to alleviate NAFLD via the gut-liver axis. Further research is needed using multiple omics approaches to comprehensively characterize the cargo including protein, metabolites, genetic material packaged, and biological activities of extracellular vesicles derived from diverse microbes and plants.
Collapse
Affiliation(s)
- Andrea Del Pilar Abreo Medina
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengdie Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Wang F, Qin Y, Li Z. Serum retinol-binding protein 4 in stroke patients: correlation with T helper 17/regulatory T cell imbalance and 3-year cognitive function decline. Front Neurol 2023; 14:1217979. [PMID: 37808505 PMCID: PMC10551125 DOI: 10.3389/fneur.2023.1217979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Retinol-binding protein 4 (RBP4) promotes atherosclerotic progression and neuronal loss, whereas its association with cognitive impairment in stroke is unclear. Hence, this prospective study aimed to explore the association of serum RBP4 with the T helper (Th)17/regulatory T (Treg) cell ratio and its correlation with cognitive impairment in stroke patients. Methods Peripheral blood samples from 265 stroke patients and 50 healthy controls (HCs) were collected at enrollment for serum RBP4 (by enzyme-linked immunosorbent assay) and Th17 and Treg cells (by flow cytometry) determination. Additionally, stroke patients underwent routine follow-ups, and their Mini-Mental State Examination (MMSE) scores were assessed at baseline and in years 1, 2, and 3 after enrollment. Results Serum RBP4 was elevated in stroke patients compared to HCs (p < 0.001), with a good ability to differentiate stroke patients from HCs (area under the curve: 0.815). Serum RBP4 was positively associated with Th17 cells (p < 0.001) and the Th17/Treg cell ratio (p < 0.001) and negatively associated with Treg cells (p = 0.003) in stroke patients, whereas it was only positively associated with the Th17/Treg cell ratio (p = 0.027) but not with Th17 (p = 0.075) or Treg (p = 0.130) cells in HCs. Furthermore, increased serum RBP4 was associated with a lower MMSE score (p < 0.001) and a lower incidence of cognition impairment (p = 0.005) at enrollment in stroke patients, as were Th17 cells and the Th17/Treg cell ratio (all p < 0.050). The 1-, 2-, and 3-year MMSE scores in stroke patients were 25.9 ± 2.0, 25.3 ± 2.3, and 24.9 ± 2.3, respectively. More importantly, serum RBP4 was negatively correlated with 1-, 2-, and 3-year MMSE scores (all p < 0.001) and positively associated with 1-year (p = 0.013), 2-year (p = 0.007), and 3-year (p = 0.001) MMSE score declines in stroke patients. Conclusion Serum RBP4 is positively associated with a Th17/Treg cell imbalance and, more importantly, it is indicative of cognitive function decline within 3 years in stroke patients. Thus, early and timely interventions and physical rehabilitation are more necessary in stroke patients with high serum RBP4.
Collapse
Affiliation(s)
| | | | - Zongyou Li
- Department of Neurology, Fuyang People’s Hospital, Fuyang, China
| |
Collapse
|
3
|
Chung KW, Cho YE, Kim SJ, Hwang S. Immune-related pathogenesis and therapeutic strategies of nonalcoholic steatohepatitis. Arch Pharm Res 2022; 45:229-244. [PMID: 35391713 DOI: 10.1007/s12272-022-01379-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and has become prevalent in the adult population worldwide, given the ongoing obesity pandemic. NAFLD comprises several hepatic disorders, ranging from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and carcinoma. Excessive fat accumulation in the liver can induce the development of fatty liver, whereas the progression of fatty liver to NASH involves various complex factors. The crucial difference between fatty liver and NASH is the presence of inflammation and fibrosis, the emergence of which is closely associated with the action of immune cells and immunological factors, such as chemokines and cytokines. Thus, expanding our understanding of immunological mechanisms contributing to NASH pathogenesis will lead to the identification of therapeutic targets and the development of viable therapeutics against NASH.
Collapse
Affiliation(s)
- Ki Wung Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Inflammatory Cytokines, Adipocytokines, and Th17/Treg Balance in Patients with Nonalcoholic Fatty Liver Disease following Administration of Dahuang Zhechong Pills. Genet Res (Camb) 2022; 2022:8560831. [PMID: 35069014 PMCID: PMC8759922 DOI: 10.1155/2022/8560831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives. The occurrence and development of nonalcoholic fatty liver disease (NAFLD) is related to lipid peroxidation, imbalance of inflammatory response factors, and immune function disorder. This study was conducted with the purpose of investigating the expression levels of inflammatory cytokines and adipocytokines and Th17/Treg balance in NAFLD patients treated with Dahuang Zhechong pills (DHZCPs). Methods. The study recruited 100 NAFLD patients who were then arranged into the test group and control group. Patients in the test group were treated with DHZCPs, while patients in the control group were untreated. Peripheral TH17 and Treg cells were detected by flow cytometry, and peripheral IL-17, IL-10, hs-CRP, and TNF-α expression levels were determined by enzyme-linked immunosorbent assay (ELISA) methods. The concentrations of ghrelin, leptin, and adiponectin were quantitatively examined. Results. The levels of TC, TG, ALT, and AST were declined but the level of HDL-C was increased in NAFLD patients treated with DHZCPs compared with untreated patients (
). The ratio of Th17/Treg in NAFLD patients treated with DHZCPs was (1.52 ± 0.21), which was significantly lower than (2.39 ± 0.45) of untreated patients (
). The levels of IL-17, hs-CRP, and TNF-α were lower, but the level of IL-10 was higher in NAFLD patients treated with DHZCPs than that in untreated patients (
). The expression levels of ghrelin and adiponectin in NAFLD patients treated with DHZCPs were evidently higher than those in untreated patients (
), and the expression level of leptin in NAFLD patients treated with DHZCPs was evidently lower than that in untreated patients (
). Conclusions. Administration of DHZCPs regulates the immune function of NAFLD patients by keeping Th17/Treg balance and affecting the levels of inflammatory cytokines and adipocytokines.
Collapse
|
5
|
Hann A, Oo YH, Perera MTPR. Regulatory T-Cell Therapy in Liver Transplantation and Chronic Liver Disease. Front Immunol 2021; 12:719954. [PMID: 34721383 PMCID: PMC8552037 DOI: 10.3389/fimmu.2021.719954] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 12/29/2022] Open
Abstract
The constant exposure of the liver to gut derived foreign antigens has resulted in this organ attaining unique immunological characteristics, however it remains susceptible to immune mediated injury. Our understanding of this type of injury, in both the native and transplanted liver, has improved significantly in recent decades. This includes a greater awareness of the tolerance inducing CD4+ CD25+ CD127low T-cell lineage with the transcription factor FoxP3, known as regulatory T-Cells (Tregs). These cells comprise 5-10% of CD4+ T cells and are known to function as an immunological "braking" mechanism, thereby preventing immune mediated tissue damage. Therapies that aim to increase Treg frequency and function have proved beneficial in the setting of both autoimmune diseases and solid organ transplantations. The safety and efficacy of Treg therapy in liver disease is an area of intense research at present and has huge potential. Due to these cells possessing significant plasticity, and the potential for conversion towards a T-helper 1 (Th1) and 17 (Th17) subsets in the hepatic microenvironment, it is pre-requisite to modify the microenvironment to a Treg favourable atmosphere to maintain these cells' function. In addition, implementation of therapies that effectively increase Treg functional activity in the liver may result in the suppression of immune responses and will hinder those that destroy tumour cells. Thus, fine adjustment is crucial to achieve this immunological balance. This review will describe the hepatic microenvironment with relevance to Treg function, and the role these cells have in both native diseased and transplanted livers.
Collapse
Affiliation(s)
- Angus Hann
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ye H Oo
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Disease (ERN-Rare Liver Centre), University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - M Thamara P R Perera
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Mastiha has efficacy in immune-mediated inflammatory diseases through a microRNA-155 Th17 dependent action. Pharmacol Res 2021; 171:105753. [PMID: 34224858 DOI: 10.1016/j.phrs.2021.105753] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Mastiha is a natural nutritional supplement with known anti-inflammatory properties. Non-alcoholic fatty liver disease (NAFLD) and Inflammatory bowel disease (IBD) are immune mediated inflammatory diseases that share common pathophysiological features. Mastiha has shown beneficial effects in both diseases. MicroRNAs have emerged as key regulators of inflammation and their modulation by phytochemicals have been extensively studied over the last years. Therefore, the aim of this study was to investigate whether a common route exists in the anti-inflammatory activity of Mastiha, specifically through the regulation of miRNA levels. Plasma miR-16, miR-21 and miR-155 were measured by Real-Time PCR before and after two double blinded and placebo-controlled randomized clinical trials with Mastiha. In IBD and particularly in ulcerative colitis patients in relapse, miR-155 increased in the placebo group (p = 0.054) whereas this increase was prevented by Mastiha. The mean changes were different in the two groups even after adjusting for age, sex and BMI (p = 0.024 for IBD and p = 0.042). Although the results were not so prominent in NAFLD, miR-155 displayed a downward trend in the placebo group (p = 0.054) whereas the levels did not changed significantly in the Mastiha group in patients with less advanced fibrosis. Our results propose a regulatory role for Mastiha in circulating levels of miR-155, a critical player in T helper-17 (Th17) differentiation and function.
Collapse
|
7
|
Deczkowska A, David E, Ramadori P, Pfister D, Safran M, Li B, Giladi A, Jaitin DA, Barboy O, Cohen M, Yofe I, Gur C, Shlomi-Loubaton S, Henri S, Suhail Y, Qiu M, Kam S, Hermon H, Lahat E, Ben Yakov G, Cohen-Ezra O, Davidov Y, Likhter M, Goitein D, Roth S, Weber A, Malissen B, Weiner A, Ben-Ari Z, Heikenwälder M, Elinav E, Amit I. XCR1 + type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat Med 2021; 27:1043-1054. [PMID: 34017133 DOI: 10.1038/s41591-021-01344-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are prevalent liver conditions that underlie the development of life-threatening cirrhosis, liver failure and liver cancer. Chronic necro-inflammation is a critical factor in development of NASH, yet the cellular and molecular mechanisms of immune dysregulation in this disease are poorly understood. Here, using single-cell transcriptomic analysis, we comprehensively profiled the immune composition of the mouse liver during NASH. We identified a significant pathology-associated increase in hepatic conventional dendritic cells (cDCs) and further defined their source as NASH-induced boost in cycling of cDC progenitors in the bone marrow. Analysis of blood and liver from patients on the NAFLD/NASH spectrum showed that type 1 cDCs (cDC1) were more abundant and activated in disease. Sequencing of physically interacting cDC-T cell pairs from liver-draining lymph nodes revealed that cDCs in NASH promote inflammatory T cell reprogramming, previously associated with NASH worsening. Finally, depletion of cDC1 in XCR1DTA mice or using anti-XCL1-blocking antibody attenuated liver pathology in NASH mouse models. Overall, our study provides a comprehensive characterization of cDC biology in NASH and identifies XCR1+ cDC1 as an important driver of liver pathology.
Collapse
Affiliation(s)
- Aleksandra Deczkowska
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. .,Departments of Immunology and Neuroscience, Institut Pasteur, Paris, France.
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Michal Safran
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Baoguo Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Oren Barboy
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Yofe
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chamutal Gur
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Medicine, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | | | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Yousuf Suhail
- Chirurgische Klinik, Allgemein, Viszeral und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Mengjie Qiu
- Chirurgische Klinik, Allgemein, Viszeral und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Shing Kam
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Hila Hermon
- Department of Surgery C, Sheba Medical Center, Tel Hashomer, Israel
| | - Eylon Lahat
- Department of Surgery B, Sheba Medical Center, Tel Hashomer, Israel
| | - Gil Ben Yakov
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Yana Davidov
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Mariya Likhter
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, Israel
| | - David Goitein
- Department of Surgery C, Sheba Medical Center, Tel Hashomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Susanne Roth
- Chirurgische Klinik, Allgemein, Viszeral und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Ben-Ari
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany.
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. .,Division of Microbiome and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
dos Santos Ferreira D, Arora G, Gieseck RL, Rotile NJ, Waghorn PA, Tanabe KK, Wynn TA, Caravan P, Fuchs BC. Molecular Magnetic Resonance Imaging of Liver Fibrosis and Fibrogenesis Is Not Altered by Inflammation. Invest Radiol 2021; 56:244-251. [PMID: 33109919 PMCID: PMC7956154 DOI: 10.1097/rli.0000000000000737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
METHODS Three groups of mice that develop either mild type 2 inflammation and fibrosis (wild type), severe fibrosis with exacerbated type 2 inflammation (Il10-/-Il12b-/-Il13ra2-/-), or minimal fibrosis with marked type 1 inflammation (Il4ra∂/∂) after infection with S. mansoni were imaged using both probes for determination of signal enhancement. Schistosoma mansoni-infected wild-type mice developed chronic liver fibrosis. RESULTS The liver MR signal enhancement after either probe administration was significantly higher in S. mansoni-infected wild-type mice compared with naive animals. The S. mansoni-infected Il4ra∂/∂ mice presented with little liver signal enhancement after probe injection despite the presence of substantial inflammation. Schistosoma mansoni-infected Il10-/-Il12b-/-Il13ra2-/- mice presented with marked fibrosis, which correlated to increased signal enhancement after injection of either probe. CONCLUSIONS Both MR probes, EP-3533 and Gd-Hyd, were specific for fibrosis in this model of chronic liver disease regardless of the presence or severity of the underlying inflammation. These results, in addition to previous findings, show the potential application of both molecular MR probes for detection and quantification of fibrosis from various etiologies.
Collapse
Affiliation(s)
- Diego dos Santos Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| | - Gunisha Arora
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114 USA
| | - Richard L. Gieseck
- Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Ln, Bethesda, MD, 20892, United States
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| | - Philip A. Waghorn
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114 USA
| | - Thomas A. Wynn
- Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Ln, Bethesda, MD, 20892, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
- The Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Boston, MA 02129 USA
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
9
|
Lamadrid P, Alonso-Peña M, San Segundo D, Arias-Loste M, Crespo J, Lopez-Hoyos M. Innate and Adaptive Immunity Alterations in Metabolic Associated Fatty Liver Disease and Its Implication in COVID-19 Severity. Front Immunol 2021; 12:651728. [PMID: 33859644 PMCID: PMC8042647 DOI: 10.3389/fimmu.2021.651728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus infectious disease 2019 (COVID-19) pandemic has hit the world, affecting health, medical care, economies and our society as a whole. Furthermore, COVID-19 pandemic joins the increasing prevalence of metabolic syndrome in western countries. Patients suffering from obesity, type II diabetes mellitus, cardiac involvement and metabolic associated fatty liver disease (MAFLD) have enhanced risk of suffering severe COVID-19 and mortality. Importantly, up to 25% of the population in western countries is susceptible of suffering from both MAFLD and COVID-19, while none approved treatment is currently available for any of them. Moreover, it is well known that exacerbated innate immune responses are key in the development of the most severe stages of MAFLD and COVID-19. In this review, we focus on the role of the immune system in the establishment and progression of MAFLD and discuss its potential implication in the development of severe COVID-19 in MAFLD patients. As a result, we hope to clarify their common pathology, but also uncover new potential therapeutic targets and prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Patricia Lamadrid
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Marta Alonso-Peña
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - David San Segundo
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Mayte Arias-Loste
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Javier Crespo
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Marcos Lopez-Hoyos
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| |
Collapse
|
10
|
Cairoli V, De Matteo E, Rios D, Lezama C, Galoppo M, Casciato P, Mullen E, Giadans C, Bertot G, Preciado MV, Valva P. Hepatic lymphocytes involved in the pathogenesis of pediatric and adult non-alcoholic fatty liver disease. Sci Rep 2021; 11:5129. [PMID: 33664397 PMCID: PMC7933421 DOI: 10.1038/s41598-021-84674-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
The immune response is critical in NAFLD pathogenesis, but the liver infiltrate's composition and the role of each T cell population is still up for debate. To characterize liver pathogenesis in pediatric and adult cases, frequency and localization of immune cell populations [Cytotoxic T Lymphocytes (CD8+), T helper Lymphocytes (CD4+), Regulatory T lymphocytes (Foxp3+) and Th17 (IL-17A+)] were evaluated. In portal/periportal (P/P) tracts, both age groups displayed a similar proportion of CD8+ and CD4+ lymphocytes. However, comparable Foxp3+ and IL-17A+ cell frequencies were observed in pediatric cases, meanwhile, in adults Foxp3+ was higher than IL-17A+ cells. Interestingly, IL-17A+ lymphocytes seemed to be nearly exclusive of P/P area in both age groups. In intralobular areas, both pediatric and adult cases showed CD8+ lymphocytes predominance with lower frequencies of CD4+ lymphocytes followed by Foxp3+ . Severe inflammation was associated with higher intralobular Foxp3+ lymphocytes (p = 0.026) in children, and lower P/P Foxp3+ and higher IL-17A+ lymphocytes in adults. All cases with fibrosis ≥ 2 displayed P/P low Foxp3+ and high IL-17A+ lymphocyte counts. Pediatric cases with worse steatosis showed high P/P CD4+ (p = 0.023) and intralobular CD8+ (p = 0.027) and CD4+ cells (p = 0.012). In NAFLD cases, the lymphocyte liver infiltrate composition differs between histological areas. Treg and Th17 balance seems to condition damage progression, denoting their important role in pathogenesis.
Collapse
Affiliation(s)
- Victoria Cairoli
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, Gallo 1330, C1425EFD, Buenos Aires, CABA, Argentina
| | - Elena De Matteo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, Gallo 1330, C1425EFD, Buenos Aires, CABA, Argentina
| | - Daniela Rios
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, Gallo 1330, C1425EFD, Buenos Aires, CABA, Argentina
| | - Carol Lezama
- Liver Unit, Ricardo Gutiérrez Children's Hospital, C1425EFD, Buenos Aires, CABA, Argentina
| | - Marcela Galoppo
- Liver Unit, Ricardo Gutiérrez Children's Hospital, C1425EFD, Buenos Aires, CABA, Argentina
| | - Paola Casciato
- Liver Unit, Italian's Hospital of Buenos Aires, C1199ABH, Buenos Aires, CABA, Argentina
| | - Eduardo Mullen
- Pathology Division, Italian's Hospital of Buenos Aires, C1199ABH, Buenos Aires, CABA, Argentina
| | - Cecilia Giadans
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, Gallo 1330, C1425EFD, Buenos Aires, CABA, Argentina
| | - Gustavo Bertot
- H.A. Barceló Foundation-Medicine University, C1425EFD, Buenos Aires, CABA, Argentina
| | - María Victoria Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, Gallo 1330, C1425EFD, Buenos Aires, CABA, Argentina
| | - Pamela Valva
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, Gallo 1330, C1425EFD, Buenos Aires, CABA, Argentina.
| |
Collapse
|
11
|
Vural S, Baumgartner M, Lichtner P, Eckstein G, Hariry H, Chen WC, Ruzicka T, Melnik B, Plewig G, Wagner M, Giehl KA. Investigation of gamma secretase gene complex mutations in German population with Hidradenitis suppurativa designate a complex polygenic heritage. J Eur Acad Dermatol Venereol 2021; 35:1386-1392. [PMID: 33559291 DOI: 10.1111/jdv.17163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic inflammatory disease affecting apocrine gland-bearing skin in the axilla, groin and under the breasts. Mutations of the gamma secretase gene complex, which is essential in the activation of Notch signalling pathways, were shown in some families with HS and in a few sporadic cases. Although an imbalance in Notch signalling is implicated in the pathogenesis, the exact mechanism of HS development is yet unknown. OBJECTIVES We aim to investigate the genetic basis of HS by determining the presence of mutations of gamma secretase gene complex in a cohort of HS patients and by searching for a disease-causing pathogenic variant in a multi-generational HS family using parametric linkage analysis. METHODS Thirty-eight patients clinically diagnosed with HS were included in this study. All exons and exon-intron boundaries of the genes encoding gamma secretase complex consisting of six genes: APH1A, APH1B, PSENEN, NCSTN, PSEN1 and PSEN2 were sequenced by Sanger technique. Genetic mapping with parametric linkage analysis for the patients in the family was performed with eight affected and four healthy individuals. The logarithm of odds was calculated. RESULTS In a sporadic patient with early-onset, severe lesions in axilla and groin, a novel single-nucleotide deletion causing frameshift in exon 1 of the NCSTN gene was identified ((NM_015331.3): c.38delG, p.(Gly13Glufs*15)). The LOD score of 1.5 was never exceeded in any region of the genome, pointing towards intricate multi-genic inheritance pattern within the affected family. CONCLUSIONS The gamma secretase gene complex mutations were rare in our cohort (3.2%). Besides, our analysis indicates a possible complex multi-genic inheritance in a seemingly autosomal dominantly inherited large HS family. Genetics of both familial and sporadic HS may be complicated in most cases, and the role of other potential genes such as autoinflammatory and modifier genes as well as environmental factors may influence the pathogenesis.
Collapse
Affiliation(s)
- S Vural
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany.,Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Turkey
| | - M Baumgartner
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - P Lichtner
- Institute of Human Genetics, Technical University Munich, Neuherberg, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - G Eckstein
- Institute of Human Genetics, Technical University Munich, Neuherberg, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - H Hariry
- Gemeinschaftpraxis, Gütersloh, Germany
| | - W C Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - T Ruzicka
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - B Melnik
- Gemeinschaftpraxis, Gütersloh, Germany.,Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - G Plewig
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - M Wagner
- Institute of Human Genetics, Technical University Munich, Neuherberg, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - K A Giehl
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
12
|
Lu Z, Lu F, Wu L, He B, Chen Z, Yan M. Berberine attenuates non-alcoholic steatohepatitis by regulating chemerin/CMKLR1 signalling pathway and Treg/Th17 ratio. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:383-390. [PMID: 32524150 DOI: 10.1007/s00210-020-01914-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
To observe the therapeutic effect of berberine (BBR) on non-alcoholic steatohepatitis (NASH) in rats and the underlying mechanism. A rat model of NASH was established by a high-fat diet, and BBR was used as treatment. Haematoxylin-eosin staining and Oil Red O staining were used to observe the pathological changes in the liver tissue. Western blotting and real-time PCR were used to measure the mRNA and protein levels in the liver. Flow cytometry was performed to detect the number of intrahepatic lymphocyte subtypes. The expression of pro-inflammatory cytokines in the peripheral blood was measured by ELISA. An automatic biochemical method was used to examine the level of blood lipids in the blood. Compared with the rats in the model group, the rats in the BBR group showed significantly improved liver histopathology and serum pro-inflammatory cytokines and free fatty acid (FFA) levels. Moreover, the protein and mRNA expression of chemerin, CMKLR1 and CCR2 in the liver were obviously reduced by BBR treatment. In addition, the high-fat diet remarkably reduced the intrahepatic Treg/Th17 ratio, which could be recovered by BBR treatment. Berberine can ameliorate non-alcoholic steatohepatitis, and its mechanism may be related to restoring the Treg/Th17 ratio, regulating the chemerin/CMKLR1 signalling pathway to reduce liver inflammation and reducing lipid deposition.
Collapse
Affiliation(s)
- Zengsheng Lu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Fengbin Lu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Liyan Wu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| | - Beihui He
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, 310006, Zhejiang, China
| | - Zhiyun Chen
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, 310006, Zhejiang, China
| | - Maoxiang Yan
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
13
|
Ross TT, Crowley C, Kelly KL, Rinaldi A, Beebe DA, Lech MP, Martinez RV, Carvajal-Gonzalez S, Boucher M, Hirenallur-Shanthappa D, Morin J, Opsahl AC, Vargas SR, Bence KK, Pfefferkorn JA, Esler WP. Acetyl-CoA Carboxylase Inhibition Improves Multiple Dimensions of NASH Pathogenesis in Model Systems. Cell Mol Gastroenterol Hepatol 2020; 10:829-851. [PMID: 32526482 PMCID: PMC7509217 DOI: 10.1016/j.jcmgh.2020.06.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Disordered metabolism, steatosis, hepatic inflammation, and fibrosis contribute to the pathogenesis of nonalcoholic steatohepatitis (NASH). Acetyl-CoA carboxylase (ACC) catalyzes the first committed step in de novo lipogenesis (DNL) and modulates mitochondrial fatty acid oxidation. Increased hepatic DNL flux and reduced fatty acid oxidation are hypothesized to contribute to steatosis. Some proinflammatory cells also show increased dependency on DNL, suggesting that ACC may regulate aspects of the inflammatory response in NASH. PF-05221304 is an orally bioavailable, liver-directed ACC1/2 inhibitor. The present studies sought to evaluate the effects of PF-05221304 on NASH pathogenic factors in experimental model systems. METHODS The effects of PF-05221304 on lipid metabolism, steatosis, inflammation, and fibrogenesis were investigated in both primary human-derived in vitro systems and in vivo rodent models. RESULTS PF-05221304 inhibited DNL, stimulated fatty acid oxidation, and reduced triglyceride accumulation in primary human hepatocytes, and reduced DNL and steatosis in Western diet-fed rats in vivo, showing the potential to reduce hepatic lipid accumulation and potentially lipotoxicity. PF-05221304 blocked polarization of human T cells to proinflammatory but not anti-inflammatory T cells, and suppressed activation of primary human stellate cells to myofibroblasts in vitro, showing direct effects on inflammation and fibrogenesis. Consistent with these observations, PF-05221304 also reduced markers of inflammation and fibrosis in the diethylnitrosamine chemical-induced liver injury model and the choline-deficient, high-fat-fed rat model. CONCLUSIONS The liver-directed dual ACC1/ACC2 inhibitor directly improved multiple nonalcoholic fatty liver disease/NASH pathogenic factors including steatosis, inflammation, and fibrosis in both human-derived in vitro systems and rat models.
Collapse
Affiliation(s)
- Trenton T Ross
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - Collin Crowley
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - Kenneth L Kelly
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - Anthony Rinaldi
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - David A Beebe
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - Matthew P Lech
- Inflammation and Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - Robert V Martinez
- Inflammation and Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | | | - Magalie Boucher
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | | | - Jeffrey Morin
- Comparative Medicine, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - Alan C Opsahl
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - Sarah R Vargas
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - Jeffrey A Pfefferkorn
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts
| | - William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge Massachusetts.
| |
Collapse
|
14
|
MiR-195 regulates CD40 to maintain Th17/Treg balance in rats with non-alcoholic fatty liver disease. Biomed Pharmacother 2020; 124:109930. [PMID: 31991386 DOI: 10.1016/j.biopha.2020.109930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study aims to explore the relationship between miR-195 and CD40 and its effect on Th17/Treg balance in rats with non-alcoholic fatty liver disease (NAFLD). METHODS We established rat models of NAFLD and made seven groups, Normal group (without modeling), Model group (model rats), NC group (model rats injected with negative control vector), miR-195 OE group (model rats injected with miR-195 mimic), anti-miR-195 group (model rats injected with miR-195 inhibitor), Si-CD40 group (model rats injected with CD40 silencing vector), and anti-miR-195+Si-CD40 group (model rats injected with miR-195 inhibitor and CD40 silencing vector). Dual-luciferase reporter gene assay verified the targeting relationship between miR-195 and CD40. The mRNA and protein expression levels of miR-195, CD40 as well as Th17/Treg associated cytokines in the liver tissues were detected. The pathological changes of liver tissues were detected, and the liver lesion scoring was carried out. The liver coefficient was calculated. The levels of liver function related indices, and Th17/Treg associated cytokines and inflammatory factors in serum were determined. The proportions of Th17/Treg cells in serum were determined by flow cytometry. RESULTS Compared with Normal group, miR-195 expression level in liver tissues of rats in other six groups was significantly reduced (all P < 0.05); the serum levels of AST, ALT, GGT, IL-17, TNF-α, IL-23, IL-6, IL-8, TC, TG, HDL, and LDL, and the Th17/Treg ratio, as well as the mRNA and protein expression levels of CD40, RORyt, IL-17, TNF-α, IL-23, and IL-8 in liver tissues were significantly increased (all P < 0.05); while the mRNA and protein expression levels of Foxp3, and IL-10 level were significantly reduced (all P < 0.05). Compared with Model group, the above parameters showed an opposite trend in miR-195 OE group and Si-CD40 group were significantly reduced (all P < 0.05). Moreover, anti-miR-195 group could aggravate the imbalance of Th17/Treg cells in rats with NAFLD and promote inflammatory response. Compared with anti-miR-195 group, the combined treatment in anti-miR-195+Si-CD40 group can partially avoid the imbalance of Th17/Treg cells, and inhibit inflammatory response. CONCLUSION Overexpression of miR-195 can reduce the Th17/Treg ratio to maintain Th17/Treg balance by inhibiting CD40 expression in rats with NAFLD.
Collapse
|
15
|
Pastore M, Gentilini A, Marra F. Mechanisms of Fibrogenesis in NASH. NON-ALCOHOLIC FATTY LIVER DISEASE 2020:97-127. [DOI: 10.1007/978-3-319-95828-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Świderska M, Maciejczyk M, Zalewska A, Pogorzelska J, Flisiak R, Chabowski A. Oxidative stress biomarkers in the serum and plasma of patients with non-alcoholic fatty liver disease (NAFLD). Can plasma AGE be a marker of NAFLD? Oxidative stress biomarkers in NAFLD patients. Free Radic Res 2019; 53:841-850. [PMID: 31234658 DOI: 10.1080/10715762.2019.1635691] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Still little is known about the redox abnormalities in patients with non-alcoholic fatty liver disease (NAFLD). The purpose of the study was to find the relationship between enzymatic and non-enzymatic antioxidants, redox homeostasis and oxidative damage in 67-patients with NAFLD. The study population was divided into patients with non-alcoholic fatty liver (early NAFLD, n = 29) and patients with non-alcoholic steatohepatitis (advanced NAFLD, n = 38). Redox biomarkers: enzymatic antioxidants (Cu - Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR)); non-enzymatic antioxidants and redox status (reduced glutathione (GSH), total antioxidant capacity (TAC)); and oxidative damage products (total oxidant status (TOS), advanced glycation end products (AGE), malondialdehyde (MDA), and DNA/RNA oxidative damage) were determined in the serum/plasma samples. The activity of SOD, GPx, GR and levels of GSH, TOS, AGE, MDA, and DNA/RNA oxidative damage were significantly elevated in early NAFLD and advanced NAFLD group compared to controls (p < .001). There was a positive correlation between AGE, TAC and ALT activity (R = 0.34, p = .04; R = 0.36, p = .03, respectively) in advanced NAFLD group. Interestingly, ROC analysis for AGE showed good discriminatory ratio for patients with minimal steatosis (BARD score 0-1) vs. moderate steatosis (BARD score 2-4), AUC = 0.76. Plasma AGE can be a potential non-invasive biomarker differentiating NAFLD patients.
Collapse
Affiliation(s)
- Magdalena Świderska
- Department of Physiology, Medical University of Bialystok , Białystok , Poland
| | - Mateusz Maciejczyk
- Department of Physiology, Medical University of Bialystok , Białystok , Poland
| | - Anna Zalewska
- Department of Restorative Dentistry, Medical University of Bialystok , Białystok , Poland
| | - Joanna Pogorzelska
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok , Białystok , Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok , Białystok , Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok , Białystok , Poland
| |
Collapse
|
17
|
Ilan Y, Shailubhai K, Sanyal A. Immunotherapy with oral administration of humanized anti-CD3 monoclonal antibody: a novel gut-immune system-based therapy for metaflammation and NASH. Clin Exp Immunol 2019; 193:275-283. [PMID: 29920654 DOI: 10.1111/cei.13159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a role in the pathogenesis of non-alcoholic steatohepatitis (NASH) underlying hepatocyte injury and fibrosis progression at all disease stages. Oral administration of anti-CD3 monoclonal antibody (mAb) has been shown in preclinical studies to be an effective method for systemic immune modulation and alleviates immune-mediated disorders without T cell depletion. In the present review, we summarize the concept of the oral administration of humanized anti-CD3 mAb in patients with NASH and discuss the potential of this treatment to address the current requirements of treatments for NASH. Recently published preclinical and clinical data on oral administration of anti CD3 are discussed. Human trials have shown that the oral administration of anti-CD3 in healthy volunteers, patients with chronic hepatitis C virus (HCV) infection and patients with NASH and type 2 diabetes is safe and well tolerated, as well as biologically active. Oral anti-CD3 induces regulatory T cells, suppresses the chronic inflammatory state associated with NASH and exerts a beneficial effect on clinically relevant parameters. Foralumab is a fully human anti-CD3 mAb that has recently been shown to exert a potent anti-inflammatory effect in humanized mice. It is being developed for treatment of NASH and primary biliary cholangitis (PBC). Oral administration of anti CD3 may provide an effective therapy for patients with NASH.
Collapse
Affiliation(s)
- Y Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - K Shailubhai
- Tiziana Life Sciences, R&, D Center, Doylestown, PA, USA
| | - A Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| |
Collapse
|
18
|
Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism 2019; 92:82-97. [PMID: 30502373 DOI: 10.1016/j.metabol.2018.11.014] [Citation(s) in RCA: 768] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023]
Abstract
The obesity epidemic is closely associated with the rising prevalence and severity of nonalcoholic fatty liver disease (NAFLD): obesity has been linked not only with simple steatosis (SS), but also with advanced disease, i.e., nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis and hepatocellular carcinoma. As a consequence, apart from increasing all-cause mortality, obesity seems to increase liver-specific mortality in NAFLD patients. Given the lack of approved pharmacological interventions for NAFLD, targeting obesity is a rational option for its management. As the first step, lifestyle modification (diet and exercise) is recommended, although it is difficult to achieve and sustain. When the first step fails, adding pharmacotherapy is recommended. Several anti-obesity medications have been investigated in NAFLD (e.g., orlistat, glucagon-like peptide-1 analogs), other anti-obesity medications have not been investigated (e.g., lorcaserin, phentermine hydrochloric, phentermine/topiramate and naltrexone/bupropion), whereas some medications with weight-lowering efficacy have not been approved for obesity (e.g., sodium-glucose cotransporter-2 inhibitors, farnesoid X receptor ligands). If the combination of lifestyle modification and pharmacotherapy also fails, then bariatric surgery should be considered in selected morbidly obese individuals. This review summarizes best evidence linking obesity with NAFLD and presents related therapeutic options.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Jannis Kountouras
- Second Medical Clinic, Medical School, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Düzel B, Tamam Y, Çoban A, Tüzün E. Adipokines in Multiple Sclerosis Patients with and without Optic Neuritis as the First Clinical Presentation. Immunol Invest 2018; 48:190-197. [PMID: 30321074 DOI: 10.1080/08820139.2018.1528270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Adipocytokines have been implied to be involved in multiple sclerosis (MS) pathogenesis. MS patients whose first clinical episode is optic neuritis (ON) have been reported to display a milder disease course. In this study, we aimed to show whether this milder disease course is related to reduced adipokine production. METHODS A total of 55 (24 with ON as the first clinical episode) relapsing-remitting MS (RRMS) patients and 40 healthy individuals were recruited. Concentrations of adipokines were measured in sera by ELISA. RESULTS The levels of adiponectin, leptin, resistin, monocyte chemoattractant protein-1 (MCP-1) and IL-8 were significantly higher in RRMS patients compared with healthy controls. RRMS cases starting with ON had lower expanded disability status scale scores. Serum adiponectin, leptin, resistin and MCP-1 levels were significantly lower in MS patients, whose first clinical episode was ON. CONCLUSIONS MS patients with ON as the first manifestation display both lower disability scores and reduced serum adipokine levels implying that adipocytokine production is associated with MS progression. Exact mechanisms of this association in MS patients with first episode ON need to be further studied.
Collapse
Affiliation(s)
- Berna Düzel
- a Department of Neurology, Faculty of Medicine , Dicle University , Diyarbakır , Turkey
| | - Yusuf Tamam
- a Department of Neurology, Faculty of Medicine , Dicle University , Diyarbakır , Turkey
| | - Arzu Çoban
- b Department of Neurology, Istanbul Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - Erdem Tüzün
- c Department of Neuroscience Institute for Experimental Medicine , Istanbul University , Istanbul , Turkey
| |
Collapse
|
20
|
Melnik BC, John SM, Chen W, Plewig G. T helper 17 cell/regulatory T-cell imbalance in hidradenitis suppurativa/acne inversa: the link to hair follicle dissection, obesity, smoking and autoimmune comorbidities. Br J Dermatol 2018; 179:260-272. [PMID: 29573406 DOI: 10.1111/bjd.16561] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Disintegration of the infundibula of terminal hair follicles (HFs) in intertriginous skin areas exhibits the histological hallmark of hidradenitis suppurativa (HS)/acne inversa, featuring a dissecting terminal hair folliculitis. Elevated serum levels of interleukin (IL)-17 and local increase in the ratio of proinflammatory T helper (Th)17 cells and anti-inflammatory regulatory T cells (Tregs) have been reported. Perifollicular Tregs play a key role in HF stem cell homeostasis and infundibular integrity. OBJECTIVES In this review, we evaluate the Th17/Treg ratio in HS, its aggravating conditions and associated comorbidities. Furthermore, we intended to clarify whether drugs with reported beneficial effects in the treatment of HS readjust the deviated Th17/Treg axis. METHODS PubMed-listed, peer-reviewed original research articles characterizing Th17/Treg regulation in HS/acne inversa and associated comorbidities were selected for this review. RESULTS This review presents HS as a disease that exhibits an increased Th17/Treg ratio. Perifollicular deficiencies in Treg numbers or function may disturb HF stem cell homeostasis, initiating infundibular dissection of terminal HFs and perifollicular inflammation. The Th17/Treg imbalance is aggravated by obesity, smoking and decreased Notch signalling. In addition, HS-associated autoimmune diseases exhibit a disturbed Th17/Treg axis resulting in a Th17-dominant state. All drugs that have beneficial effects in the treatment of HS normalize the Th17/Treg ratio. CONCLUSIONS HS immunopathogenesis is closely related to deviations of the Th17/Treg balance, which may negatively affect Treg-controlled HF stem cell homeostasis and infundibular integrity. Pharmacological intervention should not only attenuate Th17/IL-17 signalling, but should also improve Treg function in order to stabilize HF stem cell homeostasis and infundibular integrity.
Collapse
Affiliation(s)
- B C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - S M John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - W Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - G Plewig
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
21
|
Kang SJ, Kim HJ, Kim D, Ahmed A. Association between cagA negative Helicobacter pylori status and nonalcoholic fatty liver disease among adults in the United States. PLoS One 2018; 13:e0202325. [PMID: 30110395 PMCID: PMC6093702 DOI: 10.1371/journal.pone.0202325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
We investigated the relationship of H. pylori stratified by cytotoxin-associated gene A (cagA) status with nonalcoholic fatty liver disease (NAFLD) in the general population of the United States (US). We utilized the Third National Health and Nutrition Examination Survey from 1988 to 1994 in this study. NAFLD was defined by ultrasonographic detection of hepatic steatosis in the absence of other known causes of liver diseases and significant alcohol consumption. Hepatic steatosis was assessed by parenchymal brightness, liver to kidney contrast, deep beam attenuation, bright vessel walls and gallbladder wall definition. Antibodies to H. pylori and cagA of participants were measured using H. pylori IgG and anti-cagA IgG enzyme-linked immunosorbent assays. Among 5,404 participants, the prevalence of NAFLD was higher in H. pylori positive subjects (33.5±1.8%) compared to H. pylori negative subjects (26.1±1.7%, p <0.001). In terms of cagA protein status stratification, while cagA positive H. pylori group did not demonstrate an association with NAFLD (OR: 1.05; 95% CI: 0.81-1.37), cagA negative H. pylori group was noted to have a significant association with NAFLD in a multivariable analysis (OR: 1.30; 95% CI: 1.01-1.67). In conclusion, our study demonstrated that cagA negative H. pylori infection was an independent predictor of NAFLD in the US general population.
Collapse
Affiliation(s)
- Seung Joo Kang
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University, Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Hwa Jung Kim
- Department of Clinical epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail:
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|