1
|
Csernus B, Pesti‐Asbóth G, Remenyik J, Biró S, Babinszky L, Stündl L, Oláh J, Vass N, Czeglédi L. Impact of Selected Natural Bioactive Substances on Immune Response and Tight Junction Proteins in Broiler Chickens. Vet Med Sci 2025; 11:e70175. [PMID: 40019349 PMCID: PMC11869566 DOI: 10.1002/vms3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 03/01/2025] Open
Abstract
This study was conducted to examine the effect of dietary natural compounds, such as β-glucan, carotenoids, oligosaccharides and anthocyanins, on immune response and tight junction proteins in broiler chickens. A total of 900 one-day-old chickens were allocated to five treatments in three floor pens (replicates) of 60 broilers per pen. Chickens were fed five diets: a control (basal) diet, a diet supplemented with β-glucan at 0.05%, or diets supplemented with carotenoids, oligosaccharides or anthocyanins at 0.5% of each compound. Male broilers were randomly selected for sample collections. On Day 25, plasma samples were collected from the brachial vein. On Day 26, six broilers were intraperitoneally injected with 2 mg of lipopolysaccharide per kg of body weight. Twelve hours later (Day 27), blood and ileum samples were collected to determine immune parameters and tight junction proteins using ELISA assays. The results showed that anthocyanin supplementation reduced the level of interleukin-1β compared to the lipopolysaccharide-injected control group (p = 0.047), which suggests that anthocyanin could partly alleviate the inflammation. Carotenoids reached a lower level of interleukin-6 compared to the β-glucan treatment (p = 0.0466). β-Glucan (p = 0.0382) and oligosaccharides (p = 0.0449) increased the level of plasma immunoglobulin G compared to the challenged control group, which may indicate an enhanced humoral immunity. Furthermore, β-glucan (except for occludin 2), carotenoids, oligosaccharides and anthocyanins increased (p < 0.05) the levels of ileal zonula occludens-1, occludin 1 and occludin 2 compared to the lipopolysaccharide-challenged control chickens. This may suggest that all the bioactive substances improved the gut barrier function. The plasma levels of tight junction proteins show higher concentrations in lipopolysaccharide-challenged groups compared to the non-challenged groups (p < 0.05). This may refer to the tight junction disruption and appearance in circulation as a reflection of lipopolysaccharide exposure.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Georgina Pesti‐Asbóth
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Judit Remenyik
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - László Babinszky
- Department of Animal Nutrition Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - János Oláh
- Farm and Regional Research Institute of DebrecenUniversity of DebrecenDebrecenHungary
| | - Nóra Vass
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| |
Collapse
|
2
|
Ndunguru SF, Reda GK, Csernus B, Knop R, Gulyás G, Szabó C, Czeglédi L, Lendvai ÁZ. Embryonic methionine triggers post-natal developmental programming in Japanese quail. J Comp Physiol B 2024; 194:179-189. [PMID: 38520538 PMCID: PMC11070397 DOI: 10.1007/s00360-024-01542-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
Embryonic development is one of the most sensitive and critical stages when maternal effects may influence the offspring's phenotype. In birds and other oviparous species, embryonic development is confined to the eggs, therefore females must deposit resources into the eggs to prepare the offspring for the prevailing post-natal conditions. However, the mechanisms of such phenotypic adjustments remain poorly understood. We simulated a maternal nutritional transfer by injecting 1 mg of L-methionine solution into Japanese quail eggs before the onset of incubation. The increase in early methionine concentration in eggs activated the insulin/insulin-like signalling and mechanistic target of rapamycin (IIS/mTOR) signalling pathways and affected post-natal developmental trajectories. Chicks from methionine-supplemented eggs had higher expression of liver IGF1 and mTOR genes at hatching but were similar in size, and the phenotypic effects of increased growth became apparent only a week later and remained up to three weeks. Circulating levels of insulin-like growth factor-1 (IGF-1) and expression of ribosomal protein serine 6 kinase 1 (RPS6K1), the mTOR downstream effector, were elevated only three weeks after hatching. These results show that specific nutritional cues may have phenotypic programming effects by sequentially activating specific nutrient-sensing pathways and achieving transgenerational phenotypic plasticity.
Collapse
Affiliation(s)
- Sawadi F Ndunguru
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary.
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary.
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary.
| | - Gebrehaweria K Reda
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Renáta Knop
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary
| | - Gabriella Gulyás
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, 4032, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
3
|
Zapletal D, Dobšíková R, Šimek V, Kameník J, Ježek F. Growth performance, carcass composition, physico-chemical traits and amino acid profile of meat depending on wormwood ( Artemisia absinthium L.) dietary supplementation in broilers. Arch Anim Breed 2024; 67:1-12. [PMID: 39981197 PMCID: PMC11836911 DOI: 10.5194/aab-67-1-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/01/2023] [Indexed: 02/22/2025] Open
Abstract
The present study was conducted to determine the effect of dietary inclusion of the wormwood (Artemisia absinthium L.) meal on growth performance, carcass composition, physico-chemical traits and amino acid profile in meats of fattened broilers. In a completely randomised block design, a total of 288 female broilers that were 21 d old (Ross 308) were divided into four dietary groups and fed for 3 weeks: the control basal broiler diet (C), without any anticoccidial or wormwood herb (WH) supplementation, and the C diet plus 10 g (WW1 group), 50 g (WW5 group) or 100 g (WW10 group) of WH meal supplementation per kilogram of basal diet. At the end of the experiment (day 42), broilers were randomly selected for carcass composition and meat quality trait evaluation. In conclusion, the final live weight of chickens was not affected by diets with higher WH levels (P >0.05). For the entire experimental period, the feed conversion ratio raised with an increasing WH level in diets, showing the highest value in chickens of the WW10 group (P <0.01). Dietary supplementation with wormwood (WW) had no negative effects on the carcass composition or on the chemical and physical traits of meat quality assessed. By contrast, it can be assumed that WH dietary supplementation influenced, predominantly, proteosynthesis of chickens, resulting in alteration of amino acid profiles in meats, where especially increasing aspartic acid and valine contents (P <0.001) in the leg meat were found. Our findings indicate that the supplementation of 5 % WH to the diet showed favourable results for chicken performance. However, it is necessary to conduct further studies dealing with WH dietary effects on metabolism and heath control in chickens.
Collapse
Affiliation(s)
- David Zapletal
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Radka Dobšíková
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Vlastimil Šimek
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Josef Kameník
- Department of Animal Origin Food and Gastronomy Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - František Ježek
- Department of Animal Origin Food and Gastronomy Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| |
Collapse
|