1
|
Lima E, Ferreira O, Oliveira JM, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Santos AO, Reis LV. "From darkness to radiance": Light-induced type I and II ROS-mediated apoptosis for anticancer effects of dansylpiperazine-bearing squaraine dyes. Bioorg Chem 2025; 159:108379. [PMID: 40179580 DOI: 10.1016/j.bioorg.2025.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Photodynamic therapy relies on the generation of cytotoxic effects triggered by the irradiation of a photosensitizer molecule, resulting in the production of reactive oxygen species at concentrations exceeding physiological levels. In this context, squaraine dyes, a prominent family of second-generation photosensitizers, have gained increasing attention for their remarkable properties, with their photobiological characteristics recently emerging as a key focus of in-depth research. Dansylpiperazine-bearing squaraine dyes exhibited strong absorption in the red visible spectral region, excellent photostability, and a predicted ability to interact with human serum albumin, potentially serving as a transport vehicle to target sites. Benzothiazole derivatives excelled in photodynamic activity, demonstrating 7- to 11-fold increased cytotoxicity upon irradiation against prostate adenocarcinoma PC-3 cells and tumor selectivity indices exceeding 10 when compared to normal NHDF cells. In contrast, the introduction of the dansylpiperazino group in indole-derived compounds unexpectedly declined their photodynamic activity. Concerning benzothiazole-based ones, multiple reactive oxygen species were shown to contribute to the photodynamic effects, with singlet oxygen playing a key role. Squaraine internalization was observed in various cytoplasmic organelles, including mitochondria, endoplasmic reticulum, and lysosomes, without clear evidence of preferential localization to any single organelle. Non-genotoxic in the dark, the squaraines induced cell death by apoptosis upon light activation, as evidenced by significant DNA fragmentation and increased caspase 3/7 activation, particularly for the dye with N-ethyl chains, at concentrations below 1.0 μM, underscoring their potency. Checkpoint arrests in G1 and G2/mitosis were observed for non-irradiated and irradiated conditions, respectively, highlighting the antiproliferative effects of these squaraine dyes.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Octávio Ferreira
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - João M Oliveira
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Renato E Boto
- RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - José R Fernandes
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Paulo Almeida
- RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Samuel M Silvestre
- RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.
| | - Adriana O Santos
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Lucinda V Reis
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal.
| |
Collapse
|
2
|
Lin X, Deng S, Fu T, Lei Y, Wang Y, Yao J, Lu Y, Huang Y, Shang J, Chen J, Zhou X. Hyaluronic acid-based hydrogel microspheres with multi-responsive properties for antibacterial therapy and bone regeneration in Staphylococcus aureus-infected skull defects. Mater Today Bio 2025; 32:101676. [PMID: 40236808 PMCID: PMC11997343 DOI: 10.1016/j.mtbio.2025.101676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 04/17/2025] Open
Abstract
This study introduces hyaluronic acid-based (HA) hydrogel microspheres loaded with zinc oxide nanoparticles (ZnO-NPs) for the treatment of infectious bone defects. The microspheres were fabricated using a 3D-printing process, with a formulation consisting of 6 wt% HAD (methacrylated HA), 3 wt% AOHA (AMP-conjugated oxidized HA), 1 % BOHA (phenylboric acid-conjugated HA), 0.5 % photoinitiator, and 0.05 % ZnO-NPs. In vitro, the hydrogel microspheres demonstrated significant antibacterial activity against Staphylococcus aureus, with colony counts and biofilm inhibition assays showing a marked reduction in bacterial growth after 12 and 24 h. The release of antimicrobial peptides (AMPs) was enhanced in acidic conditions and in the presence of hyaluronidase. The microspheres also promoted osteogenic differentiation of bone marrow stromal cells (BMSCs), as evidenced by increased expression of osteogenic markers (ALP, OCN, OPN, and COL-1). In vivo, the hydrogel microspheres were tested in a rat skull defect model, showing significant bone regeneration, improved angiogenesis, and an anti-inflammatory response. These results indicate that ABOHA@ZnO hydrogel microspheres provide a promising strategy for treating infectious bone defects by combining antimicrobial, osteogenic.
Collapse
Affiliation(s)
- Xiaolong Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Fu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Yuqing Lei
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jiapei Yao
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
| | - Yaojun Lu
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
| | - Yong Huang
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
| | - Jingjing Shang
- Department of Pharmacy, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, Jiangsu, 213000, China
| | - Jingjing Chen
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, NHC Key Laboratory of Antibody Technique, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xindie Zhou
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai Province, 811800, China
| |
Collapse
|
3
|
Zandona A, Szecskó A, Žunec S, Jovanović IN, Bušić V, Sokač DG, Deli MA, Katalinić M, Veszelka S. Nicotinamide derivatives protect the blood-brain barrier against oxidative stress. Biomed Pharmacother 2025; 186:118018. [PMID: 40174541 DOI: 10.1016/j.biopha.2025.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Nicotinamides play a crucial role in energy metabolism and maintenance of the redox homeostasis counteracting oxidative stress and elevated reactive oxidative species (ROS) in human cells. The levels of nicotinamides decline with age and are associated with various pathologies, including ones linked with the blood-brain barrier disorder. Therefore, the investigation of the bioactivity of synthetic nicotinamide derivates (NAs) and evaluation of their potential to protect the blood-brain barrier (BBB) from oxidative stress is emerging as an important new strategy. In the current study, we tested different NAs as potential exogenous substitutes for such biological processes. All tested derivatives were non-toxic and attenuated elevation of ROS production in brain endothelial cells induced by tert-butyl hydroperoxide (tBHP), but one specifically was protective on the cell-cultured model of the BBB. The most promising NA was a derivative containing methoxy moiety (NA-4OCH3), which not only increased cell impedance, but had a protective effect on brain endothelial cells barrier against tBHP-induced oxidative stress on several levels: reducing the ROS level and restoring the activity of glutathione, mitochondrial membrane potential, superoxide dismutase enzymes activity to the basal level. In addition, NA-4OCH3 increased the integrity of both human and rat cell-based BBB model after tBHP-treatment seen by the elevated transendothelial electrical resistance, tight junction protein claudin-5 level as well as the decreased permeability of markers across the barrier. This study highlights novel approach to protect the BBB from oxidative stress-induced dysfunction, positioning NA-4OCH3 as potential neuroprotective agent for ROS-mediated disease interventions, with implications for neurodegeneration and BBB.
Collapse
Affiliation(s)
- Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb HR-10001, Croatia
| | - Anikó Szecskó
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged 6726, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Suzana Žunec
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb HR-10001, Croatia
| | - Ivana Novak Jovanović
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb HR-10001, Croatia
| | - Valentina Bušić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, Osijek HR-31000, Croatia
| | - Dajana Gašo Sokač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, Osijek HR-31000, Croatia
| | - Mária A Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged 6726, Hungary
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb HR-10001, Croatia.
| | - Szilvia Veszelka
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged 6726, Hungary.
| |
Collapse
|
4
|
Umapathy S, Pan I. Glucose reduced nano-Se mitigates Cu-induced ROS by upregulating antioxidant genes in zebrafish larvae. NANOSCALE ADVANCES 2025; 7:2502-2517. [PMID: 40061839 PMCID: PMC11887129 DOI: 10.1039/d4na00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/21/2025] [Indexed: 05/01/2025]
Abstract
This study compares the therapeutic efficiency of bovine serum albumin-stabilized selenium nanoparticles in reducing oxidative stress and improving cellular health. The nanoparticles were synthesized using mussel-extracted selenium with two reducing agents: d-glucose and orange. Inductively coupled plasma-optical emission spectroscopy and X-ray diffraction analyses confirmed the presence of selenium. The reducing agent and duration influenced the nanoparticle size. Reduction with d-glucose for 1 hour revealed that the particles exhibited an average size of 10 nm. Copper sulfate-induced malformations such as yolk sac and pericardial edema were observed with 25 μg ml-1 of orange-reduced nanoparticles, while d-glucose-reduced nanoparticles mitigated these malformations at 25 μg ml-1. Treatment with stabilized Se-NPs reduced with d-glucose for 30 minutes showed 33% dose-dependent radical scavenging activities, upregulated approximately 2-fold of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase encoding genes and restored homeostasis by decreasing lipid peroxidation (27.32 nmol mg-1 ml-1) and nitric oxide levels (6.71 μM). They also had the potential to restore cognitive properties such as larval movement (93.40 m) without altering larval behaviour. Live cell imaging indicated a significant decrease in cellular reactive oxygen species and lipid peroxidation levels in the gut and liver. These findings suggest that Se-NPs reduced for 30 minutes with d-glucose are promising candidates for oxidative stress-induced neurodegeneration.
Collapse
Affiliation(s)
- Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Thandalam Chennai 602 105 Tamil Nadu India
| | - Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Thandalam Chennai 602 105 Tamil Nadu India
| |
Collapse
|
5
|
Ekhator ES, Fazzari M, Newman RH. Redox Regulation of cAMP-Dependent Protein Kinase and Its Role in Health and Disease. Life (Basel) 2025; 15:655. [PMID: 40283209 PMCID: PMC12029036 DOI: 10.3390/life15040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular signaling that regulates key physiological processes such as metabolism, cell proliferation, and neuronal function. While its activation by the second messenger 3',5'-cyclic adenosine triphosphate (cAMP) is well characterized, recent research highlights additional regulatory mechanisms, particularly oxidative post-translational modifications, that influence PKA's structure, activity, and substrate specificity. Both the regulatory and catalytic subunits of PKA are susceptible to redox modifications, which have been shown to play important roles in the regulation of key cellular functions, including cardiac contractility, lipid metabolism, and the immune response. Likewise, redox-dependent modulation of PKA signaling has been implicated in numerous diseases, including cardiovascular disorders, diabetes, and neurodegenerative conditions, making it a potential therapeutic target. However, the mechanisms of crosstalk between redox- and PKA-dependent signaling remain poorly understood. This review examines the structural and functional regulation of PKA, with a focus on redox-dependent modifications and their impact on PKA-dependent signaling. A deeper understanding of these mechanisms may provide new strategies for targeting oxidative stress in disease and restoring balanced PKA signaling in cells.
Collapse
Affiliation(s)
- Ese S. Ekhator
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Robert H. Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
6
|
Knop R, Keweloh S, Pukall J, Dittmann S, Zühlke D, Sievers S. A rubrerythrin locus of Clostridioides difficile encodes enzymes that efficiently detoxify reactive oxygen species. Anaerobe 2025; 92:102941. [PMID: 39894065 DOI: 10.1016/j.anaerobe.2025.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES The microaerophilic conditions in the large intestine and reactive oxygen species (ROS) produced by the immune system represent a challenge for the strictly anaerobic pathogen Clostridioides difficile, which protects itself by a variety of oxidative stress proteins. Four of these are encoded in an operon that has been implicated in the detoxification of H2O2 and O2●-. In this study, proteins of this operon, i. e. a rubrerythrin (Rbr), a superoxide reductase (Sor) and a putative glutamate dehydrogenase (CD630_08280) were investigated for their ROS detoxifying activity in vitro. METHODS Recombinant proteins were overexpressed in C. difficile and purified anaerobically by affinity chromatography. The H2O2-reductase activity was determined by measuring the NADH consumption after peroxide addition. Superoxide detoxification potential of Sor was detected colorimetrically using a xanthine/xanthine oxidase system with cytochrome c as analytical probe. RESULTS Proposed roles of the investigated proteins in the detoxification pathways of ROS could partially be demonstrated. Specifically, Rbr and glutamate dehydrogenase synergistically detoxify H2O2, although with a very low turnover. Furthermore, Sor was shown to scavenge O2●- by superoxide dismutase activity and its activity was compared to superoxide dismutase of Escherichia coli. CONCLUSIONS The investigated gene locus codes for an oxidative stress operon whose members have the potential to neutralize O2●- and H2O2 to water and thus complements the arsenal of ROS detoxifying mechanisms that are already known in C. difficile. However, full activity with adequate physiological electron transfer partners still needs to be demonstrated.
Collapse
Affiliation(s)
- Robert Knop
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Simon Keweloh
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Johanna Pukall
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia Dittmann
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
7
|
Cruciani S, Garroni G, Serra D, Kavak FF, Satta R, Martini F, Tognon M, Ventura C, Maioli M. Counteracting Skin Aging In Vitro by Phytochemicals. J Cell Mol Med 2025; 29:e70530. [PMID: 40181572 PMCID: PMC11968777 DOI: 10.1111/jcmm.70530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
The skin is the most extensive organ in the human body. Photo exposure to ultraviolet (UV) rays causes several damages to skin cells, including premature skin aging, the onset of possible DNA mutations, and the risk of developing cancers, including melanoma. Protecting skin from the damaging effects of sun exposure through the application of creams and filters is important to prevent irreversible damages. Several natural extracts and biomolecules with antioxidant activity are widely used in the production of dietary supplements or topical products, for the prevention and treatment of skin affections. Within this context, we pre-treated human skin fibroblasts (HFF1), skin-isolated stem cells (SSCs) and keratinocytes (HaCaT) with two creams containing a specific solar protection factor (SPF) for 72 h and then exposed the cells to UV light. Gene expression analysis was performed for the key cell cycle regulators (p16, p19, p21, p53 and TERT). Cell senescence was assessed by colorimetric assays of beta-galactosidase and antioxidant potential, revealing the ability of treated cells to counteract free radical production as a result of oxidative stress. Finally, possible mutations in DNA induced by photo exposure were studied. The results obtained demonstrated that the tested products elicit positive effects on all skin cell populations, preserving them from photo exposure damages and premature senescence, being also able to increase the DNA repairing mechanisms and inducing a youngest phenotype.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Giuseppe Garroni
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Diletta Serra
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | | | - Rosanna Satta
- Department of Medicine, Surgery and PharmacyUniversity of SassariSassariItaly
| | | | - Mauro Tognon
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering – Eldor LabIstituto Nazionale Biostrutture e BiosistemiBolognaItaly
| | - Margherita Maioli
- Department of Biomedical SciencesUniversity of SassariSassariItaly
- Center for Developmental Biology and Reprogramming‐CEDEBIOR, Department of Biomedical SciencesUniversity of SassariSassariItaly
| |
Collapse
|
8
|
Ivanović A, Petrović J, Stanić D, Nedeljković J, Ilić M, Jukić MM, Pejušković B, Pešić V. Single subanesthetic dose of ketamine exerts antioxidant and antidepressive-like effect in ACTH-induced preclinical model of depression. Mol Cell Neurosci 2025; 133:104006. [PMID: 40157469 DOI: 10.1016/j.mcn.2025.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and oxidative stress represent important mechanisms that have been implicated in etiopathology of depression. Although first antidepressants were introduced in clinical practice more than six decades ago, approximately 30 % of patients with a diagnosis of depression show treatment resistance. A noncompetitive N-methyl-d-aspartate receptor antagonist ketamine has shown promising rapid antidepressant effects and has been approved for treatment-resistant depression (TRD). In the present study, we investigated antioxidant and antidepressant-like activity of a single subanesthetic dose of ketamine (10 mg/kg, ip) in a rodent model of TRD induced by adrenocorticotropic hormone (10 μg ACTH/day, sc, 21 days). Behavioral assessment was performed, and plasma biomarkers of oxidative stress and DNA damage in peripheral blood lymphocytes (PBLs) were determined. We observed that ACTH produced depressive-like behavior and significant increase in superoxide anion (O2·-), advanced oxidation protein products (AOPP), malondialdehyde (MDA) and total oxidant status (TOS) in male Wistar rats. This effect was accompanied by reduced activity of antioxidant enzymes - superoxide dismutase (SOD) and paraoxonase1 (PON1) in plasma and increase in DNA damage in PBLs. In the described model of TRD, we have demonstrated antidepressant effects of ketamine for the first time. Our results reveal that ketamine was effective in reducing O2.-, AOPP, MDA and TOS, while enhancing SOD and PON1 activity in ACTH-rats. Collectively, our study sheds light on molecular mechanisms implicated in antioxidant activity of ketamine, thus incentivizing further investigation of its effects on ROS metabolism and antioxidant defenses in clinical trials, particularly in depression.
Collapse
Affiliation(s)
- Ana Ivanović
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Jelena Petrović
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Dušanka Stanić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia.
| | - Jelena Nedeljković
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Miloš Ilić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Marin M Jukić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia; Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Bojana Pejušković
- Institute of Mental Health, School of Medicine, University of Belgrade, Palmotićeva 37, 11000 Belgrade, Serbia
| | - Vesna Pešić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| |
Collapse
|
9
|
Fan Q, Wang Y, An Q, Ling Y. Right ventricular dysfunction following surgical repair of tetralogy of Fallot: Molecular pathways and therapeutic prospects. Biomed Pharmacother 2025; 184:117924. [PMID: 39983432 DOI: 10.1016/j.biopha.2025.117924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease (CHD). Although surgical correction of TOF is possible, patients often face challenges related to right ventricle dysfunction (RVD) post-surgery, which can significantly impact their long-term survival. The causes of RVD in TOF patients are complex, involving both the unique structural characteristics of the TOF heart and damage resulting from surgical interventions. Residual anatomical issues following TOF repair are often unavoidable, placing the RV under stress and leading to the activation of multiple molecular pathways. This review comprehensively outlines the causes of RVD in patients after TOF surgery, particularly focusing the molecular pathways that contribute to RVD, including established signaling pathways as well as emerging pathways identified through transcriptomic analysis of RV myocardium in TOF patients. We also highlight the features of these molecular pathways concerning RVD, as well as the influence of gender disparities on these molecular pathways. By interpreting the causes and molecular mechanisms underlying RVD after TOF surgery, this review provides new insights for managing RVD in repaired TOF, potentially paving the way for targeted therapies aimed at improving long-term outcomes for those affected by RVD.
Collapse
Affiliation(s)
- Qiang Fan
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| | - Yabo Wang
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| | - Yunfei Ling
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Cardaci V, Di Pietro L, Zupan MC, Sibbitts J, Privitera A, Lunte SM, Caraci F, Hartley MD, Caruso G. Characterizing oxidative stress induced by Aβ oligomers and the protective role of carnosine in primary mixed glia cultures. Free Radic Biol Med 2025; 229:213-224. [PMID: 39824445 PMCID: PMC11895860 DOI: 10.1016/j.freeradbiomed.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. A critical aspect of AD pathology is represented by oxidative stress, which significantly contributes to neuronal damage and death. Microglia and astrocytes, the primary glial cells in the brain, are crucial for managing oxidative stress and supporting neuronal function. Carnosine is an endogenous dipeptide possessing a multimodal mechanism of action that includes antioxidant, anti-inflammatory, and anti-aggregant activities. The present study investigated the effects of Aβ1-42 oligomers (oAβ), small aggregates associated with the neurodegeneration observed in AD, on primary rat mixed glia cultures composed of both microglia and astrocytes, focusing on the ability of these detrimental species to induce oxidative stress. We assessed intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels as markers of oxidative stress. Exposure to oAβ significantly elevated both ROS and NO intracellular levels compared to control cells. However, this effect was completely inhibited by the pre-treatment of mixed cultures with carnosine, resulting in ROS and NO levels similar to those observed in untreated (control) cells. Single-cell analysis of cellular responses to oAβ revealed heterogeneous ROS production, resulting in two distinct clusters of cells, one of which was very responsive to the treatment. The presence of carnosine counteracted the overproduction of ROS, also leading to a single, homogeneous cluster, similar to that observed in the case of control cells. Interestingly, unlike ROS response, single-cell analysis of NO production did not show any distinct clusters. Overall, our findings demonstrated the ability of carnosine to mitigate Aβ-induced oxidative stress in mixed glia cells, by rescuing ROS and NO intracellular levels, as well as to normalize the heterogeneous response to the treatment measured in terms of clusters' formation. The present study suggests a therapeutic potential of carnosine in pathologies characterized by oxidative stress including AD.
Collapse
Affiliation(s)
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Matthew C Zupan
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Jay Sibbitts
- Department of Chemistry, University of Kansas, Lawrence, KS, USA; Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Susan M Lunte
- Department of Chemistry, University of Kansas, Lawrence, KS, USA; Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | | | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy.
| |
Collapse
|
11
|
Zhao J, Sarkar N, Ren Y, Pathak AP, Grayson WL. Engineering next-generation oxygen-generating scaffolds to enhance bone regeneration. Trends Biotechnol 2025; 43:540-554. [PMID: 39343620 PMCID: PMC11867879 DOI: 10.1016/j.tibtech.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
In bone, an adequate oxygen (O2) supply is crucial during development, homeostasis, and healing. Oxygen-generating scaffolds (OGS) have demonstrated significant potential to enhance bone regeneration. However, the complexity of O2 delivery and signaling in vivo makes it challenging to tailor the design of OGS to precisely meet this biological requirement. We review recent advances in OGS and analyze persisting engineering and translational hurdles. We also discuss the potential of computational and machine learning (ML) models to facilitate the integration of novel imaging data with biological readouts and advanced biomanufacturing technologies. By elucidating how to tackle current challenges using cutting-edge technologies, we provide insights for transitioning from traditional to next-generation OGS to improve bone regeneration in patients.
Collapse
Affiliation(s)
- Jingtong Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Naboneeta Sarkar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yunke Ren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Arvind P Pathak
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Jhetam Z, Martins-Furness C, Slabber C, Munro OQ, Nel M, Harmse L. Copper complexes induce haem oxygenase-1 (HMOX1) and cause apoptotic cell death in pancreatic cancer cells. J Inorg Biochem 2025; 264:112815. [PMID: 39740375 DOI: 10.1016/j.jinorgbio.2024.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, has a dismal 5-year survival rate, making palliative chemotherapy the only treatment option. Targeted therapy has limited efficacy in PDAC, underscoring the need for novel therapeutic approaches. The inducible stress-response protein, haem oxygenase-1 (HMOX1), has been implicated in treatment failure in PDAC. Copper coordination complexes have shown promise as anticancer agents against various cancers, and are associated with apoptotic cell death. The different ligands to which copper is complexed, determine the specificity and efficacy of each complex. Three different classes of copper complexes were evaluated for anti-cancer activity against AsPC-1 and MIA PaCa-2 pancreatic cancer cell lines. A copper-phenanthroline-theophylline complex (CuPhTh2), a copper-8-aminoquinoline-naphthyl complex (Cu8AqN), and two copper-aromatic-isoindoline complexes (CuAIsI) were effective inhibitors of cell proliferation with clinically relevant IC50 values below 5 μM. The copper complexes caused reactive oxygen species (ROS) formation, promoted annexin-V binding, disrupted the mitochondrial membrane potential (MMP) and activated caspase-9 and caspase-3/7, confirming apoptotic cell death. Expression of nuclear HMOX1 was increased in both cell lines, with the CuPhTh2 complex being the most active. Inhibition of HMOX1 activity significantly decreased the IC50 values of these copper complexes suggesting that HMOX1 inhibition may alter treatment outcomes in PDAC.
Collapse
Affiliation(s)
- Zakeeya Jhetam
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Carla Martins-Furness
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Cathy Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Marietha Nel
- Dept of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
13
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. Harnessing Gasotransmitters to Combat Age-Related Oxidative Stress in Smooth Muscle and Endothelial Cells. Pharmaceuticals (Basel) 2025; 18:344. [PMID: 40143122 PMCID: PMC11946800 DOI: 10.3390/ph18030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Age-related oxidative stress is a critical factor in vascular dysfunction, contributing to hypertension and atherosclerosis. Smooth muscle cells and endothelial cells are particularly susceptible to oxidative damage, which exacerbates vascular aging through cellular senescence, chronic inflammation, and arterial stiffness. Gasotransmitters-hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO)-are emerging as promising therapeutic agents for counteracting these processes. This review synthesizes findings from recent studies focusing on the mechanisms by which H2S, NO, and CO influence vascular smooth muscle and endothelial cell function. Therapeutic strategies involving exogenous gasotransmitter delivery systems and combination therapies were analyzed. H2S enhances mitochondrial bioenergetics, scavenges ROS, and activates antioxidant pathways. NO improves endothelial function, promotes vasodilation, and inhibits platelet aggregation. CO exhibits cytoprotective and anti-inflammatory effects by modulating heme oxygenase activity and ROS production. In preclinical studies, gasotransmitter-releasing molecules (e.g., NaHS, SNAP, CORMs) and targeted delivery systems show significant promise. Synergistic effects with lifestyle modifications and antioxidant therapies further enhance their therapeutic potential. In conclusion, gasotransmitters hold significant promise as therapeutic agents to combat age-related oxidative stress in vascular cells. Their multifaceted mechanisms and innovative delivery approaches make them potential candidates for treating vascular dysfunction and promoting healthy vascular aging. Further research is needed to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
14
|
Cabrera-Serrano AJ, Sánchez-Maldonado JM, González-Olmedo C, Carretero-Fernández M, Díaz-Beltrán L, Gutiérrez-Bautista JF, García-Verdejo FJ, Gálvez-Montosa F, López-López JA, García-Martín P, Pérez EM, Sánchez-Rovira P, Reyes-Zurita FJ, Sainz J. Crosstalk Between Autophagy and Oxidative Stress in Hematological Malignancies: Mechanisms, Implications, and Therapeutic Potential. Antioxidants (Basel) 2025; 14:264. [PMID: 40227235 PMCID: PMC11939785 DOI: 10.3390/antiox14030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Autophagy is a fundamental cellular process that maintains homeostasis by degrading damaged components and regulating stress responses. It plays a crucial role in cancer biology, including tumor progression, metastasis, and therapeutic resistance. Oxidative stress, similarly, is key to maintaining cellular balance by regulating oxidants and antioxidants, with its disruption leading to molecular damage. The interplay between autophagy and oxidative stress is particularly significant, as reactive oxygen species (ROS) act as both inducers and by-products of autophagy. While autophagy can function as a tumor suppressor in early cancer stages, it often shifts to a pro-tumorigenic role in advanced disease, aiding cancer cell survival under adverse conditions such as hypoxia and nutrient deprivation. This dual role is mediated by several signaling pathways, including PI3K/AKT/mTOR, AMPK, and HIF-1α, which coordinate the balance between autophagic activity and ROS production. In this review, we explore the mechanisms by which autophagy and oxidative stress interact across different hematological malignancies. We discuss how oxidative stress triggers autophagy, creating a feedback loop that promotes tumor survival, and how autophagic dysregulation leads to increased ROS accumulation, exacerbating tumorigenesis. We also examine the therapeutic implications of targeting the autophagy-oxidative stress axis in cancer. Current strategies involve modulating autophagy through specific inhibitors, enhancing ROS levels with pro-oxidant compounds, and combining these approaches with conventional therapies to overcome drug resistance. Understanding the complex relationship between autophagy and oxidative stress provides critical insights into novel therapeutic strategies aimed at improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Carmen González-Olmedo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - María Carretero-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - Leticia Díaz-Beltrán
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Juan Francisco Gutiérrez-Bautista
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology and Immunology III, University of Granada, 18016 Granada, Spain
| | - Francisco José García-Verdejo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Gálvez-Montosa
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - José Antonio López-López
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Paloma García-Martín
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Eva María Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Jesús Reyes-Zurita
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
15
|
Beinart FR, Gillen K. Regeneration of Lumbriculus variegatus requires post-amputation production of reactive oxygen species. Dev Growth Differ 2025; 67:104-112. [PMID: 39837571 PMCID: PMC11842891 DOI: 10.1111/dgd.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Animals vary in their ability to replace body parts lost to injury, a phenomenon known as restorative regeneration. Uncovering conserved signaling steps required for regeneration may aid regenerative medicine. Reactive oxygen species (ROS) are necessary for proper regeneration in species across a wide range of taxa, but it is unknown whether ROS are essential for annelid regeneration. As annelids are a widely used and excellent model for regeneration, we sought to determine whether ROS play a role in the regeneration of the highly regenerative annelid, Lumbriculus variegatus. Using a ROS-sensitive fluorescent probe we observed ROS accumulation at the wound site within 15 min after amputation; this ROS burst lessened by 6 h post-amputation. Chemical inhibition of this ROS burst delayed regeneration, an impairment that was partially rescued with exogenous ROS. Our results suggest that similar to other animals, annelid regeneration depends upon ROS signaling, implying a phylogenetically ancient requirement for ROS in regeneration.
Collapse
Affiliation(s)
- Freya R. Beinart
- Kenyon CollegeMolecular BiologyGambierOhioUSA
- Present address:
Washington UniversitySt. LouisMissouriUSA
| | - Kathy Gillen
- Kenyon CollegeMolecular BiologyGambierOhioUSA
- Kenyon CollegeBiologyGambierOhioUSA
| |
Collapse
|
16
|
Barathan M, Ham KJ, Wong HY, Law JX. The Role of Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles in Modulating Dermal Fibroblast Activity: A Pathway to Enhanced Tissue Regeneration. BIOLOGY 2025; 14:150. [PMID: 40001918 PMCID: PMC11852171 DOI: 10.3390/biology14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) secreted by umbilical cord-derived mesenchymal stem cells (UC-MSCs) hold significant promise as therapeutic agents in regenerative medicine. This study investigates the effects of UC-MSC-derived EVs on dermal fibroblast function, and their potential in wound healing applications. EVs were characterized by nanoparticle tracking analysis and transmission electron microscopy, revealing a mean size of 118.6 nm, consistent with exosomal properties. Dermal fibroblasts were treated with varying concentrations of EVs (25-100 µg/mL), and their impacts on cellular metabolism, mitochondrial activity, reactive oxygen species (ROS) production, wound closure, inflammatory cytokine secretion, growth factor production, and extracellular matrix (ECM) gene expression were evaluated. At lower concentrations (25-50 µg/mL), EVs significantly enhanced fibroblast metabolic and mitochondrial activity. However, higher concentrations (≥75 µg/mL) increased ROS levels, suggesting potential hormetic effects. EVs also modulated inflammation by reducing pro-inflammatory cytokines (IL-6, TNF-α) while promoting pro-regenerative cytokines (IL-33, TGF-β). Treatment with 50 µg/mL of EVs optimally stimulated wound closure and growth factor secretion (VEGF, BDNF, KGF, IGF), and upregulated ECM-related gene expression (type I and III collagen, fibronectin). These findings demonstrate that UC-MSC-derived EVs exert multifaceted effects on dermal fibroblast function, including enhanced cellular energetics, stimulation of cell migration, regulation of inflammation, promotion of growth factor production, and increased ECM synthesis. This study highlights the potential of EVs as a novel therapeutic strategy for wound healing and tissue regeneration, emphasizing the importance of optimizing EV concentration for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Kow Jack Ham
- Humanrace Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia; (K.J.H.); (H.Y.W.)
- Nexus Scientific Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia
| | - Hui Yin Wong
- Humanrace Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia; (K.J.H.); (H.Y.W.)
- Nexus Scientific Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
17
|
Larsen MA, Valley M, Karassina N, Wang H, Zhou W, Vidugiriene J. Bioluminescent Probes for the Detection of Superoxide and Nitric Oxide. ACS Chem Biol 2025; 20:56-61. [PMID: 39682022 DOI: 10.1021/acschembio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The regulation of reactive oxygen species (ROS) such as superoxide (SO) and nitric oxide (NO) is crucial in biology, influencing metabolism and signaling pathways. Imbalances in these species lead to oxidative stress and various diseases. Traditional methods for measuring SO and NO face challenges in terms of sensitivity and specificity, particularly in complex biological matrices. This report introduces bioluminescent probes that leverage the intrinsic sensitivity of bioluminescence for direct and selective detection of SO and NO. These probes release analogs of d-luciferin upon reaction with their target ROS. Following addition of luciferase, luminescence is generated proportional to the amount of accumulated luciferin, allowing for quantitation of SO or NO. Both probes exhibit high specificity, confirmed through cell-free assays and cell-based studies in macrophages, demonstrating their utility in measuring cellular SO and NO production. These assays offer a robust, high-throughput platform for studying ROS, providing direct insights into oxidative stress-related mechanisms.
Collapse
Affiliation(s)
- Matthew A Larsen
- Promega Corporation, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Mike Valley
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Natasha Karassina
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Hui Wang
- Promega Corporation, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Wenhui Zhou
- Promega Corporation, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Jolanta Vidugiriene
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| |
Collapse
|
18
|
Kaur C, Mandal D. The scavenging mechanism of hydrazone compounds towards HOO˙ and CH 3OO˙ radicals: a computational mechanistic and kinetic study. RSC Adv 2025; 15:357-369. [PMID: 39758933 PMCID: PMC11696531 DOI: 10.1039/d4ra07625g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
In this study, a detailed DFT investigation was conducted to systematically analyze the scavenging activity of six hydrazone compounds (1-6) against HOO˙ and CH3OO˙ radicals. Three mechanistic pathways were explored: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SETPT), and sequential proton loss electron transfer (SPLET). These mechanisms were evaluated based on thermodynamic parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) in the gas phase, water, and pentyl ethanoate. HAT was identified as the most favorable mechanism in the gas phase, while SPLET was preferred in water. Among the studied compounds, compound 2 showed the highest rate constants for HOO˙ scavenging following the HAT mechanism in the gas phase observed at the O2'-H bond with a k Eck value of 6.02 × 104 M-1 s-1. For CH3OO˙ scavenging, the same compound exhibited the highest rate constants at the N8-H (9.03 × 104 M-1 s-1) and O2'-H (7.22 × 104 M-1 s-1) sites. The calculated overall rate constant values of compound 2 are k overall (HOO˙) = 6.86 × 104 M-1 s-1 and k overall (CH3OO˙) = 1.63 × 105 M-1 s-1. These results suggest that compound 2 exhibits antioxidant activities comparable to butylated hydroxyanisole (BHA), consistent with experimental findings, indicating its potential as an effective scavenger of hydroperoxyl and methoxy peroxyl radicals. In aqueous solution, the anionic form of compound 2 showed the greatest HOO˙ and CH3OO˙ radical scavenging activity among all of the studied compounds with rate constants of k app = 1.8 × 107 M-1 s-1 and k app = 3.3 × 106 M-1 s-1, respectively. Compared with some typical antioxidants such as rubiadin, natural fraxin, and natural anthraquinones, compound 2 showed higher HOO˙ and CH3OO˙ radical scavenging activity in water. Thus, compound 2 is a promising antioxidant in aqueous physiological environments.
Collapse
Affiliation(s)
- Chhinderpal Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 Punjab India
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 Punjab India
| |
Collapse
|
19
|
Sikder MM, Li X, Akumwami S, Labony SA. Reactive Oxygen Species: Role in Pathophysiology, and Mechanism of Endogenous and Dietary Antioxidants during Oxidative Stress. Chonnam Med J 2025; 61:32-45. [PMID: 39958267 PMCID: PMC11821989 DOI: 10.4068/cmj.2025.61.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025] Open
Abstract
Redox imbalances, which result from excessive production of reactive oxygen species (ROS) or malfunctioning of the antioxidant system, are the source of oxidative stress. ROS affects all structural and functional components of cells, either directly or indirectly. In addition to causing genetic abnormalities, excessive ROS also oxidatively modifies proteins by protein oxidation and peroxidation and alters lipid structure via advanced lipoxidation, decreasing function and promoting damage or cell death. On the other hand, low levels of ROS constitute important redox-signaling molecules in various pathways that maintain cellular homeostasis and regulate key transcription factors. As a result, ROS can affect various cellular processes, such as apoptosis, migration, differentiation, and proliferation. ROS can act as signaling molecules, controlling various normal physiological activities at the cellular level. Furthermore, there is an increasing body of evidence indicating the role of ROS in various clinical conditions. In this review, we will summarize the role of ROS in physiological and pathological processes and antioxidant action during oxidative stress.
Collapse
Affiliation(s)
- Mohammad Mamun Sikder
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Xiaodong Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Steeve Akumwami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Clinical Sciences, Anesthesiology, Public Health National Institute, Bujumbura, Burundi
| | - Sanzida Akter Labony
- Bachelor of Medicine and Bachelor of Surgery (MBBS), Rangpur Medical College, Rangpur, Bangladesh
| |
Collapse
|
20
|
Ge Y, Ge Z, Tian F, Tai X, Chen D, Sun S, Shi Z, Yin J, Wei G, Li D, Wang L, Xu W, Tong M, Liu F, Zhao L, Qian X, Ge X. Sulforaphane potentiates the efficacy of chemoradiotherapy in glioblastoma by selectively targeting thioredoxin reductase 1. Cancer Lett 2024; 611:217429. [PMID: 39725145 DOI: 10.1016/j.canlet.2024.217429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Chemoradiotherapy is a conventional treatment modality for patients with glioblastoma (GBM). However, the efficacy of this approach is significantly hindered by the development of therapeutic resistance. The thioredoxin system, which plays a crucial role in maintaining redox homeostasis, confers protection to cancer cells against apoptosis induced by chemoradiotherapy. Herein, we demonstrate that sulforaphane (SFN), an isothiocyanate phytochemical with anti-cancer effects, inhibits the activity of thioredoxin reductase 1 (TrxR1) through covalent conjugation with residues C59/64/497&U498. This inhibition of TrxR1 leads to the accumulation of reactive oxygen species (ROS), thereby enhancing chemoradiotherapy-induced apoptosis in GBM cells. Furthermore, SFN-induced ROS accumulation facilitates the polarization of M1-like macrophages, which synergistically sensitize GBM tumors to chemoradiotherapy. In conclusion, our study unveils that SFN has potential benefits in improving the effect of chemoradiotherapy and prognosis for GBM patients by targeting TrxR1.
Collapse
Affiliation(s)
- Yuqian Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Fuwei Tian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaoyu Tai
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Shuhong Sun
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zhumei Shi
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianxing Yin
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guining Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Dongmei Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Lude Wang
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Minfeng Tong
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Fang Liu
- Department of Neurosurgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Lin Zhao
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 21009, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
21
|
Liu L, de Leeuw K, van Goor H, Doornbos-van der Meer B, Arends S, Westra J. Neutrophil extracellular traps and oxidative stress in systemic lupus erythematosus patients with and without renal involvement. Arthritis Res Ther 2024; 26:220. [PMID: 39702549 DOI: 10.1186/s13075-024-03454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES To investigate the levels of plasma neutrophil extracellular traps (NETs) and free thiols, the latter reflecting systemic oxidative stress (OS), and to explore the relationship between NETs and OS in quiescent systemic lupus erythematosus (SLE) patients with and without renal involvement. METHODS Plasma levels of NETs and free thiols were measured cross-sectionally in 100 SLE patients with low disease activity (SLEDAI < 5), of whom 73 patients had no renal involvement (non-LN) and 27 patients had lupus nephritis (LN). Additionally, 22 healthy controls (HCs) were included. NETs were measured using a myeloperoxidase-DNA complex ELISA and free thiols were measured using a thiol assay kit. RESULTS NETs levels were significantly higher in both non-LN and LN patients compared to HCs (p < 0.001, p = 0.013), with no difference between the two patient groups (p = 0.799). Free thiol levels were not significantly different between groups. Interestingly, NETs were negatively correlated with free thiols in all 100 SLE patients (rho = -0.32) and non-LN patients (rho = -0.38), but not in LN patients. Levels of free thiols were significantly lower in subgroups of patients with estimated glomerular filtration rate (eGFR) < 60, serum creatinine (sCr) ≥ 90, C reactive protein (CRP) levels ≥ 5 and body mass index (BMI) ≥ 30. In multivariable regression, disease duration, NETs levels, and eGFR were independently associated with free thiol levels. CONCLUSIONS Levels of NETs were increased in quiescent SLE patients. Although free thiol levels did not differ among the groups. The levels of NETs and free thiols were independently associated in SLE patients, suggesting a potential role of OS in NETs formation. Therefore, reducing OS might be an additional therapeutic target for SLE treatment.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands.
| |
Collapse
|
22
|
Yu S, Chen X, Yang T, Cheng J, Liu E, Jiang L, Song M, Shu H, Ma Y. Revealing the mechanisms of blood-brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention. Rev Neurosci 2024; 35:895-916. [PMID: 38967133 DOI: 10.1515/revneuro-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.
Collapse
Affiliation(s)
- Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Tao Yang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Jingmin Cheng
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Enyu Liu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Lingli Jiang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Min Song
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Haifeng Shu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Yuan Ma
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
23
|
Kodakkat S, Valliant PHA, Ch'ng S, Shaw ZL, Awad MN, Murdoch BJ, Christofferson AJ, Bryant SJ, Walia S, Elbourne A. 2-D transition metal trichalcophosphogenide FePS 3 against multi-drug resistant microbial infections. NANOSCALE 2024; 16:22186-22200. [PMID: 39535007 DOI: 10.1039/d4nr03409k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Antimicrobial resistance (AMR) is a significant concern to society as it threatens the effectiveness of antibiotics and leads to increased morbidity and mortality rates. Innovative approaches are urgently required to address this challenge. Among promising solutions, two dimensional (2-D) nanomaterials with layered crystal structures have emerged as potent antimicrobial agents owing to their unique physicochemical properties. This antimicrobial activity is largely attributed to their high surface area, which allows for efficient interaction with microbial cell membranes, leading to physical disruption or oxidative stress through the generation of reactive oxygen species (ROS). The latter mechanism is particularly noteworthy as it involves the degradation of these nanomaterials under specific conditions, releasing ROS that can effectively kill bacteria and other pathogens without harming human cells. This study explores the antimicrobial properties of a novel biodegradable nanomaterial based on 2-D transition metal trichalcogenides, FePS3, as a potential solution to drug-resistant microbes. Our findings indicate that FePS3 is an exceptionally effective antimicrobial agent with over 99.9% elimination of various bacterial strains. Crucially, it exhibits no cytotoxic effects on mammalian cells, underscoring the potential for safe biomedical application. The primary mechanism driving the antimicrobial efficacy of FePS3 is the release of ROS during biodegradation. ROS has a crucial role in neutralizing bacterial cells, conferring significant antipathogenic properties to this compound. The unique combination of high antimicrobial activity, biocompatibility, and biodegradability makes FePS3 a promising candidate for developing new antimicrobial strategies. This research contributes to the increasing body of evidence supporting the use of 2-D nanomaterials in addressing the global challenge of AMR, offering a potential pathway for the development of advanced, effective, and safe antimicrobial agents.
Collapse
Affiliation(s)
| | | | - Serena Ch'ng
- School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | - Z L Shaw
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Miyah Naim Awad
- School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | - Billy J Murdoch
- School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | | | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | - Sumeet Walia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
24
|
Mastroeni P, Geminiani M, Olmastroni T, Frusciante L, Trezza A, Visibelli A, Santucci A. An in vitro cell model for exploring inflammatory and amyloidogenic events in alkaptonuria. J Cell Physiol 2024; 239:e31449. [PMID: 39351877 DOI: 10.1002/jcp.31449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 12/18/2024]
Abstract
Alkaptonuria (AKU) is a progressive systemic inherited metabolic disorder primarily affecting the osteoarticular system, characterized by the degeneration of cartilage induced by ochronosis, ultimately leading to early osteoarthritis (OA). However, investigating AKU pathology in human chondrocytes, which is crucial for understanding the disease, encounters challenges due to limited availability and donor variability. To overcome this obstacle, an in vitro model has been established using homogentisic acid (HGA) to simulate AKU conditions. This model employed immortalized C20/A4 human chondrocytes and serves as a dependable platform for studying AKU pathogenesis. Significantly, the model demonstrates the accumulation of ochronotic pigment in HGA-treated cells, consistent with findings from previous studies. Furthermore, investigations into inflammatory processes during HGA exposure revealed notable oxidative stress, as indicated by elevated levels of reactive oxygen species and lipid peroxidation. Additionally, the model demonstrated HGA-induced inflammatory responses, evidenced by increased production of nitric oxide, overexpression of inducible nitric oxide synthase, and cyclooxygenase-2. These findings underscore the model's utility in studying inflammation associated with AKU. Moreover, analysis of serum amyloid A and serum amyloid P proteins revealed a potential interaction, corroborating evidence of amyloid fibril formation. This hypothesis was further supported by Congo red staining, which showed fibril formation exclusively in HGA-treated cells. Overall, the C20/A4 cell model provided valuable insights into AKU pathogenesis, emphasizing its potential for facilitating drug development and therapeutic interventions.
Collapse
Affiliation(s)
| | - Michela Geminiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Tommaso Olmastroni
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Luisa Frusciante
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Anna Visibelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
- MetabERN, Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| |
Collapse
|
25
|
Elshibani FA, Alamami AD, Mohammed HA, Rasheed RA, El Sabban RM, Yehia MA, Abdel Mageed SS, Majrashi TA, Elkaeed EB, El Hassab MA, Eldehna WM, El-Ashrey MK. A multidisciplinary approach to the antioxidant and hepatoprotective activities of Arbutus pavarii Pampan fruit; in vitro and in Vivo biological evaluations, and in silico investigations. J Enzyme Inhib Med Chem 2024; 39:2293639. [PMID: 38153110 PMCID: PMC10763860 DOI: 10.1080/14756366.2023.2293639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023] Open
Abstract
The Libyan Strawberry, Arbutus pavarii Pampan (ARB), is an endemic Jebel Akhdar plant used for traditional medicine. This study presents the antioxidant and hepatoprotective properties of ARB fruit-extract. ARB phytochemical analysis indicated the presence of 354.54 GAE and 36.2 RE of the phenolics and flavonoids. LC-MS analysis identified 35 compounds belonging to phenolic acids, procyanidins, and flavonoid glycosides. Gallic acid, procyanidin dimer B3, β-type procyanidin trimer C, and quercetin-3-O-glucoside were the major constituents of the plant extract. ARB administration to paracetamol (PAR)-intoxicated rats reduced serum ALT, AST, bilirubin, hepatic tissue MDA and proinflammatory markers; TNF-α and IL-6 with an increase in tissue GSH level and SOD activity. Histological and immunohistochemical studies revealed that ARB restored the liver histology and significantly reduced the tissue expression of caspase 3, IL-1B, and NF-KB in PAR-induced liver damage. Docking analysis disclosed good binding affinities of some compounds with XO, COX-1, 5-LOX, and PI3K.
Collapse
Affiliation(s)
- Fatma A. Elshibani
- Department of Pharmacognosy, Faculty of Pharmacy, University of Benghazi, Benghazi, Libya
| | - Abdullah D. Alamami
- Department of Basic Medical Science, Faculty of Pharmacy, University of Benghazi, Benghazi, Libya
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Rabab Ahmed Rasheed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, King Salman International University (KSIU), South Sinai, Egypt
| | - Radwa M. El Sabban
- Department of Anatomy, Faculty of Medicine, October 6 University, Giza, Egypt
| | - Mohamed A. Yehia
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, October 6 University, Giza, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed K. El-Ashrey
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Ahmed NA, Abdelrazek EM, Salaheldin H. Optimization of the physiochemical synthesis parameters of the Se/CMC nanocomposite: Antibacterial, antioxidant, and anticancer activity. Int J Biol Macromol 2024; 283:137765. [PMID: 39557256 DOI: 10.1016/j.ijbiomac.2024.137765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Selenium nanoparticles (Se NPs) have gained growing significance due to their remarkable therapeutic qualities, decreased toxicity, enhanced bioavailability, and biocompatibility compared to other selenium compounds. Se NPs were synthesized using ascorbic acid (AA) and carboxymethyl cellulose (CMC) as reducing and capping agents, respectively. This was carried out by optimizing the physiochemical preparation parameters (e.g., precursor salt concentration, AA concentration, temperature, and pH). Characterization of the optimized Se/CMC nanocomposite sample was conducted using several techniques including UV-Vis spectroscopy, FT-IR, X-ray XRD, TEM, SEM, EDX, DLS, and Zeta potential. The UV-Vis spectra results indicate that the synthesized Se/CMC nanocomposite exhibits a most prominent surface plasmon resonance (SPR) peak at λmax = 270 nm. The diameter of the synthesized Se/CMC nanocomposite varied between 100 and 500 nm as observed in TEM images, and as verified by the DLS technique. Moreover, the Z-potential evaluated for the Se/CMC nanocomposite using the most optimal synthesis conditions was -21.8 ± 4.48 mV. The results obtained showed that Se/CMC nanocomposite had a more significant impact on Gram-negative clinical bacterial isolates (23 ± 0.97 mm) than Gram-positive (22 ± 0.95 mm). Additionally, the synthesized nanocomposite showed a highly antioxidant activity (83 %) of inhibition DPPH free radicals results using DPPH assay. Also, the fabricated Se/CMC nanocomposite has good anticancer activity (168 μg/mL) against the liver HepG2 cell line using MTT assay. Hence, the Se/CMC nanocomposite that was prepared has promising prospects in the field of healthcare owing to its enhanced capacity as an antioxidant, anticancer, and antibacterial agent.
Collapse
Affiliation(s)
- Naglaa A Ahmed
- Biophysics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - E M Abdelrazek
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Hosam Salaheldin
- Biophysics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
27
|
Bay L, Jemec GB, Ring HC. Microenvironmental host-microbe interactions in chronic inflammatory skin diseases. APMIS 2024; 132:974-984. [PMID: 39270740 PMCID: PMC11582343 DOI: 10.1111/apm.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
Several microbiome studies have recently demonstrated microbial dysbiosis in various chronic inflammatory skin diseases, and it is considered an important role in the pathogenesis. Although the role of skin dysbiosis in inflammatory skin diseases is debatable, the local microenvironment is considered essential concerning compositional changes and functional alterations of the skin microbiota. Indeed, various local nutrients (e.g., lipids), pH values, water, oxygen, and antimicrobial peptides may affect the level of skin dysbiosis in these skin diseases. In particular, in atopic dermatitis and hidradenitis suppurativa, significant changes in skin dysbiosis have been associated with local aberrant host immune changes. In this review, the potential pathogenic crosstalk between the host and the microbiota is reviewed in relation to the physical, chemical, and biological microenvironments of various chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- Lene Bay
- Bacterial Infection Biology, Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Gregor Borut Jemec
- Department of DermatologyZealand University HospitalRoskildeDenmark
- Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
28
|
Yang Y, Yang W, Hu T, Sun M, Wang J, Shen J, Ding E. Protective Effect of Biochanin A on Gamma Radiation-Induced Oxidative Stress, Antioxidant Status, Apoptotic, and DNA Repairing Molecules in Swiss Albino Mice. Cell Biochem Funct 2024; 42:e70005. [PMID: 39498677 DOI: 10.1002/cbf.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
Radiation therapy is indispensable in medical practice but often causes adverse effects on healthy tissues, necessitating the search for natural radioprotectors. This study investigates the protective effect of Biochanin A (BCA) against gamma radiation-induced oxidative stress and DNA damage in Swiss albino mice. Gamma radiation, a potent ionizing source, generates reactive oxygen species (ROS) that damage cellular biomolecules, including DNA. Antioxidants play a crucial role in neutralizing ROS and preventing oxidative damage. Swiss albino mice were divided into control, BCA control (10 mg/kg body weight), radiation alone (7 Gy), and radiation+ BCA pretreatment groups. BCA, a natural isoflavone with known antioxidant and cytoprotective properties, was administered intraperitoneally before radiation exposure. After irradiation, lipid peroxidation levels, antioxidant enzyme activities/level (superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione), expression levels of DNA repair genes (P53, P21, GADD45α), apoptotic markers (Bax, Bcl-2, Caspase-3, -9 and Cytochrome-C), and inflammatory marker (NF-κB) were analyzed in small intestine tissue. Our findings indicate that gamma radiation significantly elevated lipid peroxidation levels and altered antioxidant enzyme activities, indicating oxidative stress. However, BCA pretreatment mitigated these effects by bolstering antioxidant defences, reducing radiation-induced oxidative damage. Additionally, BCA altered apoptotic markers, NF-κB expression, promoting cell survival mechanisms. At the molecular level, BCA pretreatment upregulated key DNA repair genes (P53, P21, GADD45α), crucial for repairing radiation-induced DNA damage and maintaining genomic stability. These results underscore BCA potential as a radioprotector, suggesting its efficacy in mitigating radiation-induced oxidative stress and preserving cellular integrity. In conclusion, BCA demonstrates promising radioprotective properties by attenuating oxidative stress, enhancing antioxidant defences, modulating apoptotic pathways, and promoting DNA repair mechanisms following gamma radiation exposure. Further research is necessary to elucidate its precise mechanisms of action and explore its potential therapeutic applications in radiation oncology and environmental radioprotection.
Collapse
Affiliation(s)
- Yang Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Yang
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Tianpeng Hu
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Momo Sun
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Jin Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Ultrasound, Tianjin First Central Hospital, Tianjin, China
| | - Jie Shen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Enci Ding
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
29
|
Abdi M, Fadaee M, Jourabchi A, Karimzadeh H, Kazemi T. Cyclophosphamide-Induced Infertility and the Impact of Antioxidants. Am J Reprod Immunol 2024; 92:e70014. [PMID: 39625043 DOI: 10.1111/aji.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
An important drawback of anticancer chemotherapy is the harm it causes to healthy cells. Cyclophosphamide (CP) is a widely used chemotherapeutic alkylating agent that is regularly used in cancer treatment. However, it can cause severe side effects, including genotoxicity, due to its ability to damage DNA. This toxicity is thought to be associated with oxidative stress induced by an excessive amount of reactive oxygen species (ROS). Therefore, there is a specific focus on the potential effects of anticancer treatments on fertility. Due to the increasing life expectancy of cancer patients, those desiring parenthood may face the negative impacts of therapies. Utilizing substances with antioxidant and cytoprotective characteristics to protect the reproductive system from harmful consequences during chemotherapy would be highly beneficial. This review introduces the physiological and pathological roles of ROS in the reproductive systems of both males and females, then we address the adverse effects of CP administration on infertility and discuss how antioxidants can reverse these effects.
Collapse
Affiliation(s)
- Morteza Abdi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Jourabchi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Karimzadeh
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
30
|
Semenescu I, Avram S, Similie D, Minda D, Diaconeasa Z, Muntean D, Lazar AE, Gurgus D, Danciu C. Phytochemical, Antioxidant, Antimicrobial and Safety Profile of Glycyrrhiza glabra L. Extract Obtained from Romania. PLANTS (BASEL, SWITZERLAND) 2024; 13:3265. [PMID: 39683057 DOI: 10.3390/plants13233265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Glycyrrhiza glabra L., also known as licorice, belongs to the Fabaceae family and is one of the most commercially valuable plants worldwide, being used in the pharmaceutical, cosmetic, and food industries, both for its therapeutic benefits as well as for the sweetening properties of the extract. This study evaluates the phytochemical composition, the biological activities, and the safety profile of a methanolic extract of licorice root (LRE) obtained from Romania. Ten phytocompounds were quantified by the HPLC-DAD-ESI+, the most abundant being the triterpene glycyrrhizin (13.927 mg/g dry extract.), followed by these flavonoids: liquiritin, liquiritigenin-apiosyl-glucoside, and apigenin-rutinoside liquiritigenin. The total phenolic content of the LRE was found to be 169.83 mg gallic acid/g dry extract. (GAE/g d.e.), and the extract showed a maximum of 79.29% antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Good antimicrobial activity of the LRE was observed for Gram-negative bacteria, especially for S. pneumoniae and S. pyogenes. The mineral content of the LRE was indicative of the lack of toxicity; heavy metals such as lead, cadmium, arsenic, nickel, and cobalt were below the detection limit. The safety profile of the licorice extract was assessed using the in vivo hen egg test-chorioallantoic membrane (HET-CAM protocol), indicating no irritability, good tolerability, and biocompatibility. The phytochemical and biological characterization of the Romanian licorice root extract reveals a good source of glycyrrhizin and polyphenols with antioxidant and antimicrobial potential, along with a safety profile that may be useful for future therapeutic applications.
Collapse
Affiliation(s)
- Iulia Semenescu
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Stefana Avram
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Diana Similie
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliana Minda
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania
| | - Delia Muntean
- Department of Microbiology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Antonina Evelina Lazar
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Daniela Gurgus
- Department of Balneology, Medical Recovery and Rheumatology, Family Discipline, Center for Preventive Medicine, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
31
|
Canoyra A, Martín-Cordero C, Muñoz-Mingarro D, León-González AJ, Parsons RB, Acero N. Corema album Berry Juice as a Protective Agent Against Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:1535. [PMID: 39598444 PMCID: PMC11597836 DOI: 10.3390/ph17111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Corema album berries are edible fruits from the Iberian Atlantic coast, characterized by a rich polyphenolic composition, which endows their juice with potential protective effects against neurodegeneration. This study aimed to evaluate the potential of the relatively lesser-known C. album berries as a novel neuroprotective agent against neurodegenerative diseases. Methods: The phenolic compounds of the juice were characterized using UHPLC-HRMS (Orbitrap). The SH-SY5Y neuroblastoma line was used to determine the preventive effect of the juice against H2O2-induced oxidative stress. Furthermore, neuronal cells were differentiated into dopaminergic and cholinergic lines and exposed to 6-hydroxydopamine and okadaic acid, respectively, to simulate in vitro models of Parkinson's disease and Alzheimer's disease. The ability of the juice to enhance neuronal viability under toxic conditions was examined. Additionally, its inhibitory effects on neuroprotective-related enzymes, including MAO-A and MAO-B, were assessed in vitro. Results: Phytochemical characterization reveals that 5-O-caffeoylquinic acid constitutes 80% of the total phenolic compounds. Higher concentrations of the juice effectively protected both differentiated and undifferentiated SH-SY5Y cells from H2O2-induced oxidative damage, reducing oxidative stress by approximately 20% and suggesting a dose-dependent mechanism. Moreover, the presence of the juice significantly enhanced the viability of dopaminergic and cholinergic cells exposed to neurotoxic agents. In vitro, the juice inhibited the activity of MAO-A (IC50 = 87.21 µg/mL) and MAO-B (IC50 = 56.50 µg/mL). Conclusions: While these findings highlight C. album berries as a promising neuroprotective agent, further research is required to elucidate its neuroprotective mechanisms in cell and animal models and, ultimately, in human trials.
Collapse
Affiliation(s)
- Antonio Canoyra
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| | - Carmen Martín-Cordero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain;
| | - Antonio J. León-González
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Richard B. Parsons
- King’s College London, Institute of Pharmaceutical Sciences, 150 Stamford Street, London SE1 9NH, UK;
| | - Nuria Acero
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| |
Collapse
|
32
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
33
|
Sutkowy P, Paprocki J, Piechocki J, Woźniak A. The impact of hyperbaric oxygen therapy on the redox balance of patients with diabetic foot syndrome. Free Radic Res 2024; 58:723-732. [PMID: 39425927 DOI: 10.1080/10715762.2024.2417286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Diabetic foot wounds associated with oxidative stress are treated with hyperbaric oxygen (HBO), but that may also induce the stress itself; therefore, we studied the effect of HBO treatments on the oxidant-antioxidant balance in the venous blood of patients with diabetic foot syndrome. In addition, blood counts were also examined. 14 male patients (24-74 years), at risk of lower limb amputation were treated with 30 HBO procedures (60 min of the inhalation of pure oxygen at a pressure of 2.5 atm per day, 5 days a week). The control group consisted of 29 healthy male volunteers aged 25-69 years. No members of the group had been subjected to HBO therapy previously (ClinicalTrials.gov, no. NCT06401941). The analyzed redox parameters did not change during the experiment in the patients (p > 0.05). The concentration of thiobarbituric acid reactive substances (TBARS) in the plasma was higher in the patients before the first and after the thirtieth HBO treatments when compared to the control group. In contrast, the TBARS concentration in erythrocytes was lower in the patients after the first treatment vs. the controls. Moreover, the higher activity of catalase in the patients' erythrocytes was noted before the therapy and after the first and last treatments compared to the controls. HBO therapy increased the percentage of monocytes and platelet volume, but it decreased the volume of platelets in the patients' blood. HBO therapy does not affect the oxidant-antioxidant balance disturbed in diabetic foot patients.
Collapse
Affiliation(s)
- Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jarosław Paprocki
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jacek Piechocki
- Mazovian Centre for Hyperbaric Therapy and Wound Treatment, Warsaw, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
34
|
Yang Z, Wei Y, Fu Y, Wang X, Shen W, Shi A, Zhang H, Li H, Song X, Wang J, Jin M, Zheng H, Tao J, Wang Y. Folic acids promote in vitro maturation of bovine oocytes by inhibition of ferroptosis via upregulated glutathione and downregulated Fe 2+ accumulation. Anim Reprod Sci 2024; 270:107605. [PMID: 39362062 DOI: 10.1016/j.anireprosci.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Bovine embryos by in vitro fertilization have become the primary source of commercial embryo transfers globally. However, the developmental capacity of in vitro maturation (IVM) oocytes is considerably lower than that of in vivo maturation (IVO) oocytes, owing to the production of reactive oxygen species (ROS) via mitochondrial metabolism, which was higher in IVM oocytes than in IVO oocytes. To avoid the negative effects of ROS on embryo quality, folic acid (FA) was supplemented directly into the IVM medium to antagonize ROS production, however, the mechanisms remain unknown. In the present study, five levels of FA (0, 25, 50, 100, and 200 µM) were supplemented into the bovine oocyte culture medium. The maturation, cleavage, and blastocyst formation rates increased by 8.95 %, 6.94 %, and 4.36 %, respectively, in the 50 µM group compared to the 0 µM group. Moreover, 7904 differential genes were identified between 0 µM and 50 µM groups by transcriptome sequencing, and they were mainly enriched in 8 pathways. The glutathione, ROS, and Fe2+ levels in oocytes were found to be associated with ferroptosis. Our results revealed that 50 µM FA promoted the IVM of bovine oocytes and affected the expression of genes involved in the ferroptosis pathway. The downregulation of TFR1 and STEAP3 led to a decrease in intracellular Fe2+ accumulation, and the upregulation of GCL increased oocyte GSH levels, thereby reducing the production of ROS in the ferroptosis pathway. Our study provides a new insight into the molecular mechanisms by which FA promotes bovine oocyte development in vitro.
Collapse
Affiliation(s)
- Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaochang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yu Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wenjuan Shen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Han Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Heqiang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xuexiao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mengdong Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Hao Zheng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
35
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
36
|
Rammali S, Idir A, Aherkou M, Ciobică A, Kamal FZ, Aalaoui ME, Rahim A, Khattabi A, Abdelmajid Z, Aasfar A, Burlui V, Calin G, Mavroudis I, Bencharki B. In vitro and computational investigation of antioxidant and anticancer properties of Streptomyces coeruleofuscus SCJ extract on MDA-MB-468 triple-negative breast cancer cells. Sci Rep 2024; 14:25251. [PMID: 39448707 PMCID: PMC11502701 DOI: 10.1038/s41598-024-76200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to explore the antioxidant potential of the ethyl acetate extract of Streptomyces coeruleofuscus SCJ strain, along with its inhibitory effects on the triple-negative human breast carcinoma cell line (MDA-MB-468). The ethyl acetate extract's total phenolic and flavonoid contents were quantified, and its antioxidant activity was investigated using DPPH (1,1-Diphenyl-2-picrylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), and FRAP (Ferric Reducing Antioxidant Power) assays. Furthermore, the cytotoxic effect of the organic extract from Streptomyces coeruleofuscus SCJ on MDA-MB-468 cancer cells was assessed via the crystal violet assay. In tandem, a thorough computational investigation was conducted to explore the pharmacokinetic properties of the identified components of the extract, utilizing the SwissADME and pKCSM web servers. Additionally, the molecular interactions between these components and Estrogen Receptor Beta, identified as a potential target, were probed through molecular docking studies. The results revealed that ethyl acetate extract of SCJ strain exhibited remarkable antioxidant activity, with 39.899 ± 1.56% and 35.798 ± 0.082% scavenging activities against DPPH and ABTS, respectively, at 1 mg/mL. The extract also displayed significant ferric reducing power, with a concentration of 1.087 ± 0.026 mg ascorbic acid equivalents per mg of dry extract. Furthermore, a strong positive correlation (p < 0.0001) between the antioxidant activity, the polyphenol and the flavonoid contents. Regarding anticancer activity, the SCJ strain extract demonstrated significant anticancer activity against TNBC MDA-MB-468 cancer cells, with an inhibition percentage of 62.76 ± 0.62%, 62.67 ± 0.93%, and 58.07 ± 4.82% at 25, 50, and 100 µg/mL of the extract, respectively. The HPLC-UV/vis analysis revealed nine phenolic compounds: gallic acid, sinapic acid, p-coumaric acid, cinnamic acid, trans-fereulic acid, syringic acid, chloroqenic acid, ellagic acid, epicatechin. Streptomyces coeruleofuscus SCJ showed promise for drug discovery, exhibiting antioxidant and anticancer effects.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco.
| | - Abderrazak Idir
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Marouane Aherkou
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI Centre for Research and Innovation (CM6RI), Casablanca, Morocco
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Alin Ciobică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, Iasi, 700506, Romania.
- Center of Biomedical Research, Iasi Branch, Romanian Academy, Teodor Codrescu 2, Iasi, 700481, Romania.
- Academy of Romanian Scientists, 3 Ilfov, Bucharest, 050044, Romania.
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat, 26000, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km from Settat, Settat, 26400, Morocco
| | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| | - Zyad Abdelmajid
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Vasile Burlui
- "Ioan Haulica Institute", Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Gabriela Calin
- "Ioan Haulica Institute", Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | | | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| |
Collapse
|
37
|
Liu L, de Leeuw K, van Goor H, Westra J. The Role of Antioxidant Transcription Factor Nrf2 and Its Activating Compounds in Systemic Lupus Erythematosus. Antioxidants (Basel) 2024; 13:1224. [PMID: 39456477 PMCID: PMC11504041 DOI: 10.3390/antiox13101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease in which kidney involvement, so-called lupus nephritis (LN), is common and one of the most severe manifestations. Oxidative stress (OS) may play a role in the pathogenesis of LN through the exacerbation of inflammation and immune cell dysfunction/dysregulation. Nuclear factor erythroid 2-related factor 2 (Nrf2), also known as nuclear factor erythroid-derived 2-like 2, is a transcription factor that in humans is encoded by the NFE2L2 gene and is regarded as a central regulator of the antioxidative response. Nrf2-activating compounds have been shown to alleviate oxidative stress in cells and tissues of lupus-prone mice. Although the precise mechanisms of Nrf2 activation on the immune system in SLE remain to be elucidated, Nrf2-activating compounds are considered novel therapeutical options to suppress OS and thereby might alleviate disease activity in SLE, especially in LN. This review therefore summarizes the role of the Nrf2 signaling pathway in the pathogenesis of SLE with LN and describes compounds modulating this pathway as potential additional clinical interventions.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
38
|
Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative Stress-induced Hormonal Disruption in Male Reproduction. Reprod Sci 2024; 31:2943-2956. [PMID: 39090335 DOI: 10.1007/s43032-024-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria.
| | - Marvellous A Acho
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Babatunde Michael Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Tomilola Debby Olaolu
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Ifunaya Mgbojikwe
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria.
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria
| |
Collapse
|
39
|
Lim JC, Jiang L, Lust NG, Donaldson PJ. Minimizing Oxidative Stress in the Lens: Alternative Measures for Elevating Glutathione in the Lens to Protect against Cataract. Antioxidants (Basel) 2024; 13:1193. [PMID: 39456447 PMCID: PMC11505578 DOI: 10.3390/antiox13101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress plays a major role in the formation of the cataract that is the result of advancing age, diabetes or which follows vitrectomy surgery. Glutathione (GSH) is the principal antioxidant in the lens, and so supplementation with GSH would seem like an intuitive strategy to counteract oxidative stress there. However, the delivery of glutathione to the lens is fraught with difficulties, including the limited bioavailability of GSH caused by its rapid degradation, anatomical barriers of the anterior eye that result in insufficient delivery of GSH to the lens, and intracellular barriers within the lens that limit delivery of GSH to its different regions. Hence, more attention should be focused on alternative methods by which to enhance GSH levels in the lens. In this review, we focus on the following three strategies, which utilize the natural molecular machinery of the lens to enhance GSH and/or antioxidant potential in its different regions: the NRF2 pathway, which regulates the transcription of genes involved in GSH homeostasis; the use of lipid permeable cysteine-based analogues to increase the availability of cysteine for GSH synthesis; and the upregulation of the lens's internal microcirculation system, which is a circulating current of Na+ ions that drives water transport in the lens and with it the potential delivery of cysteine or GSH. The first two strategies have the potential to restore GSH levels in the epithelium and cortex, while the ability to harness the lens's internal microcirculation system offers the exciting potential to deliver and elevate antioxidant levels in its nucleus. This is an important distinction, as the damage phenotypes for age-related (nuclear) and diabetic (cortical) cataract indicate that antioxidant delivery must be targeted to different regions of the lens in order to alleviate oxidative stress. Given our increasing aging and diabetic populations it has become increasingly important to consider how the natural machinery of the lens can be utilized to restore GSH levels in its different regions and to afford protection from cataract.
Collapse
Affiliation(s)
- Julie C. Lim
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Lanpeng Jiang
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Natasha G. Lust
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Paul J. Donaldson
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
40
|
Israni DK, Raghani NR, Soni J, Shah M, Prajapati BG, Chorawala MR, Mangmool S, Singh S, Chittasupho C. Harnessing Cannabis sativa Oil for Enhanced Skin Wound Healing: The Role of Reactive Oxygen Species Regulation. Pharmaceutics 2024; 16:1277. [PMID: 39458608 PMCID: PMC11510192 DOI: 10.3390/pharmaceutics16101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa emerges as a noteworthy candidate for its medicinal potential, particularly in wound healing. This review article explores the efficacy of cannabis oil in reducing reactive oxygen species (ROS) during the healing of acute and chronic wounds, comparing it to the standard treatments. ROS, produced from various internal and external sources, play a crucial role in wound development by causing cell and tissue damage. Understanding the role of ROS on skin wounds is essential, as they act both as signaling molecules and contributors to oxidative damage. Cannabis oil, recognized for its antioxidant properties, may help mitigate oxidative damage by scavenging ROS and upregulating antioxidative mechanisms, potentially enhancing wound healing. This review emphasizes ongoing research and the future potential of cannabis oil in dermatological treatments, highlighted through clinical studies and patent updates. Despite its promising benefits, optimizing cannabis oil formulations for therapeutic applications remains a challenge, underscoring the need for further research to realize its medicinal capabilities in wounds.
Collapse
Affiliation(s)
- Dipa K. Israni
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Neha R. Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India;
| | - Jhanvi Soni
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University, Waghodia, Vadodara 391760, Gujarat, India;
| | - Mansi Shah
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Mehul R. Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India;
| | | | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
41
|
Liu D, Yue Y, Ping L, Sun C, Zheng T, Cheng Y, Huo G, Li B. Lactobacillus delbrueckii subsp. bulgaricus 1.0207 Exopolysaccharides Attenuate Hydrogen Peroxide-Induced Oxidative Stress Damage in IPEC-J2 Cells through the Keap1/Nrf2 Pathway. Antioxidants (Basel) 2024; 13:1150. [PMID: 39334809 PMCID: PMC11429245 DOI: 10.3390/antiox13091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is one of the most commonly employed Lactobacillus in the food industry. Exopolysaccharides (EPS) of Lactobacillus, which are known to exhibit probiotic properties, are secondary metabolites produced during the growth of Lactobacillus. This study identified the structure of the EPS produced by L. bulgaricus 1.0207 and investigated the mitigation of L. bulgaricus 1.0207 EPS on H2O2-induced oxidative stress in IPEC-J2 cells. L. bulgaricus 1.0207 EPS consisted of glucose and galactose and possessed a molecular weight of 4.06 × 104 Da. L. bulgaricus 1.0207 EPS exhibited notable scavenging capacity against DPPH, hydroxyl radicals, superoxide anions, and ABTS radicals. Additionally, L. bulgaricus 1.0207 EPS enhanced cell proliferation, reduced intracellular reactive oxygen species (ROS) accumulation, increased activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC) elevated the relative expression of CAT, SOD, HO-1, NQO1, ZO-1, and Occludin genes. Moreover, L. bulgaricus 1.0207 EPS improved the expression of Nrf2, pNrf2, pNrf2/Nrf2, and Bcl-2 proteins, while decreasing the expression of Keap1, Caspase3, and Bax proteins, with the best effect at a concentration of 100 μg/mL. L. bulgaricus 1.0207 EPS mitigated H2O2-induced oxidative stress injury in IPEC-J2 cells by activating the Keap1/Nrf2 pathway. Meanwhile, L. bulgaricus 1.0207 EPS exhibited the potential to decrease apoptosis and restore the integrity of the gut barrier. The findings establish a theoretical foundation for the development and application of L.bulgaricus 1.0207 and its EPS.
Collapse
Affiliation(s)
- Deyu Liu
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yingxue Yue
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Ping
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Cuicui Sun
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Zheng
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yang Cheng
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
42
|
Galli FS, Mollari M, Tassinari V, Alimonti C, Ubaldi A, Cuva C, Marcoccia D. Overview of human health effects related to glyphosate exposure. FRONTIERS IN TOXICOLOGY 2024; 6:1474792. [PMID: 39359637 PMCID: PMC11445186 DOI: 10.3389/ftox.2024.1474792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Glyphosate is a chemical compound derived from glycine, marketed as a broad-spectrum herbicide, and represents one of the most widely used pesticides in the world. For a long time, it was assumed that glyphosate was harmless, either due to its selective enzymatic acting method on plants, and because commercial formulations were believed to contain only inert chemicals. Glyphosate is widely spread in the environment, the general population is daily exposed to it via different routes, including the consumption of both plant, and non-plant based foods. Glyphosate has been detected in high amounts in workers' urine, but has been detected likewise in bodily fluids, such as blood and maternal milk, and also in 60%-80% of general population, including children. Considering its massive presence, daily exposure to glyphosate could be considered a health risk for humans. Indeed, in 2015, the IARC (International Agency for Research on Cancer) classified glyphosate and its derivatives in Group 2A, as probable human carcinogens. In 2022, nevertheless, EFSA (European Food Safety Authority) stated that the available data did not provide sufficient evidence to prove the mutagenic/carcinogenic effects of glyphosate. Therefore, the European Commission (EC) decided to renew the approval of glyphosate for another 10 years. The purpose of this review is to examine the scientific literature, focusing on potential risks to human health arising from exposure to glyphosate, its metabolites and its commercial products (e.g., Roundup®), with particular regard to its mutagenic and carcinogenic potential and its effects as endocrine disrupter (ED) especially in the human reproductive system.
Collapse
Affiliation(s)
- Flavia Silvia Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Marta Mollari
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| |
Collapse
|
43
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
44
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
45
|
Sahin S, Cicek E, Kocaman BB, Sulu C, Ozkaya HM, Ozkara H, Konukoglu D, Kadioglu P. The Association Between Oxidative Stress and Sperm Parameters in Patients with Acromegaly. Exp Clin Endocrinol Diabetes 2024; 132:498-506. [PMID: 38942036 DOI: 10.1055/a-2329-2998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
OBJECTIVE Spermatozoa are susceptible to oxidative radicals when antioxidant defenses are inadequate. The extent to which oxidative radicals contribute to sperm damage in patients with acromegaly remains unclear. This study aimed to investigate and elucidate this relationship. METHODS The overall status of oxidants and antioxidants in both seminal plasma and serum of patients with acromegaly compared to a control group of healthy individuals was investigated. In addition, sperm parameters, including important measures such as growth hormone and insulin-like growth factor-1 concentrations. RESULTS Twenty-two patients with acromegaly with controlled disease and 14 healthy controls were included. The total oxidant status was significantly higher in the semen samples of the patients with acromegaly. A negative correlation was found between sperm total oxidant status and total sperm count and sperm concentration. Similarly, a negative correlation was found between the total sperm count and the sperm oxidative stress index. In individuals diagnosed with acromegaly, there was a statistically significant increase in sperm growth hormone levels. Conversely, the level of insulin-like growth factor 1 was significantly increased in the sperm of the control group, which consisted of healthy individuals. The correlation analysis revealed a significant relationship between venous total oxidant status and growth hormone levels in semen. CONCLUSION The elevated levels of reactive oxygen radicals in individuals with acromegaly suggest a possible link between oxidative stress and its effects on semen quality.
Collapse
Affiliation(s)
- Serdar Sahin
- Department of Endocrinology and Metabolic Diseases, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Ebru Cicek
- Department of Endocrinology and Metabolic Diseases, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Banu Betül Kocaman
- Department of Endocrinology and Metabolic Diseases, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Cem Sulu
- Department of Endocrinology and Metabolic Diseases, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Hande Mefkure Ozkaya
- Department of Endocrinology and Metabolic Diseases, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Hamdi Ozkara
- Department of Urology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Dildar Konukoglu
- Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Pinar Kadioglu
- Department of Endocrinology and Metabolic Diseases, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| |
Collapse
|
46
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
47
|
Yoon DS, Kim JS, Hong MS, Byeon E, Sayed AEDH, Park HG, Lee JS, Lee MC. Effects of bisphenol A on reproduction, oxidative stress, and lipid regulation in the marine rotifer Brachionus plicatilis. MARINE POLLUTION BULLETIN 2024; 205:116553. [PMID: 38880034 DOI: 10.1016/j.marpolbul.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
This study reports the effects of bisphenol A (BPA) on the rotifer Brachionus plicatilis, focusing on growth performance, reproductive output, oxidative stress responses, and lipid metabolism genes. High BPA levels disrupted peak daily offspring production and led to oxidative stress and increased superoxide dismutase and catalase activity. The research identified distinctive monoacylglycerol O-acyltransferase (MGAT) and diacylglycerol O-acyltransferase (DGAT) genes in B. plicatilis, B. rotundiformis, and B. koreanus, enhancing understanding of lipid metabolism in these species. BPA exposure significantly altered MGAT and DGAT expression, and feeding status affected these regulatory patterns. When food was unavailable, BPA reduced DGAT2 and MGAT2a expression. However, under feeding conditions, DGAT2 and MGAT1 levels increased, indicating that nutritional status and BPA exposure interact to affect gene expression.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ji-Su Kim
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Mi-Song Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Min-Chul Lee
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea.
| |
Collapse
|
48
|
Bas TG. Bioactivity and Bioavailability of Carotenoids Applied in Human Health: Technological Advances and Innovation. Int J Mol Sci 2024; 25:7603. [PMID: 39062844 PMCID: PMC11277215 DOI: 10.3390/ijms25147603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This article presents a groundbreaking perspective on carotenoids, focusing on their innovative applications and transformative potential in human health and medicine. Research jointly delves deeper into the bioactivity and bioavailability of carotenoids, revealing therapeutic uses and technological advances that have the potential to revolutionize medical treatments. We explore pioneering therapeutic applications in which carotenoids are used to treat chronic diseases such as cancer, cardiovascular disease, and age-related macular degeneration, offering novel protective mechanisms and innovative therapeutic benefits. Our study also shows cutting-edge technological innovations in carotenoid extraction and bioavailability, including the development of supramolecular carriers and advanced nanotechnology, which dramatically improve the absorption and efficacy of these compounds. These technological advances not only ensure consistent quality but also tailor carotenoid therapies to each patient's health needs, paving the way for personalized medicine. By integrating the latest scientific discoveries and innovative techniques, this research provides a prospective perspective on the clinical applications of carotenoids, establishing a new benchmark for future studies in this field. Our findings underscore the importance of optimizing carotenoid extraction, administration, bioactivity, and bioavailability methods to develop more effective, targeted, and personalized treatments, thus offering visionary insight into their potential in modern medical practices.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Catolica del Norte, Coquimbo 1780000, Chile
| |
Collapse
|
49
|
Kozioł Ł, Knap M, Sutor-Świeży K, Górska R, Dziedzic E, Bieniasz M, Mielczarek P, Popenda Ł, Tyszka-Czochara M, Wybraniec S. Identification and reactivity of pigments in prominent vegetable leaves of Basella alba L. var. 'Rubra' (Malabar spinach). Food Chem 2024; 445:138714. [PMID: 38394904 DOI: 10.1016/j.foodchem.2024.138714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The unique profiles of betacyanins as well as their stability and antioxidant activity in purple leaf extracts of the fast-growing, soft-stemmed vine Basella alba L. var. 'Rubra', known as Malabar spinach, are partly characterized for the first time. The distribution of gomphrenin and its acylated derivatives in the leaves is completely different from the profiles of the pigments in the fruits. The most abundant acylated pigment in leaves (24%) turned out 6'-O-E-sinapoyl-gomphrenin (gandolin), however, the most significant difference in the pigment profiles is a presence of two novel pigments tentatively identified as highly abundant 6'-O-(3,4-dimethoxy-E-cinnamoyl)-gomphrenin and 6'-O-(3,4,5-trimethoxy-E-cinnamoyl)-gomphrenin as well as their isoforms. Significant degradation of the pigments in the fruit extracts under the impact of selected metal cations and UV-Vis irradiation as well as high protective activity of the leaf extract matrix were observed. Partial chromatographic purification of the leaf extract resulted in an increase of the pigment concentration which was correlated positively with the increased antioxidant activity of obtained fractions.
Collapse
Affiliation(s)
- Łukasz Kozioł
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Mateusz Knap
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Katarzyna Sutor-Świeży
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Renata Górska
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Ewa Dziedzic
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Monika Bieniasz
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow, Poland; Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Krakow, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | | | - Sławomir Wybraniec
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland.
| |
Collapse
|
50
|
Kagemichi N, Umemura M, Ishikawa S, Iida Y, Takayasu S, Nagasako A, Nakakaji R, Akimoto T, Ohtake M, Horinouchi T, Yamamoto T, Ishikawa Y. Cytotoxic effects of the cigarette smoke extract of heated tobacco products on human oral squamous cell carcinoma: the role of reactive oxygen species and CaMKK2. J Physiol Sci 2024; 74:35. [PMID: 38918702 PMCID: PMC11197199 DOI: 10.1186/s12576-024-00928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The increasing prevalence of heated tobacco products (HTPs) has heightened concerns regarding their potential health risks. Previous studies have demonstrated the toxicity of cigarette smoke extract (CSE) from traditional tobacco's mainstream smoke, even after the removal of nicotine and tar. Our study aimed to investigate the cytotoxicity of CSE derived from HTPs and traditional tobacco, with a particular focus on the role of reactive oxygen species (ROS) and intracellular Ca2+. METHODS A human oral squamous cell carcinoma (OSCC) cell line, HSC-3 was utilized. To prepare CSE, aerosols from HTPs (IQOS) and traditional tobacco products (1R6F reference cigarette) were collected into cell culture media. A cell viability assay, apoptosis assay, western blotting, and Fluo-4 assay were conducted. Changes in ROS levels were measured using electron spin resonance spectroscopy and the high-sensitivity 2',7'-dichlorofluorescein diacetate assay. We performed a knockdown of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) by shRNA lentivirus in OSCC cells. RESULTS CSE from both HTPs and traditional tobacco exhibited cytotoxic effects in OSCC cells. Exposure to CSE from both sources led to an increase in intracellular Ca2+ concentration and induced p38 phosphorylation. Additionally, these extracts prompted cell apoptosis and heightened ROS levels. N-acetylcysteine (NAC) mitigated the cytotoxic effects and p38 phosphorylation. Furthermore, the knockdown of CaMKK2 in HSC-3 cells reduced cytotoxicity, ROS production, and p38 phosphorylation in response to CSE. CONCLUSION Our findings suggest that the CSE from both HTPs and traditional tobacco induce cytotoxicity. This toxicity is mediated by ROS, which are regulated through Ca2+ signaling and CaMKK2 pathways.
Collapse
Affiliation(s)
- Nagao Kagemichi
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| | - Soichiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yu Iida
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shota Takayasu
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akane Nagasako
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Taisuke Akimoto
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Makoto Ohtake
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takahiro Horinouchi
- Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tetsuya Yamamoto
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|