1
|
Zhanghuang C, Wang H, Wang J, Li L, Li J, Hao Z, Zhang J, Liu L, Yan B. Chemotherapy and Heart-Specific Mortality in Elderly Men with Prostate Cancer: A Propensity Score Matching Analysis. PLoS One 2025; 20:e0318429. [PMID: 40215231 PMCID: PMC11990641 DOI: 10.1371/journal.pone.0318429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/15/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE Prostate cancer (PC) is the most common malignant tumour in men, and atherosclerotic cardiovascular disease (ASCVD) is the leading cause of non-cancer death in PC patients. The main purpose of this study was to investigate whether chemotherapy increases heart-specific mortality (HSM) in elderly patients with PC. METHODS Patient information was downloaded from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2018. We included all elderly patients with PC. The multivariate logistic regression model was used to explore the influencing factors of patients receiving chemotherapy. Confounders were excluded using a 1:1 proportional propensity score match, and a competing risk model and cumulative incidence plot were used to analyze HSM and other cause mortality (OCM) in patients who received chemotherapy versus those who did not. RESULTS A total of 135183 elderly prostate patients were enrolled in this study, of whom 1361 received chemotherapy. The multivariate logistic regression model showed that older patients were more likely to not receive chemotherapy, married patients were more likely to receive chemotherapy, and the higher the TNM stage and tumor histological grade, the more patients received chemotherapy. In the original cohort before unmatched, there was no significant difference in HSM between chemotherapy and non-chemotherapy patients (P = 0.27). After 1:1 matching, HSM was significantly higher in patients without chemotherapy than in patients with chemotherapy (HR 2.54; P =0.002). CONCLUSIONS Our results indicate that HSM is significantly higher in patients without chemotherapy than in those with chemotherapy. Therefore, although chemotherapy can lead to cardiotoxicity in elderly patients with PC, chemotherapy does not increase the HSM of patients and will benefit patients in the long-term survival.
Collapse
Affiliation(s)
- Chenghao Zhanghuang
- Department of Urology, Kunming Children’s Hospital (Children’s Hospital affiliated to Kunming Medical University), Kunming, PR China,
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming, PR China,
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, PR China,
- Children’s Hospital of Chongqing Medical University, Chongqing, PR China,
- Yunnan Key Laboratory of Children’s Major Disease Research, Kunming Children’s Hospital (Children’s Hospital affiliated to Kunming Medical University), Kunming, PR China,
| | - Huake Wang
- Department of Urology, Kunming Children’s Hospital (Children’s Hospital affiliated to Kunming Medical University), Kunming, PR China,
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming, PR China,
| | - Jinkui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, PR China,
- Children’s Hospital of Chongqing Medical University, Chongqing, PR China,
| | - Li Li
- Department of Science and Education, Kunming Children’s Hospital (Children’s Hospital affiliated to Kunming Medical University), Kunming, PR China,
| | - Jinrong Li
- Department of Urology, Kunming Children’s Hospital (Children’s Hospital affiliated to Kunming Medical University), Kunming, PR China,
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming, PR China,
| | - Zipeng Hao
- Department of Urology, Kunming Children’s Hospital (Children’s Hospital affiliated to Kunming Medical University), Kunming, PR China,
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming, PR China,
| | - Jiacheng Zhang
- Department of Urology, Kunming Children’s Hospital (Children’s Hospital affiliated to Kunming Medical University), Kunming, PR China,
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming, PR China,
| | - Ling Liu
- Department of Neonatal, Kunming Children’s Hospital (Children’s Hospital affiliated to Kunming Medical University), Kunming, PR China
| | - Bing Yan
- Department of Urology, Kunming Children’s Hospital (Children’s Hospital affiliated to Kunming Medical University), Kunming, PR China,
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming, PR China,
| |
Collapse
|
2
|
Hatami Zharabad S, Mohammadian M, Zohdi Aghdam R, Hassanzadeh Dizaj M, Behrouzkia Z. Increasing the radiation-induced cytotoxicity by silver nanoparticles and docetaxel in prostate cancer cells. Mol Biol Rep 2024; 51:633. [PMID: 38724835 DOI: 10.1007/s11033-024-09506-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/02/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.
Collapse
Affiliation(s)
- Shokrieh Hatami Zharabad
- Medical Physics Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahshid Mohammadian
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Zohdi Aghdam
- Medical Physics Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohsen Hassanzadeh Dizaj
- Medical Physics Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zhaleh Behrouzkia
- Medical Physics Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Soares S, Aires F, Monteiro A, Pinto G, Faria I, Sales G, Correa-Duarte MA, Guerreiro S, Fernandes R. Radiotherapy Metastatic Prostate Cancer Cell Lines Treated with Gold Nanorods Modulate miRNA Signatures. Int J Mol Sci 2024; 25:2754. [PMID: 38474003 DOI: 10.3390/ijms25052754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNA (miRNA) modulation has been identified as a promising strategy for improving the response of human prostate cancer (PCa) to radiotherapy (RT). Studies have shown that mimics or inhibitors of miRNAs could modulate the sensitivity of PCa cells to RT. In addition, pegylated gold nanoparticles have been studied as a therapeutic approach to treat PCa cells and/or vehicles for carrying miRNAs to the inside of cells. Therefore, we evaluated the capacity of hypofractionated RT and pegylated gold nanorods (AuNPr-PEG) to modulate the miRNA signature on PCa cells. Thus, RT-qPCR was used to analyze miRNA-95, miRNA-106-5p, miRNA-145-5p, and miRNA-541-3p on three human metastatic prostate cell lines (PC3, DU145, and LNCaP) and one human prostate epithelial cell line (HprEpiC, a non-tumor cell line) with and without treatment. Our results showed that miRNA expression levels depend on cell type and the treatment combination applied using RT and AuNPr-PEG. In addition, cells pre-treated with AuNPr-PEG and submitted to 2.5 Gy per day for 3 days decreased the expression levels of miRNA-95, miRNA-106, miRNA-145, and miRNA-541-3p. In conclusion, PCa patients submitted to hypofractionated RT could receive personalized treatment based on their metastatic cellular miRNA signature, and AuNPr-PEG could be used to increase metastatic cell radiosensitivity.
Collapse
Affiliation(s)
- Sílvia Soares
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- Faculty of Chemistry, University of Vigo, 36310 Vigo, Spain
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Fátima Aires
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Gabriela Pinto
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Isabel Faria
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
| | - Goreti Sales
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
| | - Miguel A Correa-Duarte
- CINBIO, University of Vigo, 36310 Vigo, Spain
- Southern Galicia Institute of Health Research (IISGS), Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Madrid, Spain
| | - Susana Guerreiro
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, 4200-465 Porto, Portugal
- Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Rúben Fernandes
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- UFP@RISE, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| |
Collapse
|
4
|
Lipid-Nanoparticle-Mediated Delivery of Docetaxel Prodrug for Exploiting Full Potential of Gold Nanoparticles in the Treatment of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14246137. [PMID: 36551622 PMCID: PMC9776798 DOI: 10.3390/cancers14246137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Current chemoradiation therapy suffers from normal tissue toxicity. Thus, we are proposing incorporating gold nanoparticles (GNPs) and docetaxel (DTX), as they have shown very promising synergetic radiosensitization effects. Here, we explored the effect of a DTX prodrug encapsulated in lipid nanoparticles (LNPDTX-P) on GNP uptake in pancreatic cancer models in vitro and in vivo. For the in vitro experiment, a pancreatic cancer cell line, MIA PaCa-2, was cultured and dosed with 1 nM GNPs and 45 nM free DTX or an equivalent dose of LNPDTX-P. For the in vivo experiment, MIA PaCa-2 cells were implanted subcutaneously in NRG mice, and the mice were dosed with 2 mg/kg of GNPs and 6 mg/kg of DTX or an equivalent dose of LNPDTX-P. The results show that LNPDTX-P-treated tumour samples had double the amount GNPs compared to control samples, both in vitro and in vivo. The results are very promising, as LNPDTX-P have superior targeting of tumour tissues compared to free DTX due to their nanosize and their ability to be functionalized. Because of their minimal toxicity to normal tissues, both GNPs and LNPDTX-P could be ideal radiosensitization candidates in radiotherapy and would produce very promising synergistic therapeutic outcomes.
Collapse
|
5
|
Bromma K, Dos Santos N, Barta I, Alexander A, Beckham W, Krishnan S, Chithrani DB. Enhancing nanoparticle accumulation in two dimensional, three dimensional, and xenograft mouse cancer cell models in the presence of docetaxel. Sci Rep 2022; 12:13508. [PMID: 35931743 PMCID: PMC9356051 DOI: 10.1038/s41598-022-17752-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Recent clinical trials show docetaxel (DTX), given in conjunction with radiation therapy (RT) and androgen suppression, improves survival in high-risk prostate cancer. Addition of gold nanoparticles (GNPs) to this current DTX/RT protocol is expected to further improve therapeutic benefits remarkably. However, the foundation for the triple combination of RT, DTX, and GNPs must be elucidated to ensure quicker facilitation to the clinic. In this study, we explored the use of low concentrations of DTX combined with GNPs in two prostate cancer cell lines in a two-dimensional monolayer, a three-dimensional spheroid, and a mouse xenograft model. When used together, DTX and GNPs induced a nearly identical relative increase in uptake of gold in both the spheroid model and the mouse xenograft, which saw a 130% and 126% increase respectively after 24 h, showcasing the benefit of using spheroids as an in vitro model to better optimize in vivo experiments. Further, the benefits of using low concentrations of DTX combined with GNPs extended for over 72 h, allowing for less frequency in dosing when translating to the clinic. Overall, these results highlight the benefits of using DTX combined with GNPs and lays the groundwork for the translation of the triple combination of RT, GNPs, and DTX to the clinic.
Collapse
Affiliation(s)
- Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Nancy Dos Santos
- British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Ingrid Barta
- Animal Care Services, University of British Columbia, Vancouver, BC, Canada
| | - Abraham Alexander
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- British Columbia Cancer, Victoria, BC, Canada
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Devika B Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.
- British Columbia Cancer, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
6
|
Zhou K, Wei Y, Li X, Yang X. MiR-223-3p targets FOXO3a to inhibit radiosensitivity in prostate cancer by activating glycolysis. Life Sci 2021; 282:119798. [PMID: 34237309 DOI: 10.1016/j.lfs.2021.119798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/13/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023]
Abstract
AIMS The incidence and detection rate of prostate cancer in China have been increasing in recent years. Radiotherapy is the ideal treatment for non-metastatic prostate cancer (PCa), but the effectiveness of radiotherapy is greatly discounted due to radio resistance. Therefore, relieving the radiotherapy resistance of PCa is key to improve the clinical efficacy of PCA. MAIN METHODS Cell proliferation was estimated using the MTT and clone formation assays. Cell apoptosis was estimated using the Annexin V-FITC/propidium iodide (PI) staining assay. Glucose uptake and lactose and ATP production were used to detect glycolysis. KEY FINDINGS miR-223-3p was significantly upregulated in clinically collected urine samples and PCa cells with low radiosensitivity. Enhancing miR-223-3p reduced radiosensitivity further, while inhibiting miR-223-3p improved the radiosensitivity of PC3 and LNCaP cells. Importantly, miR-223-3p regulated radiosensitivity by enhancing cell glycolysis. FOXO3a was a key target of miRNA-223-3p regulating glycolysis and radiosensitivity. Overexpression of FOXO3a abated the glycolysis level and alleviated the radioresistance caused by enhancing miR-223-3p to a certain extent. SIGNIFICANCE This is novel research on the role of miR-223-3p in promoting radiotherapy resistance of PCa cells by activating glycolysis. This approach provides a new perspective and ideas for alleviating radiotherapy resistance of PCa cells.
Collapse
Affiliation(s)
- Keqin Zhou
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China; Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xurui Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xin Yang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
7
|
Clifford RE, Gerrard AD, Fok M, Vimalachandran D. Metformin as a radiosensitiser for pelvic malignancy: A systematic review of the literature. Eur J Surg Oncol 2020; 47:1252-1257. [PMID: 33358075 DOI: 10.1016/j.ejso.2020.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The treatment of pelvic malignancies has continued to improve over recent years, with neoadjuvant radiotherapy often considered the gold standard to downstage disease. Radiosensitisers are routinely employed in an attempt to improve response of cancers to radiotherapy. Previous preclinical evidence has suggested a role for metformin, a commonly used drug for type 2 diabetes. METHOD A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string 'Metformin' AND ('Radiosensitivity' OR 'radiosensitising' OR 'radiosensitising'). Additional papers were detected by scanning the references of relevant papers. Data were extracted from each study by two authors onto a dedicated proforma. The review was registered on the PROSPERO database (ID: CRD42020199066). RESULTS A total of 242 papers were identified, 11 of which were included in this review; an additional 5 papers were obtained from reference searches. Metformin has been demonstrated to reduce cell-viability post-radiotherapy in both rectal and prostate cancer cell lines, with an enhanced effect in tumours with a p53 mutation and increased apoptosis post-radiotherapy for cervical cancer. Clinical trials demonstrate improved tumour and nodal downstaging and pCR rates for rectal cancer using metformin as a radiosensitiser. CONCLUSION With an increasing understanding of the underlying mechanism of the effects on metformin prospective studies are required to assess the effect of routine use on cancer related outcomes. Progressive future studies may be better served by the use of predictive biomarker guided treatment to enable identification of the appropriate cohort to target.
Collapse
Affiliation(s)
- R E Clifford
- Institute of Cancer Medicine, University of Liverpool, UK.
| | - A D Gerrard
- The Countess of Chester Hospital NHS Foundation Trust, Chester, UK
| | - M Fok
- Institute of Cancer Medicine, University of Liverpool, UK
| | - D Vimalachandran
- The Countess of Chester Hospital NHS Foundation Trust, Chester, UK
| |
Collapse
|
8
|
Philippou Y, Sjoberg HT, Murphy E, Alyacoubi S, Jones KI, Gordon-Weeks AN, Phyu S, Parkes EE, Gillies McKenna W, Lamb AD, Gileadi U, Cerundolo V, Scheiblin DA, Lockett SJ, Wink DA, Mills IG, Hamdy FC, Muschel RJ, Bryant RJ. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br J Cancer 2020; 123:1089-1100. [PMID: 32641865 PMCID: PMC7525450 DOI: 10.1038/s41416-020-0956-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Radiotherapy enhances innate and adaptive anti-tumour immunity. It is unclear whether this effect may be harnessed by combining immunotherapy with radiotherapy fractions used to treat prostate cancer. We investigated tumour immune microenvironment responses of pre-clinical prostate cancer models to radiotherapy. Having defined this landscape, we tested whether radiotherapy-induced tumour growth delay could be enhanced with anti-PD-L1. METHODS Hypofractionated radiotherapy was delivered to TRAMP-C1 and MyC-CaP flank allografts. Tumour growth delay, tumour immune microenvironment flow-cytometry, and immune gene expression were analysed. TRAMP-C1 allografts were then treated with 3 × 5 Gy ± anti-PD-L1. RESULTS 3 × 5 Gy caused tumour growth delay in TRAMP-C1 and MyC-CaP. Tumour immune microenvironment changes in TRAMP-C1 at 7 days post-radiotherapy included increased tumour-associated macrophages and dendritic cells and upregulation of PD-1/PD-L1, CD8+ T-cell, dendritic cell, and regulatory T-cell genes. At tumour regrowth post-3 × 5 Gy the tumour immune microenvironment flow-cytometry was similar to control tumours, however CD8+, natural killer and dendritic cell gene transcripts were reduced. PD-L1 inhibition plus 3 × 5 Gy in TRAMP-C1 did not enhance tumour growth delay versus monotherapy. CONCLUSION 3 × 5 Gy hypofractionated radiotherapy can result in tumour growth delay and immune cell changes in allograft prostate cancer models. Adjuncts beyond immunomodulation may be necessary to improve the radiotherapy-induced anti-tumour response.
Collapse
Affiliation(s)
| | - Hanna T Sjoberg
- Department of Oncology, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Emma Murphy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Said Alyacoubi
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Keaton I Jones
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Su Phyu
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David A Scheiblin
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Department of Oncology, University of Oxford, Oxford, UK
| | - Richard J Bryant
- Department of Oncology, University of Oxford, Oxford, UK.
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Philippou Y, Sjoberg H, Lamb AD, Camilleri P, Bryant RJ. Harnessing the potential of multimodal radiotherapy in prostate cancer. Nat Rev Urol 2020; 17:321-338. [PMID: 32358562 DOI: 10.1038/s41585-020-0310-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Radiotherapy in combination with androgen deprivation therapy (ADT) is a standard treatment option for men with localized and locally advanced prostate cancer. However, emerging clinical evidence suggests that radiotherapy can be incorporated into multimodality therapy regimens beyond ADT, in combinations that include chemotherapy, radiosensitizing agents, immunotherapy and surgery for the treatment of men with localized and locally advanced prostate cancer, and those with oligometastatic disease, in whom the low metastatic burden in particular might be treatable with these combinations. This multimodal approach is increasingly recognized as offering considerable clinical benefit, such as increased antitumour effects and improved survival. Thus, radiotherapy is becoming a key component of multimodal therapy for many stages of prostate cancer, particularly oligometastatic disease.
Collapse
Affiliation(s)
- Yiannis Philippou
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Hanna Sjoberg
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Philip Camilleri
- Oxford Department of Clinical Oncology, Churchill Hospital Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Headington, Oxford, UK
| | - Richard J Bryant
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK.
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
10
|
Shang M, Sun X, Guo L, Shi D, Liang P, Meng D, Zhou X, Liu X, Zhao Y, Li J. pH- and Ultrasound-Responsive Paclitaxel-Loaded Carboxymethyl Chitosan Nanodroplets for Combined Imaging and Synergistic Chemoradiotherapy. Int J Nanomedicine 2020; 15:537-552. [PMID: 32021193 PMCID: PMC6988588 DOI: 10.2147/ijn.s233669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
Background Synergistic chemoradiotherapy (CRT) has become a primary effective curative approach for many solid cancers. However, CRT is still associated with several obstacles, including the increases in side effects and systemic toxicity. Incorporating nanocarriers into CRT is a new and exciting approach to solve these obstacles. The purpose of the present study was to design a unique pH- and ultrasound-responsive perfluoropentane-encapsulated, paclitaxel (PTX)-loaded carboxymethyl chitosan nanodroplets (NDs) for combined imaging and synergistic CRT. Materials and Methods The NDs were prepared by a homogenization/emulsion method. Their physicochemical properties, echogenicity and biocompatibility were evaluated. PTX-loaded NDs with a high loading efficiency and encapsulation efficiency were prepared and their pH-responsive drug release profile was determined by dialysis sack method. Then, PC3 cells were exposed to (1) PTX (4 μg/mL), (2) NDs (30 μg/mL), (3) PTX-loaded NDs (34 μg/mL), (4) RT (6 Gy), (5) RT (10 Gy), (6) combination of PTX (4 μg/mL), ultrasound (0.5 W/cm2, 30 s) and RT (6 Gy), (7) combination of NDs (30 μg/mL), ultrasound (0.5 W/cm2, 30 s) and RT (6Gy), (8) combination of PTX-loaded NDs (30 μg/mL), ultrasound (0.5 W/cm2, 30 s) and RT (6 Gy). 24 hrs later, CCK-8 assay, flow cytometry and migration assay were carried out to evaluate their therapeutic effects in CRT. Results The desired NDs were successfully prepared, which were with round, spherical shapes, relatively smooth surfaces, core-shell structures and uniform in sizes (<300 nm with PDI<0.3 when at pH≧6.0). The NDs exhibited good abilities in pH-dependent charge conversion, biocompatibility and ultrasound contrast echogenicity. The in vitro drug release from PTX-loaded NDs (the highest loading efficiency and encapsulation efficiency were 20.35% and 91.58%) was pH dependent and exhibited an initial burst followed by a sustained drug release. The results of the CCK-8 assay, flow cytometry and migration assay all showed PTX-loaded NDs combined ultrasound and RT significantly enhanced cell responses in CRT. Conclusion The pH- and ultrasound-responsive PTX-loaded NDs, which exhibited a high echogenicity, drug delivery ability and radiosensitization ability, could be a feasible option for combined imaging and novel enhancing approach in synergistic CRT.
Collapse
Affiliation(s)
- Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
11
|
Satari A, Amini SA, Raeisi E, Lemoigne Y, Heidarian E. Synergetic Impact of Combined 5-Fluorouracil and Rutin on Apoptosis in PC3 Cancer Cells through the Modulation of P53 Gene Expression. Adv Pharm Bull 2019; 9:462-469. [PMID: 31592435 PMCID: PMC6773939 DOI: 10.15171/apb.2019.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose: Prostate cancer is as far the most prevalent male cancer. Rutin (a glycoside from
quercetin flavonoid) displays antioxidant activity leading to cell apoptosis. Combined effects of
rutin with the widely used anti-cancer drug, 5-fluorouracil (5-FU), on prostate cancer cell line
(PC3) was investigated herein.
Methods: Different concentrations of combined 5-FU and rutin were applied to PC3 cells
compared to separate treatment for 48 hours. Cell viability, as well p53 gene expression
respectively were assessed by MTT assay and real-time quantitative polymerase chain reaction
(qPCR). Changes of Bcl-2 signal protein and apoptosis were determined using western blot
and flow cytometry procedures, respectively. Clonogenic assay was used to colony counts
assessment.
Results: 50% inhibitory concentration (IC50) of separate cell treatment with either rutin and
5-FU respectively were 900 μM and 3Mm, while combination index (CI) of combined 5-FU
/rutin application reached a level of synergistic effects (0.33). Combination of 5-FU/rutin
enhanced apoptosis and p53 gene expression in PC3 cells. PC3 cell colony counts and Bcl-2
signaling protein were decreased by 5-FU/rutin combination.
Conclusion: Synergistic effects of 5-FU/rutin combination on PC3 cells line enhanced apoptosis,
p53 gene expression, and down-regulation of Bcl-2 protein, compared to control separate
application. 5-FU/rutin combination does seem an interesting therapeutic pathway to be further
investigated.
Collapse
Affiliation(s)
- Atefeh Satari
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sayed Asadollah Amini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Raeisi
- Department of Medical Physics & Radiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
12
|
Xu Z, Zhang Y, Ding J, Hu W, Tan C, Wang M, Tang J, Xu Y. miR-17-3p Downregulates Mitochondrial Antioxidant Enzymes and Enhances the Radiosensitivity of Prostate Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:64-77. [PMID: 30240971 PMCID: PMC6143750 DOI: 10.1016/j.omtn.2018.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 01/17/2023]
Abstract
Radioresistance remains to be a major obstacle in the management of patients with advanced prostate cancer (PCa). We have identified a mature miR-17-3p processed from the 3' arm of precursor miR-17, which appeared to be able to inhibit three major antioxidant enzymes located in mitochondria, i.e., manganese superoxide dismutase (MnSOD), glutathione peroxidase 2 (Gpx2), and thioredoxin reductase 2 (TrxR2). Here we show that upregulation of miR-17-3p remarkably sensitized PCa cells to ionizing radiation (IR). Reductions of the three antioxidants led to increasing cellular reactive oxygen species (ROS) accumulation as well as declining mitochondrial respiration. The miR-17-3p-mediated dysfunction of mitochondrial antioxidants apparently sensitizing IR therapy was manifested in vitro and in vivo. Substantially, the miR-17-3p effect on suppression of the antioxidants can be efficiently eliminated or attenuated by transfecting with either an miR-17-3p inhibitor or each of the related antioxidant cDNA expression constructs. Overall, in addition to the insights into the functional assessments for the duplex of miR-17-5p and miR-17-3p, the present study highlights the rigorous evidence that demonstrated suppression of multiple mitochondrial antioxidants by a single microRNA (miRNA), thereby providing a promising approach to improve radiotherapy for advanced PCa by targeting mitochondrial function.
Collapse
Affiliation(s)
- Zhi Xu
- The Forth Clinical School of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China; Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, China
| | - Jiaji Ding
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, China
| | - Weizi Hu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, China
| | - Chunli Tan
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, China
| | - Mei Wang
- Department of General Surgery, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jinhai Tang
- The Forth Clinical School of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China; Department of General Surgery, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.
| | - Yong Xu
- The Forth Clinical School of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China; Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
13
|
Pathak RK, Basu U, Ahmad A, Sarkar S, Kumar A, Surnar B, Ansari S, Wilczek K, Ivan ME, Marples B, Kolishetti N, Dhar S. A designer bow-tie combination therapeutic platform: An approach to resistant cancer treatment by simultaneous delivery of cytotoxic and anti-inflammatory agents and radiation. Biomaterials 2018; 187:117-129. [DOI: 10.1016/j.biomaterials.2018.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
|
14
|
Luo Y, Li M, Zuo X, Basourakos SP, Zhang J, Zhao J, Han Y, Lin Y, Wang Y, Jiang Y, Lan L. β‑catenin nuclear translocation induced by HIF‑1α overexpression leads to the radioresistance of prostate cancer. Int J Oncol 2018; 52:1827-1840. [PMID: 29658569 PMCID: PMC5919719 DOI: 10.3892/ijo.2018.4368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 03/16/2018] [Indexed: 12/27/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF-1α remain unclear. β-catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF-1α and β-catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4-2B, were grouped as follows: Negative control (no treatment), HIF-1α overexpression group (transfected with HIF-1α overexpression plasmid) and β-catenin silenced group (transfected with HIF-1α plasmids and β-catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4-2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4-2B cells, transfection with HIF-1α overexpression plasmid led to an enhanced β-catenin nuclear translocation, while β-catenin silencing inhibited β-catenin nuclear translocation. The enhanced β-catenin nuclear translocation induced by HIF-1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non-homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF-1α overexpression enhanced β-catenin nuclear translocation, which led to the activation of the β-catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF-1α overexpression promotes the radioresistance of PCa cells.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Mingchuan Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Xuemei Zuo
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200233, P.R. China
| | - Spyridon P Basourakos
- Department of Genitourinary Medical Oncology, Cancer Medicine, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Jiao Zhang
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yili Han
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yunhua Lin
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yongxing Wang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Ling Lan
- Department of Endocrinology, Beijing Jishuitan Hospital, The 4th Medical College of Peking University, Beijing 100035, P.R. China
| |
Collapse
|
15
|
Paudyal P, Xie Q, Vaddi PK, Henry MD, Chen S. Inhibiting G protein βγ signaling blocks prostate cancer progression and enhances the efficacy of paclitaxel. Oncotarget 2018; 8:36067-36081. [PMID: 28415604 PMCID: PMC5482639 DOI: 10.18632/oncotarget.16428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/11/2017] [Indexed: 01/29/2023] Open
Abstract
Aberrant activation of G protein-coupled receptors (GPCRs) is implicated in prostate cancer progression, but targeting them has been challenging because multiple GPCRs are involved in cancer progression. In this study, we tested the effect of blocking signaling via a hub through which multiple GPCRs converge — the G-protein Gβγ subunits. Inhibiting Gβγ signaling in several castration-resistant prostate cancer cell lines (i.e. PC3, DU145 and 22Rv1), impaired cell growth and migration in vitro, and halted tumor growth and metastasis in nude mice. The blockade of Gβγ signaling also diminished prostate cancer stem cell-like activities, by reducing tumorsphere formation in vitro and tumor formation in a limiting dilution assay in nude mice. Furthermore, Gβγ blockade enhanced the sensitivity of prostate cancer cells to paclitaxel treatment, both in vitro and in vivo. Together, our results identify a novel function of Gβγ in regulating prostate cancer stem-cell-like activities, and demonstrate that targeting Gβγ signaling is an effective approach in blocking prostate cancer progression and augmenting response to chemotherapy.
Collapse
Affiliation(s)
- Prakash Paudyal
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qing Xie
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Prasanna Kuma Vaddi
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael D Henry
- The Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Urology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Songhai Chen
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Markovina S, Meeks MW, Badiyan S, Vetter J, Gay HA, Paradis A, Michalski J, Sandhu G. Superior metastasis-free survival for patients with high-risk prostate cancer treated with definitive radiation therapy compared to radical prostatectomy: A propensity score-matched analysis. Adv Radiat Oncol 2017; 3:190-196. [PMID: 29904744 PMCID: PMC6000029 DOI: 10.1016/j.adro.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/18/2017] [Accepted: 12/06/2017] [Indexed: 11/26/2022] Open
Abstract
Purpose For high-risk prostate cancer (HR-PCa) in men with a life expectancy of at least 10 years, the National Comprehensive Cancer Network recommends radiation therapy (RT) plus androgen deprivation therapy (ADT) with category 1 evidence or radical prostatectomy (RP) as an acceptable initial therapy. Randomized evidence regarding which therapy is optimal for disease control is lacking for men with HR-PCa. We performed a propensity-score-matched comparison of outcomes for men with localized HR-PCa treated with primary RT or RP. Methods and materials The medical records of patients with localized HR-PCa who were treated at our institution between 2002 and 2011 were reviewed. Patient and disease characteristics, treatment details, and outcomes were collected. A combination of nearest-neighbor propensity score matching on age, Adult Comorbidity Evaluation-27 comorbidity index, prostate-specific antigen, biopsy Gleason scores, and clinical T-stage as well as exact matching on prostate-specific antigen, biopsy Gleason scores, and clinical T-stage was performed. Outcomes were measured from diagnosis. Multivariate Cox proportional hazards regression was used to compare metastasis-free and overall survival. Results A total of 246 patients were identified with 62 propensity-score-matched pairs. ADT was administered to 6.5% and 80.6% of patients receiving RP and RT, respectively. Five-year rates of metastasis for RP and RT were 33% and 8.9%, respectively (P = .003). Overall survival was not different. Delay of salvage therapy was longer for patients undergoing primary RT (P < .001). Findings were similar when only those patients who did not receive ADT were compared. Conclusions At our institution, treatment with primary RT resulted in superior metastasis-free survival over RP. This was not accompanied by an improvement in OS.
Collapse
Affiliation(s)
- Stephanie Markovina
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Marshall W Meeks
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Shahed Badiyan
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joel Vetter
- Division of Urologic Surgery, Washington University, St. Louis, Missouri
| | - Hiram A Gay
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Alethea Paradis
- Division of Urologic Surgery, Washington University, St. Louis, Missouri
| | - Jeff Michalski
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Gurdarshan Sandhu
- Division of Urologic Surgery, Washington University, St. Louis, Missouri
| |
Collapse
|
17
|
Mirjolet C, Boudon J, Loiseau A, Chevrier S, Boidot R, Oudot A, Collin B, Martin E, Joy PA, Millot N, Créhange G. Docetaxel-titanate nanotubes enhance radiosensitivity in an androgen-independent prostate cancer model. Int J Nanomedicine 2017; 12:6357-6364. [PMID: 28919739 PMCID: PMC5587207 DOI: 10.2147/ijn.s139167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Around 40% of high-risk prostate cancer patients who undergo radiotherapy (RT) will experience biochemical failure. Chemotherapy, such as docetaxel (DTX), can enhance the efficacy of RT. Multidrug resistance mechanisms often limit drug efficacy by decreasing intracellular concentrations of drugs in tumor cells. It is, therefore, of interest to develop nanocarriers of DTX to maintain the drug inside cancer cells and thus improve treatment efficacy. The purpose of this study was to investigate the use of titanate nanotubes (TiONts) to develop a TiONts-DTX nanocarrier and to evaluate its radiosensitizing in vivo efficacy in a prostate cancer model. In vitro cytotoxic activity of TiONts-DTX was evaluated using an MTS assay. The biodistribution of TiONts-DTX was analyzed in vivo by single-photon emission computed tomography. The benefit of TiONts-DTX associated with RT was evaluated in vivo. Eight groups with seven mice in each were used to evaluate the efficacy of the nanohybrid combined with RT: control with buffer IT injection ± RT, free DXL ± RT, TiONts ± RT and TiONts-DXL ± RT. Mouse behavior, health status and tumor volume were monitored twice a week until the tumor volume reached a maximum of 2,000 mm3. More than 70% of nanohybrids were localized inside the tumor 96 h after administration. Tumor growth was significantly slowed by TiONts-DTX associated with RT, compared with free DTX in the same conditions (P=0.013). These results suggest that TiONts-DTX improved RT efficacy and might enhance local control in high-risk localized prostate cancer.
Collapse
Affiliation(s)
- Céline Mirjolet
- Department of Radiation Oncology, Center Georges-François Leclerc, Dijon, France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, Dijon, France
| | - Alexis Loiseau
- Laboratoire Interdisciplinaire Carnot de Bourgogne, Dijon, France
| | - Sandy Chevrier
- Department of Radiation Oncology, Center Georges-François Leclerc, Dijon, France
| | - Romain Boidot
- Department of Radiation Oncology, Center Georges-François Leclerc, Dijon, France
| | - Alexandra Oudot
- Preclinical Imaging Platform, Nuclear Medicine Department, Center Georges-François Leclerc, Dijon, France
| | - Bertrand Collin
- Preclinical Imaging Platform, Nuclear Medicine Department, Center Georges-François Leclerc, Dijon, France
| | - Etienne Martin
- Department of Radiation Oncology, Center Georges-François Leclerc, Dijon, France
| | | | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, Dijon, France
| | - Gilles Créhange
- Department of Radiation Oncology, Center Georges-François Leclerc, Dijon, France
| |
Collapse
|
18
|
Jonsson M, Ragnum HB, Julin CH, Yeramian A, Clancy T, Frikstad KAM, Seierstad T, Stokke T, Matias-Guiu X, Ree AH, Flatmark K, Lyng H. Hypoxia-independent gene expression signature associated with radiosensitisation of prostate cancer cell lines by histone deacetylase inhibition. Br J Cancer 2016; 115:929-939. [PMID: 27599042 PMCID: PMC5061908 DOI: 10.1038/bjc.2016.278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACis) like vorinostat are promising radiosensitisers in prostate cancer, but their effect under hypoxia is not known. We investigated gene expression associated with radiosensitisation of normoxic and hypoxic prostate cancer cells by vorinostat. METHODS Cells were exposed to vorinostat under normoxia or hypoxia and subjected to gene expression profiling before irradiation and clonogenic survival analysis. RESULTS Pretreatment with vorinostat led to radiosensitisation of the intrinsically radioresistant DU 145 cells, but not the radiosensitive PC-3 and 22Rv1 cells, and was independent of hypoxia status. Knockdown experiments showed that the sensitisation was not caused by repression of hypoxia-inducible factor HIF1 or tumour protein TP53. Global deregulation of DNA repair and chromatin organisation genes was associated with radiosensitisation under both normoxia and hypoxia. A radiosensitisation signature with expression changes of 56 genes was generated and valid for both conditions. For eight signature genes, baseline expression also correlated with sensitisation, showing potential as pretreatment biomarker. The hypoxia independence of the signature was confirmed in a clinical data set. CONCLUSIONS Pretreatment with HDACi may overcome radioresistance of hypoxic prostate tumours by similar mechanisms as under normoxia. We propose a gene signature to predict radiosensitising effects independent of hypoxia status.
Collapse
Affiliation(s)
- Marte Jonsson
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Harald Bull Ragnum
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Cathinka Halle Julin
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics HUAV, University of Lleida, Lleida, Spain
| | - Trevor Clancy
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne Myrum Frikstad
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Therese Seierstad
- Department of Radiology and Nuclear Medicine, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics HUAV, University of Lleida, Lleida, Spain
| | - Anne Hansen Ree
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Kjersti Flatmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| |
Collapse
|
19
|
Kibel AS, Ahn J, Isikbay M, Klim A, Wu WS, Hayes RB, Isaacs WB, Daw EW. Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma. Prostate 2016; 76:479-90. [PMID: 26708993 DOI: 10.1002/pros.23139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/01/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Because a significant number of patients with prostate cancer (PCa) are diagnosed with disease unlikely to cause harm, genetic markers associated with clinically aggressive PCa have potential clinical utility. Since cell cycle checkpoint dysregulation is crucial for the development and progression of cancer, we tested the hypothesis that common germ-line variants within cell cycle genes were associated with aggressive PCa. METHODS Via a two-stage design, 364 common sequence variants in 88 genes were tested. The initial stage consisted of 258 aggressive PCa patients and 442 controls, and the second stage added 384 aggressive PCa Patients and 463 controls. European-American and African-American samples were analyzed separately. In the first stage, SNPs were typed by Illumina Goldengate assay while in the second stage SNPs were typed by Pyrosequencing assays. Genotype frequencies between cases and controls were compared using logistical regression analysis with additive, dominant and recessive models. RESULTS Eleven variants within 10 genes (CCNC, CCND3, CCNG1, CCNT2, CDK6, MDM2, SKP2, WEE1, YWHAB, YWHAH) in the European-American population and nine variants in 7 genes (CCNG1, CDK2, CDK5, MDM2, RB1, SMAD3, TERF2) in the African-American population were found to be associated with aggressive PCa using at least one model. Of particular interest, CCNC (rs3380812) was associated with risk in European-American cohorts from both institutions. CDK2 (rs1045435) and CDK5 (rs2069459) were associated with risk in the African-American cohorts from both institutions. Lastly, variants within MDM2 and CCNG1 were protective for aggressive PCa in both ethnic groups. CONCLUSIONS This study confirms that polymorphisms within cell cycle genes are associated with clinically aggressive PCa. Validation of these markers in additional populations is necessary, but these markers may help identify patients at risk for potentially lethal carcinoma.
Collapse
Affiliation(s)
- Adam S Kibel
- Division of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jiyoung Ahn
- Division of Epidemiology, Department of Environmental Medicine, NYU School of Medicine, New York, New York
| | - Masis Isikbay
- Division of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aleksandra Klim
- Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - William S Wu
- Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Richard B Hayes
- Division of Epidemiology, Department of Environmental Medicine, NYU School of Medicine, New York, New York
| | - William B Isaacs
- Department of Urology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - E Warwick Daw
- Departments of Genetics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|