1
|
Kurdyn A, Pawłowska M, Paluszkiewicz E, Cichorek M, Augustin E. c-Myc inhibition and p21 modulation contribute to unsymmetrical bisacridines-induced apoptosis and senescence in pancreatic cancer cells. Pharmacol Rep 2025; 77:182-209. [PMID: 39361216 PMCID: PMC11743403 DOI: 10.1007/s43440-024-00658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 01/21/2025]
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most aggressive cancers and is the seventh leading cause of cancer-related death worldwide. PC is characterized by rapid progression and resistance to conventional treatments. Mutations in KRAS, CDKN2A, TP53, SMAD4/DPC4, and MYC are major genetic alterations associated with poor treatment outcomes in patients with PC. Therefore, optimizing PC therapy is a tremendous challenge. Unsymmetrical bisacridines (UAs), synthesized by our group, are new promising compounds that have exhibited high cytotoxicity and antitumor activity against several solid tumors, including pancreatic cancer. METHODS The cellular effects induced by UAs in PC cells were evaluated by MTT assay (cell growth inhibition), flow cytometry, and fluorescence and light microscopy (cell cycle distribution, apoptosis, and senescence detection). Analysis of the effects of UAs on the levels of proteins (c-Myc, p53, SMAD4, p21, and p16) was performed by Western blotting. RESULTS Apoptosis was the main triggered mechanism of death after UAs treatment, and induction of the SMAD4 protein can facilitate this process. c-Myc, which is one of the molecular targets of UAs, can participate in the induction of cell death in a p53-independent manner. Moreover, UAs can also induce accelerated senescence through the upregulation of p21. Notably, senescent cells can die via apoptosis after prolonged exposure to UAs. CONCLUSIONS UAs have emerged as potent anticancer agents that induce apoptosis by inhibiting c-Myc protein and triggering cellular senescence in a dose-dependent manner by increasing p21 levels. Thus, UAs exhibit desirable features as promising candidates for future pancreatic anticancer therapies.
Collapse
Affiliation(s)
- Agnieszka Kurdyn
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Monika Pawłowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Mirosława Cichorek
- Department of Embryology, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland.
| |
Collapse
|
2
|
Upadhyay RK, Kumar K, Vishwakarma VK, Singh N, Narang R, Parakh N, Yadav M, Yadav S, Kumar S, Goyal A, Yadav HN. Delineating the NOX-Mediated Promising Therapeutic Strategies for the Management of Various Cardiovascular Disorders: A Comprehensive Review. Curr Vasc Pharmacol 2025; 23:12-30. [PMID: 39313896 DOI: 10.2174/0115701611308870240910115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/21/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024]
Abstract
Cardiovascular disorders (CVDs) are reported to occur with very high rates of incidence and exhibit high morbidity and mortality rates across the globe. Therefore, research is focused on searching for novel therapeutic targets involving multiple pathophysiological mechanisms. Oxidative stress plays a critical role in the development and progression of various CVDs, such as hypertension, pulmonary hypertension, heart failure, arrhythmia, atherosclerosis, ischemia- reperfusion injury, and myocardial infarction. Among multiple pathways generating reactive oxygen species (ROS), Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases of the NOX family as the major source of ROS generation and plays an intricate role in the development and progression of CVDs. Therefore, exploring the role of different NADPH oxidase isoforms in various cardiovascular pathologies has attracted attention to current cardiovascular research. Focusing on NADPH oxidases to reduce oxidative stress in managing diverse CVDs may offer unique therapeutic approaches to prevent and treat various heart conditions. The current review article highlights the role of different NADPH oxidase isoforms in the pathophysiology of various CVDs. Moreover, the focus is also to emphasize different experimental studies that utilized various NADPH oxidase isoform modulators to manage other disorders. The present review article considers new avenues for researchers/scientists working in the field of cardiovascular pharmacology utilizing NADPH oxidase isoform modulators.
Collapse
Affiliation(s)
- Rohit Kumar Upadhyay
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kuldeep Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, (Punjab)-147002-India
| | - Rajiv Narang
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neeraj Parakh
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mayank Yadav
- Department of CTVS, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sangeeta Yadav
- Department of Pharmacology, Dr. B.R. Ambedkar Centre for Biomedical Research, New Delhi, 110085-India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, 280406, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
3
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
4
|
Szász Z, Enyedi KN, Takács A, Fekete N, Mező G, Kőhidai L, Lajkó E. Characterisation of the cell and molecular biological effect of peptide-based daunorubicin conjugates developed for targeting pancreatic adenocarcinoma (PANC-1) cell line. Biomed Pharmacother 2024; 173:116293. [PMID: 38430628 DOI: 10.1016/j.biopha.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the tumours with the worst prognosis, with a 5-year survival rate of 5-10%. Our aim was to find and optimise peptide-based drug conjugates with daunorubicin (Dau) as the cytotoxic antitumour agent. When conjugated with targeting peptides, the side effect profile and pharmacokinetics of Dau can be improved. The targeting peptide sequences (e.g. GSSEQLYL) we studied were originally selected by phage display. By Ala-scan technique, we identified that position 6 in the parental sequence (Dau=Aoa-LRRY-GSSEQLYL-NH2, ConjA) could be modified without the loss of antitumour activity (Dau=Aoa-LRRY-GSSEQAYL-NH2, Conj03: 14. 9% viability). Our results showed that the incorporation of p-chloro-phenylalanine (Dau=Aoa-LRRY-GSSEQF(pCl)YL-NH2, Conj16) further increased the antitumour potency (10-5 M: 9.7% viability) on pancreatic adenocarcinoma cells (PANC-1). We found that conjugates containing modified GSSEQLYL sequences could be internalised to PANC-1 cells and induce cellular senescence in the short term and subsequent apoptotic cell death. Furthermore, the cardiotoxic effect of Dau was markedly reduced in the form of peptide conjugates. In conclusion, Conj16 had the most effective antitumor activity on PANC-1 cells, which makes this conjugate promising for developing new targeted therapies without cardiotoxic effects.
Collapse
Affiliation(s)
- Zsófia Szász
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary
| | - Kata Nóra Enyedi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary; ELKH Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Angéla Takács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary
| | - Nóra Fekete
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary
| | - Gábor Mező
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary; ELKH Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary.
| |
Collapse
|
5
|
Xiao Z, Liang J, Huang R, Chen D, Mei J, Deng J, Wang Z, Li L, Li Z, Xia H, Yang Y, Huang Y. Inhibition of miR-143-3p Restores Blood-Testis Barrier Function and Ameliorates Sertoli Cell Senescence. Cells 2024; 13:313. [PMID: 38391926 PMCID: PMC10887369 DOI: 10.3390/cells13040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Due to the increasing trend of delayed childbirth, the age-related decline in male reproductive function has become a widely recognized issue. Sertoli cells (SCs) play a vital role in creating the necessary microenvironment for spermatogenesis in the testis. However, the mechanism underlying Sertoli cell aging is still unclear. In this study, senescent Sertoli cells showed a substantial upregulation of miR-143-3p expression. miR-143-3p was found to limit Sertoli cell proliferation, promote cellular senescence, and cause blood-testis barrier (BTB) dysfunction by targeting ubiquitin-conjugating enzyme E2 E3 (UBE2E3). Additionally, the TGF-β receptor inhibitor SB431542 showed potential in alleviating age-related BTB dysfunction, rescuing testicular atrophy, and reversing the reduction in germ cell numbers by negatively regulating miR-143-3p. These findings clarified the regulatory pathways underlying Sertoli cell senescence and suggested a promising therapeutic approach to restore BTB function, alleviate Sertoli cell senescence, and improve reproductive outcomes for individuals facing fertility challenges.
Collapse
Affiliation(s)
- Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Derong Chen
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Jiaxin Mei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Jingxian Deng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China;
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
6
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
7
|
Banerjee P, Gaddam N, Pandita TK, Chakraborty S. Cellular Senescence as a Brake or Accelerator for Oncogenic Transformation and Role in Lymphatic Metastasis. Int J Mol Sci 2023; 24:ijms24032877. [PMID: 36769195 PMCID: PMC9917379 DOI: 10.3390/ijms24032877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence-the irreversible cell cycle arrest driven by a variety of mechanisms and, more specifically, the senescence-associated secretory phenotype (SASP)-is an important area of research in the context of different age-related diseases, such as cardiovascular disease and cancer. SASP factors play both beneficial and detrimental roles in age-related disease progression depending on the source of the SASPs, the target cells, and the microenvironment. The impact of senescence and the SASP on different cell types, the immune system, and the vascular system has been widely discussed. However, the impact of replicative or stress-induced senescence on lymphatic biology and pathological lymphangiogenesis remains underexplored. The lymphatic system plays a crucial role in the maintenance of body fluid homeostasis and immune surveillance. The perturbation of lymphatic function can hamper normal physiological function. Natural aging or stress-induced premature aging influences the lymphatic vessel structure and function, which significantly affect the role of lymphatics in tumor dissemination and metastasis. In this review, we focus on the role of senescence on lymphatic pathobiology, its impact on cancer, and potential therapeutic interventions to manipulate the aged or senescent lymphatic system for disease management.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-436-0697
| |
Collapse
|
8
|
Khoury LM, Burcher KM, Ng RT, Song AH, Chang MJ, Gavrila E, Bloomer CH, Robinson MB, Kouri BE, Waltonen JD, Bunch PM, Lauer UM, Porosnicu M. Serendipitous synergism - an exceptional response to treatment with pembrolizumab in the course of a natural immunovirotherapy: a case report and review of the literature. Ther Adv Med Oncol 2022; 14:17588359221122729. [PMID: 36312814 PMCID: PMC9597005 DOI: 10.1177/17588359221122729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are the current guideline recommended treatment for many malignancies considered to be terminal. Despite considerable advances, their utility remains limited, and the field requires synergistic partners to further improve outcomes. Oncolytic viruses (OV) are emerging as contenders for the role of the synergistic agent of choice due to their multi-mechanistic effect on activating the tumor 'cold' immune microenvironment. Herpes simplex virus 1, a naturally selective OV, is the most advanced virotherapeutic compound in clinical applications for use in combination with ICI. We here present the case of a 72 year-old patient with a heavily pre-treated, advanced maxillary sinus squamous cell cancer with distant metastases who developed complete response (CR) with only three administrations of a programmed death 1 inhibitor after treatment interference by a severe herpes zoster infection, based on the related alpha-herpesvirus varicella zoster virus (VZV). This exceptional response has been followed and confirmed with imaging studies over more than 5 years. Although the patient had several favorable predictors for response to immunotherapy, we reason that the exceptional response may in part be secondary to the serendipitous VZV infection. Documented cases of cancer patients that achieved CR after few administrations of treatment with ICI are rare, with most reporting follow up of just over 1 year or less. In this case, it is conceivable that the interference of the infection with VZV, soon after the start of immunotherapy with ICI, led to a lasting antitumor immunity and sustained CR. This hypothesis is supported by the concept of 'oncolytic immunotherapy' which is reviewed in this manuscript. In addition, persistence of a TP53 mutation found in a liquid biopsy, despite clinical and radiologic remission, is discussed.
Collapse
Affiliation(s)
- Lara M. Khoury
- Department of Internal Medicine, Wake Forest
University School of Medicine, Winston-Salem, NC, USA
| | - Kimberly M. Burcher
- Department of Internal Medicine, Wake Forest
University School of Medicine, Winston-Salem, NC, USA
| | - Ronald T. Ng
- Department of Internal Medicine, Wake Forest
University School of Medicine, Winston-Salem, NC, USA
| | - Alexander H. Song
- Department of Internal Medicine, Section on
Hematology and Oncology, Wake Forest University School of Medicine,
Winston-Salem, NC, USA
| | - Mark J. Chang
- Department of Internal Medicine, Wake Forest
University School of Medicine, Winston-Salem, NC, USA
| | - Elena Gavrila
- Wake Forest University School of Medicine,
Winston-Salem, NC, USA
| | - Chance H. Bloomer
- Department of Internal Medicine, Wake Forest
University School of Medicine, Winston-Salem, NC, USA
| | - Mac B. Robinson
- Wake Forest Baptist Comprehensive Cancer
Center, Winston-Salem, NC, USA
| | - Brian E. Kouri
- Department of Radiology, Wake Forest University
School of Medicine, Winston-Salem, NC, USA
| | - Joshua D. Waltonen
- Department of Otolaryngology, Wake Forest
University School of Medicine, Winston-Salem, NC, USA
| | - Paul M. Bunch
- Department of Radiology, Wake Forest
University School of Medicine, Winston-Salem, NC, USA
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, Medical
Oncology and Pneumology, University Hospital Tuebingen, Germany German
Cancer Research Center (DKFZ), Tuebingen, Germany
| | - Mercedes Porosnicu
- Department of Internal Medicine, Section on
Hematology and Oncology, Wake Forest University School of Medicine, Medical
Center Blvd, Winston-Salem, NC 27101-4135, USA
- Wake Forest Baptist Comprehensive Cancer
Center, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Cook M, Lin H, Mishra SK, Wang GY. BAY 11-7082 inhibits the secretion of interleukin-6 by senescent human microglia. Biochem Biophys Res Commun 2022; 617:30-35. [PMID: 35671608 PMCID: PMC9540971 DOI: 10.1016/j.bbrc.2022.05.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of senescent cells in aged tissues has been implicated in a variety of age-related diseases, including cancer and neurodegenerative disorders. Recent studies have demonstrated a link between age-associated increase of senescent glial cells in the brain and the pathogenesis of Alzheimer's disease (AD). However, there is a lack of in vitro cellular models of senescent human microglia, which significantly limits our approaches to study AD pathogenesis. Here, we show for the first time that ionizing radiation (IR) dose-dependently induces premature senescence in HMC3 human microglial cells. Senescence-associated β-galactosidase activity, a well-characterized marker of cellular senescence, was substantially increased in irradiated HMC3 cells compared with control cells. Furthermore, we found that phosphorylated p53 levels and p21 expression levels were markedly higher in IR-induced senescent microglia than in control cells. Senescent human microglia exhibited the senescence-associated secretory phenotype (SASP), as evidenced by the increased secretion of pro-inflammatory cytokine interleukin-6 (IL-6). Treatment with an NF-κB inhibitor, BAY 11-7082, inhibits the secretion of IL-6 by senescent HMC3 cells. Collectively, our studies have established an in vitro cellular model of human microglial senescence and suggest that the NF-κB pathway may play a critical role in regulating the SASP of senescent HMC3 cells.
Collapse
Affiliation(s)
- Maxwell Cook
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Houmin Lin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sandeep K Mishra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Developmental Cancer Therapeutics Program, Hollings Cancer Center, Charleston, SC, 29425, USA.
| |
Collapse
|
10
|
Abstract
Senescence is a cellular response to a variety of stress signals that is characterized by a stable withdrawal from the cell cycle and major changes in cell morphology and physiology. While most research on senescence has been performed on non-cancer cells, it is evident that cancer cells can also mount a senescence response. In this Review, we discuss how senescence can be induced in cancer cells. We describe the distinctive features of senescent cancer cells and how these changes in cellular physiology might be exploited for the selective eradication of these cells (senolysis). We discuss activation of the host immune system as a particularly attractive way to clear senescent cancer cells. Finally, we consider the challenges and opportunities provided by a 'one-two punch' sequential treatment of cancer with pro-senescence therapy followed by senolytic therapy.
Collapse
Affiliation(s)
- Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lina Lankhorst
- Cancer, Stem Cells & Developmental Biology programme, Utrecht University, Utrecht, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Banerjee P, Olmsted-Davis EA, Deswal A, Nguyen MTH, Koutroumpakis E, Palaskas NL, Lin SH, Kotla S, Reyes-Gibby C, Yeung SCJ, Yusuf SW, Yoshimoto M, Kobayashi M, Yu B, Schadler K, Herrmann J, Cooke JP, Jain A, Chini E, Le NT, Abe JI. Cancer treatment-induced NAD+ depletion in premature senescence and late cardiovascular complications. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:28. [PMID: 35801078 PMCID: PMC9258520 DOI: 10.20517/jca.2022.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous studies have revealed the critical role of premature senescence induced by various cancer treatment modalities in the pathogenesis of aging-related diseases. Senescence-associated secretory phenotype (SASP) can be induced by telomere dysfunction. Telomeric DNA damage response induced by some cancer treatments can persist for months, possibly accounting for long-term sequelae of cancer treatments. Telomeric DNA damage-induced mitochondrial dysfunction and increased reactive oxygen species production are hallmarks of premature senescence. Recently, we reported that the nucleus-mitochondria positive feedback loop formed by p90 ribosomal S6 kinase (p90RSK) and phosphorylation of S496 on ERK5 (a unique member of the mitogen-activated protein kinase family that is not only a kinase but also a transcriptional co-activator) were vital signaling events that played crucial roles in linking mitochondrial dysfunction, nuclear telomere dysfunction, persistent SASP induction, and atherosclerosis. In this review, we will discuss the role of NAD+ depletion in instigating SASP and its downstream signaling and regulatory mechanisms that lead to the premature onset of atherosclerotic cardiovascular diseases in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Elizabeth A. Olmsted-Davis
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minh TH. Nguyen
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.,University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi 122100, Vietnam
| | - Efstratios Koutroumpakis
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center of Houston, TX 77030, USA
| | - Michihiro Kobayashi
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center of Houston, TX 77030, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences School of Public Health, The University of Texas Health Science Center of Houston, TX 77030, USA
| | - Keri Schadler
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - John P. Cooke
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M, College Station, TX 77843, USA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nhat-Tu Le
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Jia Q, Xie B, Zhao Z, Huang L, Wei G, Ni T. Lung cancer cells expressing a shortened CDK16 3'UTR escape senescence through impaired miR-485-5p targeting. Mol Oncol 2021; 16:1347-1364. [PMID: 34687270 PMCID: PMC8936527 DOI: 10.1002/1878-0261.13125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inducing senescence in cancer cells is an emerging strategy for cancer therapy. The dysregulation and mutation of genes encoding cyclin‐dependent kinases (CDKs) have been implicated in various human cancers. However, whether CDK can induce cancer cell senescence remains poorly understood. We observed that CDK16 expression was high in multiple cancer types, including lung cancer, whereas various replicative senescence models displayed low CDK16 expression. CDK16 knockdown caused senescence‐associated phenotypes in lung cancer cell lines. Interestingly, the CDK16 3′ UTR was shortened in cancer and lengthened in senescence models, which was regulated by alternative polyadenylation (APA). The longer 3′UTR [using the distal polyA (pA) site] generated less protein than the shorter one (using the proximal pA site). Since microRNAs (miRNAs) usually bind to the 3′UTR of target genes to suppress their expression, we investigated whether miRNAs targeting the region between the shortened and longer 3′UTR are responsible for the reduced expression. We found that miR‐485‐5p targeted the 3′UTR between the distal and proximal pA site and caused senescence‐associated phenotypes by reducing protein production from the longer CDK16 transcript. Of note, CDK16 knockdown led to a reduced expression of MYC proto‐oncogene, bHLH transcription factor (MYC) and CD274 molecule (PD‐L1), which in turn enhanced the tumor‐suppressive effects of senescent cancer cells. The present study discovered that CDK16, whose expression is under the regulation of APA and miR‐485‐5p, is a potential target for prosenescence therapy for lung cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Baiyun Xie
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Leihuan Huang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Yu C, Yang B, Najafi M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin Pharmacol Toxicol 2021; 129:397-415. [PMID: 34473898 DOI: 10.1111/bcpt.13648] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
Cancer is known as a second major cause of death globally. Nowadays, several modalities have been developed for the treatment of cancer. Radiotherapy and chemotherapy are the most common modalities in most countries. However, newer modalities such as immunotherapy and targeted therapy drugs can kill cancer cells with minimal side effects. All anticancer agents work based on the killing of cancer cells. Numerous studies are ongoing to kill cancer cells more effectively without increasing side effects to normal tissues. The combination modalities with low toxic agents are interesting for this aim. Curcumin is one of the most common herbal agents that has shown several anticancer properties. It can regulate immune system responses against cancer. Furthermore, curcumin has been shown to potentiate cell death signalling pathways and attenuate survival signalling pathways in cancer cells. The knowledge of how curcumin induces cell death in cancers can improve therapeutic efficiency. In this review, the regulatory effects of curcumin on different cell death mechanisms and their signalling pathways will be discussed. Furthermore, we explain how curcumin may potentiate the anticancer effects of other drugs or radiotherapy through modulation of apoptosis, mitotic catastrophe, senescence, autophagy and ferroptosis.
Collapse
Affiliation(s)
- Chong Yu
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Bo Yang
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Choi HS, Kim JH, Jang SJ, Yun JW, Kang KM, Jeong H, Ha IB, Jeong BK. Synergistic Tumoricidal Effects of Alpha-Lipoic Acid and Radiotherapy on Human Breast Cancer Cells via HMGB1. Cancer Res Treat 2021; 53:685-694. [PMID: 33321563 PMCID: PMC8291200 DOI: 10.4143/crt.2020.1015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Radiotherapy (RT) is one of main strategies of cancer treatment. However, some cancer cells are resistant to radiation-induced cell death, including apoptosis. Therefore, alternative approaches targeting different anti-tumor mechanisms such as cell senescence are required. This study aimed to investigate the synergistic effect of alpha-lipoic acid (ALA) on radiation-induced cell death and senescence in MDA-MB-231 human breast cancer cells. MATERIALS AND METHODS The cells were divided into four groups depending on the cell treatment (control, ALA, RT, and ALA+RT). Cells were analyzed for morphology, apoptotic cell death, mitochondrial reactive oxygen species, membrane potential, cellular senescence, and cell cycle. RESULTS Our data showed that ALA significantly promoted apoptotic cell death when combined with RT, as reflected by Annexin V staining, expression of apoptosis-related factors, mitochondrial damages as well as cell morphological changes and reduction of cell numbers. In addition, ALA significantly enhanced radiation-induced cellular senescence, which was shown by increased HMGB1 expression in the cytosol fraction compared to the control, increased p53 expression compared to the control, activation of p38 as well as nuclear factor кB, and G2/M cell cycle arrest. CONCLUSION The current study is the first report showing a new mode of action (senescence induction) of ALA beyond apoptotic cell death in MDA-MB-231 cancer cells known to be resistant to RT.
Collapse
Affiliation(s)
- Hoon Sik Choi
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Jin Hyun Kim
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Si Jung Jang
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Jeong Won Yun
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Hojin Jeong
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| | - In Bong Ha
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Bae Kwon Jeong
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
15
|
Giatromanolaki A, Kouroupi M, Balaska K, Koukourakis MI. A Novel Lipofuscin-detecting Marker of Senescence Relates With Hypoxia, Dysregulated Autophagy and With Poor Prognosis in Non-small-cell-lung Cancer. In Vivo 2021; 34:3187-3193. [PMID: 33144423 DOI: 10.21873/invivo.12154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND/AIM The role of senescence in defining tumor aggressiveness at a clinical level remains obscure. A novel mixed histochemical/immunohistochemical method (SenTraGor™, STG) detecting lipofuscin accumulation allows the assessment of senescent cells in paraffin-embedded tissue material. MATERIALS AND METHODS STG expression was quantified in 98 surgically resected primary non-small-cell-lung carcinomas (NSCLC). Data were analyzed in parallel with other immunohistochemical markers related to hypoxia and autophagy. RESULTS Strong STG staining was noted in 36/98 cases (36.7%). High STG expression was significantly associated with high HIF1α expression and high expression of glucose (GLUT1) and monocarboxylate (MCT2) transporters, pointing to a link between senescence, hypoxia and glycolysis. High STG expression was also linked with high cytoplasmic accumulation of MAP1-LC3B, TFEB and LAMP2a, suggestive of a blockage of autophagy flux in tumors with intense senescence. Survival analysis showed a direct association with poor survival, independently of stage. CONCLUSION SenTraGor™ provides a reliable methodology to detect lipofuscin accumulation in cancer cells in paraffin-embedded tissues, opening a new field for translational studies focused on senescence.
Collapse
Affiliation(s)
- Alexandra Giatromanolaki
- Department of Pathology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Kouroupi
- Department of Pathology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantina Balaska
- Department of Pathology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy/Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
16
|
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev 2021; 66:101251. [PMID: 33385543 DOI: 10.1016/j.arr.2020.101251] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
As the world's population progressively ages, the burden on the socio-economic and health systems is escalating, demanding sustainable and lasting solutions. Cellular senescence, one of the hallmarks of ageing, is a state of irreversible cell cycle arrest that occurs in response to various genotoxic stressors and is considered an important factor in the development of many age-related diseases and therefore a potential therapeutic target. Here, the role of senescent cells in age-related diseases is discussed, focusing on their formation and main characteristics. The mechanisms leading to senescent cells are presented, including replicative and premature senescence as well as senescence that occurs in various physiological processes, such as wound healing. The second part comprises a comprehensive description of various biomarkers currently used for the detection of senescent cells along with the investigated therapeutic approaches, namely senolytics, senomorphics and the clearance of senescent cells by the immune system. Potential delivery systems suitable for such therapies and model organisms to study senescence are also briefly examined. This in-depth overview of cellular senescence contributes to a deeper understanding of a rapidly evolving area aimed to tackle the age-related diseases in a more mechanistic way, as well as highlights future research opportunities.
Collapse
|
17
|
Jia M, Su B, Mo L, Qiu W, Ying J, Lin P, Yang B, Li D, Wang D, Xu L, Li H, Zhou Z, Li X, Li J. Circadian clock protein CRY1 prevents paclitaxel‑induced senescence of bladder cancer cells by promoting p53 degradation. Oncol Rep 2021; 45:1033-1043. [PMID: 33650658 PMCID: PMC7860017 DOI: 10.3892/or.2020.7914] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Bladder cancer is a common tumor type of the urinary system, which has high levels of morbidity and mortality. The first‑line treatment is cisplatin‑based combination chemotherapy, but a significant proportion of patients relapse due to the development of drug resistance. Therapy‑induced senescence can act as a 'back‑up' response to chemotherapy in cancer types that are resistant to apoptosis‑based anticancer therapies. The circadian clock serves an important role in drug resistance and cellular senescence. The aim of the present study was to investigate the regulatory effect of the circadian clock on paclitaxel (PTX)‑induced senescence in cisplatin‑resistant bladder cancer cells. Cisplatin‑resistant bladder cancer cells were established via long‑term cisplatin incubation. PTX induced apparent senescence in bladder cancer cells as demonstrated via SA‑β‑Gal staining, but this was not observed in the cisplatin‑resistant cells. The cisplatin‑resistant cells entered into a quiescent state with prolonged circadian rhythm under acute PTX stress. It was identified that the circadian protein cryptochrome1 (CRY1) accumulated in these quiescent cisplatin‑resistant cells, and that CRY1 knockdown restored PTX‑induced senescence. Mechanistically, CRY1 promoted p53 degradation via increasing the binding of p53 with its ubiquitin E3 ligase MDM2 proto‑oncogene. These data suggested that the accumulated CRY1 in cisplatin‑resistant cells could prevent PTX‑induced senescence by promoting p53 degradation.
Collapse
Affiliation(s)
- Min Jia
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative Medicine, Shenzhen, Guangdong 518122, P.R. China
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bijia Su
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative Medicine, Shenzhen, Guangdong 518122, P.R. China
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lijun Mo
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative Medicine, Shenzhen, Guangdong 518122, P.R. China
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wen Qiu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiaxu Ying
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peng Lin
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bingxuan Yang
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Danying Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dongxia Wang
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lili Xu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhongxin Zhou
- Department of Vascular Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Xing Li
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative Medicine, Shenzhen, Guangdong 518122, P.R. China
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jinlong Li
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative Medicine, Shenzhen, Guangdong 518122, P.R. China
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
18
|
Cheng WC, Chang CY, Lo CC, Hsieh CY, Kuo TT, Tseng GC, Wong SC, Chiang SF, Huang KCY, Lai LC, Lu TP, Chao KC, Sher YP. Identification of theranostic factors for patients developing metastasis after surgery for early-stage lung adenocarcinoma. Am J Cancer Res 2021; 11:3661-3675. [PMID: 33664854 PMCID: PMC7914355 DOI: 10.7150/thno.53176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Lung adenocarcinoma (LUAD) is an aggressive disease with high propensity of metastasis. Among patients with early-stage disease, more than 30% of them may relapse or develop metastasis. There is an unmet medical need to stratify patients with early-stage LUAD according to their risk of relapse/metastasis to guide preventive or therapeutic approaches. In this study, we identified 4 genes that can serve both therapeutic and diagnostic (theranostic) purposes. Methods: Three independent datasets (GEO, TCGA, and KMPlotter) were used to evaluate gene expression profile of patients with LUAD by unbiased screening approach. Upon significant genes uncovered, functional enrichment analysis was carried out. The predictive power of their expression on patient prognosis were evaluated. Once confirmed their theranostic roles by integrated bioinformatics, we further conducted in vitro and in vivo validation. Results: We found that four genes (ADAM9, MTHFD2, RRM2, and SLC2A1) were associated with poor patient outcomes with an increased hazard ratio in LUAD. Knockdown of them, both separately and simultaneously, suppressed lung cancer cell proliferation and migration ability in vitro and prolonged survival time in metastatic tumor mouse models. Moreover, these four biomarkers were found to be overexpressed in tumor tissues from LUAD patients, and the total immunohistochemical staining scores correlated with poor prognosis. Conclusions: These results suggest that these four identified genes could be theranostic biomarkers for stratifying high-risk patients who develop relapse/metastasis in early-stage LUAD. Developing therapeutic approaches for the four biomarkers may benefit early-stage LUAD patients after surgery.
Collapse
|
19
|
Richard V, Kumar TRS, Pillai RM. Transitional dynamics of cancer stem cells in invasion and metastasis. Transl Oncol 2021; 14:100909. [PMID: 33049522 PMCID: PMC7557893 DOI: 10.1016/j.tranon.2020.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
At the onset, few cancer cells amidst the tumor bulk, identified as cancer stem cells (CSCs) or early disseminated cancer cells (eDCCs) are capable of survival post conventional therapy and persist as minimal residual disease (MRD). Metastatic subclones emerge both early and late in the life of primary tumor ensuing an ongoing regional clonal evolution of progenitor cells in metastatic and primary tumors. In the last decade, multiple studies proposed various identities of stem-like cells that undergo transitions to adapt to the changing microenvironment as the disease progresses. This review advocates with substantial evidence the dynamic model of tumor propagation by exploring the specific cell types, reversible phenotypic plasticity between the tumorigenic leader seeds and the supporting follower cancer cells both in circulation and in solid tissue to accurately decipher tumor promoting clones and its role in metastatic dissemination and tumor re-growth. (142 words).
Collapse
Affiliation(s)
- Vinitha Richard
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - T R Santhosh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - Radhakrishna M Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India.
| |
Collapse
|
20
|
Liu X, Hoft DF, Peng G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Invest 2020; 130:1073-1083. [PMID: 32118585 DOI: 10.1172/jci133679] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional state of the preexisting T cells in the tumor microenvironment is a key determinant for effective antitumor immunity and immunotherapy. Increasing evidence suggests that immunosenescence is an important state of T cell dysfunction that is distinct from exhaustion, a key strategy used by malignant tumors to evade immune surveillance and sustain the suppressive tumor microenvironment. Here, we discuss the phenotypic and functional characteristics of senescent T cells and their role in human cancers. We also explore the possible mechanisms and signaling pathways responsible for induction of T cell senescence by malignant tumors, and then discuss potential strategies to prevent and/or reverse senescence in tumor-specific T cells. A better understanding of these critical issues should provide novel strategies to enhance cancer immunotherapy.
Collapse
|
21
|
Priyanga J, Sharan Kumar B, Mahalakshmi R, Nirekshana K, Vinoth P, Sridharan V, Bhakta-Guha D, Guha G. A novel indenone derivative selectively induces senescence in MDA-MB-231 (breast adenocarcinoma) cells. Chem Biol Interact 2020; 331:109250. [PMID: 32956706 DOI: 10.1016/j.cbi.2020.109250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 11/15/2022]
Abstract
Triple-negative breast cancer is the most aggressive form of breast cancer with limited intervention options. Moreover, a number of belligerent therapeutic strategies adopted to treat such aggressive forms of cancer have demonstrated detrimental side effects. This necessitates exploration of targeted chemotherapeutics. We assessed the efficacy of a novel indenone derivative (nID) [(±)-N-(2-(-5-methoxy-1-oxo-3-(2-oxo-2-phenylethyl)-2,3-dihydro-1H-inden-2-yl)ethyl)-4-methylbenzenesulfonamide], synthesized by a novel internal nucleophile-assisted palladium-catalyzed hydration-olefin insertion cascade; against triple-negative breast cancer cells (MDA-MB-231). On 24 h treatment, the nID caused decline in the viability of MDA-MB-231 and MDA-MB-468 cells, but did not significantly (P < 0.05) affect WRL-68 (epithelial-like) cells. In fact, the nID demonstrated augmentation of p53 expression, and consequent p53-dependent senescence in both MDA-MB-231 and MDA-MB-468 cells, but not in WRL-68 cells. The breast cancer cells also exhibited reduced proliferation, downregulated p65/NF-κB and survivin, along with augmented p21Cip1/WAF1 expression, on treatment with the nID. This ensued cell cycle arrest at G1 stage, which might have driven the MDA-MB-231 cells to senescence. We observed a selectivity of the nID to target MDA-MB-231 cells, whereas WRL-68 cells did not show any considerable effect. The results underscored that the nID has potential to be developed into a cancer therapeutic.
Collapse
Affiliation(s)
- J Priyanga
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - B Sharan Kumar
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - R Mahalakshmi
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - K Nirekshana
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - P Vinoth
- Department of Chemistry, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu, India
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India.
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
22
|
Sasaki N, Gomi F, Yoshimura H, Yamamoto M, Matsuda Y, Michishita M, Hatakeyama H, Kawano Y, Toyoda M, Korc M, Ishiwata T. FGFR4 Inhibitor BLU9931 Attenuates Pancreatic Cancer Cell Proliferation and Invasion While Inducing Senescence: Evidence for Senolytic Therapy Potential in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12102976. [PMID: 33066597 PMCID: PMC7602396 DOI: 10.3390/cancers12102976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that is projected to become the leading cause of cancer death by 2050. Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane receptor that is overexpressed in half of PDACs. We determined that its expression in PDAC positively correlated with larger tumor size and more advanced tumor stage, and that BLU9931, a selective FGFR4 inhibitor, reduced PDAC cell proliferation and invasion while promoting their senescence. Quercetin, a senolytic drug, induced cell death in BLU9931-treated cells. We propose that targeting FGFR4 in combination with senolysis could provide a novel therapeutic strategy in patients whose PDAC expresses high FGFR4 levels. Abstract Fibroblast growth factor receptor 4 (FGFR4), one of four tyrosine kinase receptors for FGFs, is involved in diverse cellular processes. Activation of FGF19/FGFR4 signaling is closely associated with cancer development and progression. In this study, we examined the expression and roles of FGF19/FGFR4 signaling in human pancreatic ductal adenocarcinoma (PDAC). In human PDAC cases, FGFR4 expression positively correlated with larger primary tumors and more advanced stages. Among eight PDAC cell lines, FGFR4 was expressed at the highest levels in PK-1 cells, in which single-nucleotide polymorphism G388R in FGFR4 was detected. For inhibition of autocrine/paracrine FGF19/FGFR4 signaling, we used BLU9931, a highly selective FGFR4 inhibitor. Inhibition of signal transduction through ERK, AKT, and STAT3 pathways by BLU9931 reduced proliferation in FGF19/FGFR4 signaling-activated PDAC cells. By contrast, BLU9931 did not alter stemness features, including stemness marker expression, anticancer drug resistance, and sphere-forming ability. However, BLU9931 inhibited cell invasion, in part, by downregulating membrane-type matrix metalloproteinase-1 in FGF19/FGFR4 signaling-activated PDAC cells. Furthermore, downregulation of SIRT1 and SIRT6 by BLU9931 contributed to senescence induction, priming these cells for quercetin-induced death, a process termed senolysis. Thus, we propose that BLU9931 is a promising therapeutic agent in FGFR4-positive PDAC, especially when combined with senolysis (195/200).
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakae-cho 35-2, Itabashi-ku, Tokyo 173-0015, Japan; (N.S.); (M.T.)
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan;
| | - Hisashi Yoshimura
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (H.Y.); (M.Y.)
| | - Masami Yamamoto
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (H.Y.); (M.Y.)
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defense, Kagawa University, Kagawa 761-0793, Japan;
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan;
| | - Hitoshi Hatakeyama
- Department of Comprehensive Education in Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan;
| | - Yoichi Kawano
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo 113-8603, Japan;
| | - Masashi Toyoda
- Research team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakae-cho 35-2, Itabashi-ku, Tokyo 173-0015, Japan; (N.S.); (M.T.)
| | - Murray Korc
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697, USA;
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan;
- Correspondence: ; Tel.: +81-3-3964-1141 (ext. 4414)
| |
Collapse
|
23
|
Mohamad Kamal NS, Safuan S, Shamsuddin S, Foroozandeh P. Aging of the cells: Insight into cellular senescence and detection Methods. Eur J Cell Biol 2020; 99:151108. [PMID: 32800277 DOI: 10.1016/j.ejcb.2020.151108] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular theory of aging states that human aging is the result of cellular aging, in which an increasing proportion of cells reach senescence. Senescence, from the Latin word senex, means "growing old," is an irreversible growth arrest which occurs in response to damaging stimuli, such as DNA damage, telomere shortening, telomere dysfunction and oncogenic stress leading to suppression of potentially dysfunctional, transformed, or aged cells. Cellular senescence is characterized by irreversible cell cycle arrest, flattened and enlarged morphology, resistance to apoptosis, alteration in gene expression and chromatin structure, expression of senescence associated- β-galactosidase (SA-β-gal) and acquisition of senescence associated secretory phenotype (SASP). In this review paper, different types of cellular senescence including replicative senescence (RS) which occurs due to telomere shortening and stress induced premature senescence (SIPS) which occurs in response to different types of stress in cells, are discussed. Biomarkers of cellular senescence and senescent assays including BrdU incorporation assay, senescence associated- β-galactosidase (SA-β-gal) and senescence-associated heterochromatin foci assays to detect senescent cells are also addressed.
Collapse
Affiliation(s)
- Nor Shaheera Mohamad Kamal
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sabreena Safuan
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia
| | - Parisa Foroozandeh
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia.
| |
Collapse
|
24
|
Kokal M, Mirzakhani K, Pungsrinont T, Baniahmad A. Mechanisms of Androgen Receptor Agonist- and Antagonist-Mediated Cellular Senescence in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12071833. [PMID: 32650419 PMCID: PMC7408918 DOI: 10.3390/cancers12071833] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) plays a leading role in the control of prostate cancer (PCa) growth. Interestingly, structurally different AR antagonists with distinct mechanisms of antagonism induce cell senescence, a mechanism that inhibits cell cycle progression, and thus seems to be a key cellular response for the treatment of PCa. Surprisingly, while physiological levels of androgens promote growth, supraphysiological androgen levels (SAL) inhibit PCa growth in an AR-dependent manner by inducing cell senescence in cancer cells. Thus, oppositional acting ligands, AR antagonists, and agonists are able to induce cellular senescence in PCa cells, as shown in cell culture model as well as ex vivo in patient tumor samples. This suggests a dual AR-signaling dependent on androgen levels that leads to the paradox of the rational to keep the AR constantly inactivated in order to treat PCa. These observations however opened the option to treat PCa patients with AR antagonists and/or with androgens at supraphysiological levels. The latter is currently used in clinical trials in so-called bipolar androgen therapy (BAT). Notably, cellular senescence is induced by AR antagonists or agonist in both androgen-dependent and castration-resistant PCa (CRPC). Pathway analysis suggests a crosstalk between AR and the non-receptor tyrosine kinase Src-Akt/PKB and the PI3K-mTOR-autophagy signaling in mediating AR-induced cellular senescence in PCa. In this review, we summarize the current knowledge of therapeutic induction and intracellular pathways of AR-mediated cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Aria Baniahmad
- Correspondence: ; Tel.: +49-3641-9396820; Fax: +49-3641-99396822
| |
Collapse
|
25
|
Gupta S, Pungsrinont T, Ženata O, Neubert L, Vrzal R, Baniahmad A. Interleukin-23 Represses the Level of Cell Senescence Induced by the Androgen Receptor Antagonists Enzalutamide and Darolutamide in Castration-Resistant Prostate Cancer Cells. Discov Oncol 2020; 11:182-190. [PMID: 32562083 PMCID: PMC7335377 DOI: 10.1007/s12672-020-00391-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer-related deaths of men in Western countries. Androgen deprivation therapy is initially successful, however eventually fails, and tumors progress to the more aggressive castration-resistant PCa (CRPC). Yet, androgen receptor (AR) usually remains as a major regulator of tumor cell proliferation in CRPC. Interleukin-23 (IL-23) was recently shown to promote the development of CRPC by driving AR transcription. Here we used the androgen-sensitive LNCaP, castration-resistant C4-2, and 22Rv1 cells. Interestingly, cellular senescence is induced in these human cell lines by treatment with the AR antagonists enzalutamide (ENZ) or darolutamide (ODM), which might be one underlying mechanism for inhibition of PCa cell proliferation. Treatment with IL-23 alone did not change cellular senescence levels in these cell lines, whereas IL-23 inhibited significantly cellular senescence levels induced by ENZ or ODM in both CRPC cell lines C4-2 and 22Rv1 but not in LNCaP cells. This indicates a response of IL-23 specific in CRPC cells. Generating LNCaP and C4-2 three-dimensional (3D) spheroids and treatment with AR antagonists resulted in the reduced spheroid volume and thus growth inhibition. However, the combination of AR antagonists with IL-23 did not affect the antagonist-mediated reduction of spheroid volumes. This observation was confirmed with proliferation assays using adherent monolayer cell cultures. Taken together, the data indicate that IL-23 treatment reduces the AR antagonists-induced level of cellular senescence of CRPC cells, which could be one possible mechanism for promoting castration resistance.
Collapse
Affiliation(s)
- Siddharth Gupta
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Thanakorn Pungsrinont
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Ondrej Ženata
- Department of Cell Biology and Genetics, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Laura Neubert
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany.
| |
Collapse
|
26
|
Pungsrinont T, Sutter MF, Ertingshausen MCCM, Lakshmana G, Kokal M, Khan AS, Baniahmad A. Senolytic compounds control a distinct fate of androgen receptor agonist- and antagonist-induced cellular senescent LNCaP prostate cancer cells. Cell Biosci 2020; 10:59. [PMID: 32351687 PMCID: PMC7183592 DOI: 10.1186/s13578-020-00422-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background The benefit of inducing cellular senescence as a tumor suppressive strategy remains questionable due to the senescence-associated secretory phenotype. Hence, studies and development of senolytic compounds that induce cell death in senescent cells have recently emerged. Senescent cells are hypothesized to exhibit different upregulated pro-survival/anti-apoptotic networks depending on the senescent inducers. This might limit the effect of a particular senolytic compound that targets rather only a specific pathway. Interestingly, cellular senescence in prostate cancer (PCa) cells can be induced by either androgen receptor (AR) agonists at supraphysiological androgen level (SAL) used in bipolar androgen therapy or by AR antagonists. This challenges to define ligand-specific senolytic compounds. Results Here, we first induced cellular senescence by treating androgen-sensitive PCa LNCaP cells with either SAL or the AR antagonist Enzalutamide (ENZ). Subsequently, cells were incubated with the HSP90 inhibitor Ganetespib (GT), the Bcl-2 family inhibitor ABT263, or the Akt inhibitor MK2206 to analyze senolysis. GT and ABT263 are known senolytic compounds. We observed that GT exhibits senolytic activity specifically in SAL-pretreated PCa cells. Mechanistically, GT treatment results in reduction of AR, Akt, and phospho-S6 (p-S6) protein levels. Surprisingly, ABT263 lacks senolytic effect in both AR agonist- and antagonist-pretreated cells. ABT263 treatment does not affect AR, Akt, or S6 protein levels. Treatment with MK2206 does not reduce AR protein level and, as expected, potently inhibits Akt phosphorylation. However, ENZ-induced cellular senescent cells undergo apoptosis by MK2206, whereas SAL-treated cells are resistant. In line with this, we reveal that the pro-survival p-S6 level is higher in SAL-induced cellular senescent PCa cells compared to ENZ-treated cells. These data indicate a difference in the agonist- or antagonist-induced cellular senescence and suggest a novel role of MK2206 as a senolytic agent preferentially for AR antagonist-treated cells. Conclusion Taken together, our data suggest that both AR agonist and antagonist induce cellular senescence but differentially upregulate a pro-survival signaling which preferentially sensitize androgen-sensitive PCa LNCaP cells to a specific senolytic compound.
Collapse
Affiliation(s)
- Thanakorn Pungsrinont
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| | - Malika Franziska Sutter
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany.,2Department of Hematology and Medical Oncology, Jena University Hospital, Jena, Germany
| | | | - Gopinath Lakshmana
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| | - Miriam Kokal
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| | - Amir Saeed Khan
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany.,3Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Aria Baniahmad
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| |
Collapse
|
27
|
Bajbouj K, Shafarin J, Taneera J, Hamad M. Estrogen Signaling Induces Mitochondrial Dysfunction-Associated Autophagy and Senescence in Breast Cancer Cells. BIOLOGY 2020; 9:E68. [PMID: 32244623 PMCID: PMC7235898 DOI: 10.3390/biology9040068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Previous work has shown that although estrogen (E2) disrupts cellular iron metabolism and induces oxidative stress in breast and ovarian cancer cells, it fails to induce apoptosis. However, E2 treatment was reported to enhance the apoptotic effects of doxorubicin in cancer cells. This suggests that E2 can precipitate anti-growth effects that render cancer cells more susceptible to chemotherapy. To investigate such anti-growth non-apoptotic, effects of E2 in cancer cells, MDA-MB-231 and MCF-7 cells were evaluated for the expression of key autophagy and senescence markers and for mitochondrial damage following E2 treatment. Treated cells experienced mitochondrial membrane depolarization along with increased expression of LC3-I/II, Pink1 and LAMP2, increased LC3-II accumulation and increased lysosomal and mitochondrial accumulation and flattening. E2-treated MCF-7 cells also showed reduced P53 and pRb780 expression and increased Rb and P21 expression. Increased expression of the autophagy markers ATG3 and Beclin1 along with increased levels of β-galactosidase activity and IL-6 production were evident in E2-treated MCF-7 cells. These findings suggest that E2 precipitates a form of mitochondrial damage that leads to cell senescence and autophagy in breast cancer cells.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, UAE; (K.B.); (J.S.); (J.T.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE
| | - Jasmin Shafarin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, UAE; (K.B.); (J.S.); (J.T.)
| | - Jalal Taneera
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, UAE; (K.B.); (J.S.); (J.T.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE
| | - Mawieh Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, UAE; (K.B.); (J.S.); (J.T.)
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, UAE
| |
Collapse
|
28
|
Kumar R, Awasthi M, Sharma A, Padwad Y, Sharma R. Berberine induces dose-dependent quiescence and apoptosis in A549 cancer cells by modulating cell cyclins and inflammation independent of mTOR pathway. Life Sci 2020; 244:117346. [PMID: 31978448 DOI: 10.1016/j.lfs.2020.117346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
AIM Emerging studies have shown that application of low concentration of bioactive phytomolecules can confer anti-proliferative effects on tumour cells by inducing senescence pathways. The alkaloid berberine is recognized for its anti-cancer attributes but its potential to induce senescence in tumour cells is least understood. MATERIALS AND METHODS The present work assessed the mechanisms pertaining to dose-dependent anti-proliferative effects of berberine in the perspective of senescence and inflammation using human non-small cell lung cancer cell line (A549). KEY FINDINGS Amongst the different tested bioactive phytomolecules, berberine treatment suppressed the proliferation of A549 cells regardless of the concentration applied. Application of low doses of berberine induced a weak SA-β-gal activity and p21WAF1 expression but did not show evidence of SASP activation due to absence of NF-κB activation and expression of proinflammatory genes. However, treatment with higher dose of berberine showed no evidence of SA-β-gal activity or p21WAF1 expression, but instead induced apoptosis and suppressed the expression of cell cyclins. The proliferative capacity of berberine treated cells was at par with control cells and no SA-β-gal activity could be observed in first generation of berberine treated cells. mTOR pathway showed no distinct activation on account of berberine treatment thereby further emphasizing that low dose of berberine induced quiescence and not senescence in A549 cells. SIGNIFICANCE Taken together, our observations indicate that despite its strong anti-proliferative effects, low dose berberine treatment may only induce transient changes akin to quiescence that needs to be considered before implying pro-senescence attributes of berberine in cancer therapeutics.
Collapse
Affiliation(s)
- Ravi Kumar
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Mansi Awasthi
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Anamika Sharma
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Yogendra Padwad
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India.
| | - Rohit Sharma
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India.
| |
Collapse
|
29
|
The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death. Oncogene 2019; 39:1-16. [PMID: 31462710 DOI: 10.1038/s41388-019-0980-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
The maintenance of genome stability is essential for the cell as the integrity of genomic information guaranties reproduction of a whole organism. DNA damage occurring in response to different natural and nonnatural stimuli (errors in DNA replication, UV radiation, chemical agents, etc.) is normally detected by special cellular machinery that induces DNA repair. However, further accumulation of genetic lesions drives the activation of cell death to eliminate cells with defective genome. This particular feature is used for targeting fast-proliferating tumor cells during chemo-, radio-, and immunotherapy. Among different cell death modalities induced by DNA damage, apoptosis is the best studied. Nevertheless, nonapoptotic cell death and adaptive stress responses are also activated following genotoxic stress and play a crucial role in the outcome of anticancer therapy. Here, we provide an overview of nonapoptotic cell death pathways induced by DNA damage and discuss their interplay with cellular senescence, mitotic catastrophe, and autophagy.
Collapse
|
30
|
Zhong G, Qin S, Townsend D, Schulte BA, Tew KD, Wang GY. Oxidative stress induces senescence in breast cancer stem cells. Biochem Biophys Res Commun 2019; 514:1204-1209. [PMID: 31109646 PMCID: PMC6556123 DOI: 10.1016/j.bbrc.2019.05.098] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) have been shown to be resistant to current anticancer therapies and the induction of oxidative stress is an important mechanism of action for many anticancer agents. However, it is still largely unknown how CSCs respond to hydrogen peroxide (H2O2)-induced oxidative stress. Here, we show that the levels of reactive oxygen species (ROS) are markedly lower in breast CSCs (BCSCs) than that in non-cancer stem cells (NCSCs). A transient exposure of breast cancer cells to sublethal doses of H2O2 resulted in a dose-dependent increase of the epithelium-specific antigen (ESA)+/CD44+/CD24- subpopulations, a known phenotype for BCSCs. Although BCSCs survived sublethal doses of H2O2 treatment, they lost the ability to form tumor spheres and failed to generate colonies as demonstrated by mammosphere-formation and clonogenic assays, respectively. Mechanistic studies revealed that H2O2 treatment led to a marked increase of senescence-associated β-galactosidase activity but only minimal apoptotic cell death in BCSCs. Furthermore, H2O2 triggers p53 activation and promotes p21 expression, indicating a role for the p53/p21 signaling pathway in oxidative stress-induced senescence in BCSCs. Taken together, these results demonstrate that the maintenance of a lower level of ROS is critical for CSCs to avoid oxidative stress and H2O2-induced BCSC loss of function is likely attributable to oxidative stress-triggered senescence induction, suggesting that ROS-generating drugs may have the therapeutic potential to eradicate drug-resistant CSCs via induction of premature senescence.
Collapse
Affiliation(s)
- Guangxian Zhong
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, PR China
| | - Shenghui Qin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Danyelle Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|