1
|
Hassan NH, Kamel GM, Fayed HM, Korany RMS, Ramadan A. Dapagliflozin alleviates thioacetamide induced-liver fibrosis in rats via controlling the Nrf2/HO-1 and TLR4/TGF-β1/PI3K signaling pathways. Immunopharmacol Immunotoxicol 2025:1-14. [PMID: 40296648 DOI: 10.1080/08923973.2025.2496661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVES Because liver fibrosis causes several insults that can result in death, it is regarded as an epidemic health issue. As "an inhibitor of the sodium-glucose cotransporter-2 (SGLT2)," Dapagliflozin (Dapa) is one of the newest anti-diabetic drugs used to treat type 2 diabetes mellitus. Dapa's antioxidant, anti-inflammatory, and antifibrotic properties produced positive impacts in numerous human and animal models. Due to Dapa's previously documented properties, we planned this investigation to elucidate the protective function of Dapa in male rat liver fibrosis caused by thioacetamide (TAA) as well as the expected pathways. METHODS There were four groups of 24 rats: a control group, a TAA group that received (100 mg/kg b.wt intraperitoneally twice a week for 6 weeks), "TAA + Dapa" groups that given oral Dapa at (1 and 2 mg/kg b.wt. for 4 weeks in addition to TAA injections). RESULTS It was shown that TAA injections increased toll-like receptor 4 (TLR4) (509.6%), tumor necrosis factor (TNF-α) (298.8%), alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), interleukin-6 (IL-6) (330.9%), phosphotidylinositol-3-kinase (PI3K) (428.9% %), and transforming growth factor-beta (TGF-β1) (416.6%) levels. All of these markers were considerably reduced by Dapa treatment. In addition, reduced glutathione (GSH), nuclear factor erythroid 2-related factor 2 (Nrf2) (79%), albumin, Heme-oxygenase 1 (HO-1) (69%), and superoxide dismutase (SOD) were all decreased after TAA injection; however, they were restored by Dapa administration. The Dapa-treated groups had higher Nrf2 and HO-1 gene expressions, based on the results of PCR. Biochemical outcomes were validated by histopathological results. Immunohistopathological study revealed that DAPA treatment decreased caspase-3 and alpha-smooth Muscle Actin (αSMA) expression. CONCLUSION Due to its interactions with the Nrf2/HO-1 and TLR4 pathways, our research showed that Dapa had antioxidant and anti-inflammatory qualities against TAA-induced liver fibrosis.
Collapse
Affiliation(s)
- Nourhan Hussien Hassan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gehan M Kamel
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hany M Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Reda M S Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Amer Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Sadasivam N, Kim YJ, Radhakrishnan K, Kim DK. Oxidative Stress, Genomic Integrity, and Liver Diseases. Molecules 2022; 27:3159. [PMID: 35630636 PMCID: PMC9147071 DOI: 10.3390/molecules27103159] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| | - Kamalakannan Radhakrishnan
- Clinical Vaccine R&D Center, Department of Microbiology, Combinatorial Tumor Immunotherapy MRC, Medical School, Chonnam National University, Gwangju 58128, Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| |
Collapse
|
3
|
Zhang X, Chu C, Huang Y. Inhibition of thioredoxin-interacting protein may enhance the therapeutic effect of dehydrocostus lactone in cardiomyocytes under doxorubicin stimulation via the inhibition of the inflammatory response. Exp Ther Med 2022; 23:226. [PMID: 35222703 PMCID: PMC8812107 DOI: 10.3892/etm.2022.11150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022] Open
Abstract
Heart failure (HF) is the leading cause of death around the world, the mortality caused by HF is growing rapidly, and has become a great threaten to both public health and economic growth. Dehydrocostus lactone (DHE) is the active constituent of Saussurea lappa and is widely used in traditional Chinese medicine for its multiple biological functions, including anti-inflammatory, antioxidant and anti-cancer. To the best of our knowledge, DHE's effect on HF has not been clarified. Thioredoxin-interacting protein (TXNIP) regulates the process of oxidative stress and inflammation and leads to an increase in oxidative stress via oxidization of thioredoxin, TXNIP promotes the activation of the immune response by its binding with the NOD-like receptor protein 3 inflammasome. An MTT assay revealed that the overexpression or inhibition of TXNIP markedly decreased or significantly increased the proliferation of H9c2 cells, respectively. Through reverse transcription-quantitative PCR (RT-qPCR) and western blotting, it was determined that the expression of proinflammatory cytokines was significantly decreased with the increased expression of anti-inflammatory cytokines in a TXNIP knockout model. Further study utilizing RT-qPCR and western blotting demonstrated that these effects may be mediated by the nuclear factor erythroid 2-related factor 2/heme oxygenase-1/NF-κB signaling pathway. In conclusion, TXNIP inhibition may promote the therapeutic effect of DHE on oxidative stress-induced damage.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Critical Care Medicine, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| | - Cuiyu Chu
- Department of Critical Care Medicine, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| | - Yuankun Huang
- Department of Critical Care Medicine, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| |
Collapse
|
4
|
Kawakami K, Moritani C, Hatanaka T, Tsuboi S. Isolation of the hemeoxygenase-1 inducer from rice-derived peptide. J Clin Biochem Nutr 2022; 71:41-47. [PMID: 35903607 PMCID: PMC9309089 DOI: 10.3164/jcbn.21-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
Bioactive peptides with various health benefits have been reported from rice protein hydrolysates. We previously showed that rice-derived peptides (RP) increased intracellular glutathione levels and induced the expression of γ-glutamylcysteine synthetase, which is regulated by nuclear transcription factor-erythroid 2-related factor 2 (Nrf2). Heme oxygenase-1 (HO-1) is an important Nrf2 downstream antioxidant enzyme that protects against oxidative stress. This study aimed to investigate the protective effects of RP on hydrogen peroxide (H2O2)-induced oxidative stress in human hepatoblastoma cell line HepG2 and identified HO-1 induced peptides from RP. Pretreatment of cells with RP reduced the cytotoxicity caused by H2O2 in a dose-dependent manner. Moreover, RP induced HO-1 expression in a concentration- and time-dependent manner. Next, we attempted to isolate the HO-1 inducer from RP by bioactivity-guided fractionation. Purification of the active peptides using a Sep-Pak C18 cartridge and reversed-phase HPLC, followed by sequence analysis by mass spectrometry, led to the identification of the three peptides. These peptides effectively reduced H2O2-induced oxidative stress. Among them, only P3 (peptide sequence: RSAVLLSH) increased HO-1 protein expression. Additionally, the knockdown of Nrf2 suppressed the induction of HO-1 expression by P3. Our results indicated that P3 identified from RP induced HO-1 by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
| | | | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS)
| | | |
Collapse
|
5
|
Induction of HOXA3 by PRRSV inhibits IFN-I response through negatively regulation of HO-1 transcription. J Virol 2021; 96:e0186321. [PMID: 34851144 DOI: 10.1128/jvi.01863-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I interferons (IFN-I) play a key role in the host defense against virus infection, but porcine reproductive and respiratory syndrome virus (PRRSV) infection does not effectively activate IFN-I response, and the underlying molecular mechanisms are poorly characterized. In this study, a novel transcription factor of the heme oxygenase-1 (HO-1) gene, homeobox A3 (HOXA3), was screened and identified. Here, we found that HOXA3 was significantly increased during PRRSV infection. We demonstrated that HOXA3 promotes PRRSV replication by negatively regulating the HO-1 gene transcription, which is achieved by regulating type I interferons (IFN-I) production. A detailed analysis showed that PRRSV exploits HOXA3 to suppress beta interferon (IFN-β) and IFN-stimulated gene (ISG) expression in host cells. We also provide direct evidence that the activation of IFN-I by HO-1 depends on its interaction with IRF3. Then we further proved that deficiency of HOXA3 promoted the HO-1-IRF3 interaction, and subsequently enhanced IRF3 phosphorylation and nuclear translocation in PRRSV-infected cells. These data suggest that PRRSV uses HOXA3 to negatively regulate the transcription of the HO-1 gene to suppress the IFN-I response for immune evasion. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, leads the pork industry worldwide to significant economic losses. HOXA3 is generally considered to be an important molecule in the process of body development and cell differentiation. Here, we found a novel transcription factor of the HO-1 gene, HOXA3, can negatively regulate the transcription of the HO-1 gene and play an important role in the suppression of IFN-I response by PRRSV. PRRSV induces the upregulation of HOXA3, which can negatively regulate HO-1 gene transcription, thereby weakening the interaction between HO-1 and IRF3 for inhibiting the type I IFN response. This study extends the function of HOXA3 to the virus field for the first time and provides new insights into PRRSV immune evasion mechanism.
Collapse
|
6
|
Ma R, Shimura T, Yin C, Okugawa Y, Kitajima T, Koike Y, Okita Y, Ohi M, Uchida K, Goel A, Yao L, Zhang X, Toiyama Y. Antitumor effects of Andrographis via ferroptosis-associated genes in gastric cancer. Oncol Lett 2021; 22:523. [PMID: 34025790 DOI: 10.3892/ol.2021.12784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
The overall prognosis of advanced/metastatic gastric cancer (GC) remains poor despite the development of pharmacotherapy. Therefore, other treatment options, such as complementary and alternative medicine, should be considered to overcome this aggressive malignancy. Andrographis, which is a generally unharmful botanical compound, has gained increasing interest for its anticancer effects in multiple malignancies via the regulation of cancer progression-associated signaling pathways. In the present study, a series of in vitro experiments (cell proliferation, colony formation and apoptosis assays) was designed to elucidate the antitumor potential and mechanism of Andrographis in GC cells. The present study demonstrated that Andrographis exerted antitumor effects in GC cell lines (MKN74 and NUGC4) by inhibiting proliferation, reducing colony formation and enhancing apoptotic activity. Furthermore, it was demonstrated that the expression levels of the ferroptosis-associated genes heme oxygenase-1, glutamate-cysteine ligase catalytic and glutamate-cysteine ligase modifier were significantly upregulated after Andrographis treatment in both GC cell lines in reverse transcription-quantitative PCR experiments (P<0.05); this finding was further confirmed by immunoblotting assays (P<0.05). In conclusion, to the best of our knowledge, the present study was the first to demonstrate that Andrographis possessed antitumor properties by altering the expression levels of ferroptosis-associated genes, thereby providing novel insights into the potential of Andrographis as an adjunctive treatment option for patients with metastatic GC.
Collapse
Affiliation(s)
- Ruiya Ma
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.,Department of Colorectal Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshinaga Okugawa
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91016, USA
| | - Li Yao
- Department of Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xueming Zhang
- Department of Colorectal Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
7
|
Kawakami K, Moritani C, Hatanaka T, Suzaki E, Tsuboi S. Hepatoprotective Activity of Yellow Chinese Chive against Acetaminophen-Induced Acute Liver Injury via Nrf2 Signaling Pathway. J Nutr Sci Vitaminol (Tokyo) 2021; 66:357-363. [PMID: 32863309 DOI: 10.3177/jnsv.66.357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutathione, the most abundant intracellular antioxidant, protects cells against reactive oxygen species induced oxidative stress and regulates intracellular redox status. We previously demonstrated that yellow Chinese chive (ki-nira) increased the intracellular glutathione levels. Acetaminophen (APAP) is a commonly used analgesic. However, an overdose of APAP causes severe hepatotoxicity via depletion of the hepatic glutathione. In this study, we investigated the hepatoprotective effects of yellow Chinese chive extract (YCE) against APAP-induced hepatotoxicity in mice. YCE (25 or 100 mg/kg) was administered once daily for 7 d, and then APAP (700 mg/kg) was injected at 6 h before the mice were sacrificed. APAP treatment markedly increased the serum biological markers of liver injury such as alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase. Pretreatment with YCE significantly prevented the increases in the serum levels of these enzymes. Histopathological evaluation of the livers also revealed that YCE prevented APAP-induced centrilobular necrosis. Pretreatment with YCE dose-dependently elevated glutathione levels, but the difference was not significant. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in APAP-induced hepatotoxicity by regulating the antioxidant defense system. Therefore, we investigated the expression of Nrf2 and its target antioxidant enzyme. YCE led to an increased expression of Nrf2 and its target antioxidant enzymes, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (GPx), cystine uptake transporter (xCT), especially hemeoxygenase-1 (HO-1) in mice livers. These results suggest that YCE could induce HO-1 expression via activation of the Nrf2 antioxidant pathway, and protect against APAP-induced hepatotoxicity in mice.
Collapse
Affiliation(s)
| | | | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS)
| | | | | |
Collapse
|
8
|
GT-Repeat Polymorphism in the HO-1 Gene Promoter Is Associated with Risk of Liver Cancer: A Follow-Up Study from Arseniasis-Endemic Areas in Taiwan. J Clin Med 2021; 10:jcm10071489. [PMID: 33916685 PMCID: PMC8038349 DOI: 10.3390/jcm10071489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The induction of heme oxygenase-1 (HO-1) has been shown to have therapeutic potential in experimental models of hepatitis and liver fibrosis, which are closely related to liver cancer. In humans, HO-1 induction is transcriptionally modulated by the length of a GT-repeat [(GT)n] in the promoter region. We aimed to investigate the effect of HO-1 (GT)n variants on liver cancer in a human population. We determined the HO-1 genotype in 1153 study subjects and examined their association with liver cancer risk during a 15.9-year follow-up. Allelic polymorphisms were classified as short [S, <27 (GT)n] or long [L, ≥27 (GT)n]. Newly developed cancer cases were identified through linkage to the National Cancer Registry of Taiwan. Multivariate Cox regression analysis was used to evaluate the effect of the HO-1 (GT)n variants. Alpha-fetoprotein (AFP) and cirrhosis history were also examined. The S/S genotype was found to be significantly associated with liver cancer risk, compared to the L/S and L/L genotypes. The S/S genotype group also had a higher percentage of subjects with abnormal AFP levels than other groups. There were significant percentages of cirrhosis among groups who carried S-alleles. Our findings indicate that short (GT)n variants in the HO-1 gene may confer susceptibility to rather than protection from liver cirrhosis/cancer.
Collapse
|
9
|
Brea R, Valdecantos P, Rada P, Alen R, García-Monzón C, Boscá L, Fuertes-Agudo M, Casado M, Martín-Sanz P, Valverde ÁM. Chronic treatment with acetaminophen protects against liver aging by targeting inflammation and oxidative stress. Aging (Albany NY) 2021; 13:7800-7827. [PMID: 33780353 PMCID: PMC8034963 DOI: 10.18632/aging.202884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The liver exhibits a variety of functions that are well-preserved during aging. However, the cellular hallmarks of aging increase the risk of hepatic alterations and development of chronic liver diseases. Acetaminophen (APAP) is a first choice for relieving mild-to-moderate pain. Most of the knowledge about APAP-mediated hepatotoxicity arises from acute overdose studies due to massive oxidative stress and inflammation, but little is known about its effect in age-related liver inflammation after chronic exposure. Our results show that chronic treatment of wild-type mice on the B6D2JRcc/Hsd genetic background with APAP at an infratherapeutic dose reduces liver alterations during aging without affecting body weight. This intervention attenuates age-induced mild oxidative stress by increasing HO-1, MnSOD and NQO1 protein levels and reducing ERK1/2 and p38 MAPK phosphorylation. More importantly, APAP treatment counteracts the increase in Cd8+ and the reduction in Cd4+ T lymphocytes observed in the liver with age. This response was also found in peripheral blood mononuclear cells. In conclusion, chronic infratherapeutic APAP treatment protects mice from age-related liver alterations by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Rocío Brea
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
| | - Pilar Valdecantos
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid 28009, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv) ISCIII, Madrid 28029, Spain
| | - Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| |
Collapse
|
10
|
Walters TS, McIntosh DJ, Ingram SM, Tillery L, Motley ED, Arinze IJ, Misra S. SUMO-Modification of Human Nrf2 at K 110 and K 533 Regulates Its Nucleocytoplasmic Localization, Stability and Transcriptional Activity. Cell Physiol Biochem 2021; 55:141-159. [PMID: 33770425 PMCID: PMC8279473 DOI: 10.33594/000000351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element(s) (ARE) in target gene promoters, enabling oxidatively stressed cells to respond in order to restore redox homeostasis. Post-translational modifications (PTMs) that mediate activation of Nrf2, in the cytosol and its release from Keap1, have been extensively studied but PTMs that impact its biology after activation are beginning to emerge. In this regard, PTMs like acetylation, phosphorylation, ubiquitination and sumoylation contribute towards the Nrf2 subcellular localization, and its transactivation function. We previously demonstrated that Nrf2 traffics to the promyelocytic leukemia-nuclear bodies (PML-NB), where it is a target for modification by small ubiquitin-like modifier (SUMO) proteins (sumoylation), but the site(s) for SUMO conjugation have not been determined. In this study, we aim to identify SUMO-2 conjugation site(s) and explore the impact, sumoylation of the site(s) have on Nrf2 stability, nuclear localization and transcriptional activation of its target gene expression upon oxidative stress. METHODS The putative SUMO-binding sites in Nrf2 for human isoform1 (NP_006155.2) and mouse homolog (NP_035032.1) were identified using a computer-based SUMO-predictive software (SUMOplot™). Site-directed mutagenesis, immunoblot analysis, and ARE-mediated reporter gene assays were used to assess the impact of sumoylation on these site(s) in vitro. Effect of mutation of these sumoylation sites of Nrf2 on expression of Heme Oxygenase1 (HO-1) was determined in HEK293T cell. RESULTS
Eight putative sumoylation sites were identified by SUMOplot™ analysis. Out of the eight predicted sites only one 532LKDE535 of human (h) and its homologous 524LKDE527 of mouse (m) Nrf2, exactly matches the SUMO-binding consensus motif. The other high probability SUMO-acceptor site identified was residue K110, in the motifs 109PKSD112 and 109PKQD112 of human and mouse Nrf2, respectively. Mutational analysis of putative sumoylation sites (human (h)/mouse (m)
K110, hK533 and mK525) showed that these residues are needed for SUMO-2 conjugation, nuclear localization and ARE driven transcription of reporter genes and the endogenous HO-1 expression by Nrf2. These residues also stabilized Nrf2, as evident from shorter half-lives of the mutant protein compared to wild-type Nrf2. CONCLUSION Our findings indicate that SUMO-2
mediated sumoylation of K110 and K533 in human Nrf2 regulates in part its transcriptional activity by enhancing its stabilization and nuclear localization.
Collapse
Affiliation(s)
- Treniqka S Walters
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Deneshia J McIntosh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Lakeisha Tillery
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Evangeline D Motley
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Ifeanyi J Arinze
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Smita Misra
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA,
- School of Graduate Studies and Research, Meharry Medical College, Nashville TN, USA
- Center for Women's Health, Meharry Medical College, Nashville TN, USA
| |
Collapse
|
11
|
Endometriosis Is Associated with Functional Polymorphism in the Promoter of Heme Oxygenase 1 ( HMOX1) Gene. Cells 2021; 10:cells10030695. [PMID: 33800989 PMCID: PMC8003868 DOI: 10.3390/cells10030695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Endometriosis is a common gynecological disorder characterized by the ectopic growth of endometrial-like tissue outside the uterine cavity. Etiopathogenesis of endometriosis is poorly understood; it is plausible, however, that the disease may be associated with oxidative stress related to local heme and iron metabolism. Therefore, the aim of the study was to reveal a possible association of endometriosis with a stress-inducible heme oxygenase 1 (HMOX1). For this purpose, 228 patients with clinically confirmed endometriosis and 415 control parous women from general Polish population were examined for functional -413A>T (rs2071746) single-nucleotide polymorphism (SNP) and (GT)n dinucleotide repeat length polymorphism in the promoter of HMOX1 gene. In addition, -413A>T SNP was assessed by the specific TaqMan® SNP Genotyping Assay, and (GT)n polymorphism was determined by PCR product size analysis. We found that endometriosis is associated with an increased frequency of -413A(GT)31,32 haplotype (OR (95%CI) = 1.27 (1.01-1.60), p = 0.0381) and -413A(GT)31,32 homozygous genotype [OR (95%CI) = 1.51 (1.06-2.17), p = 0.0238]. These data suggest that endometriosis is associated with functional polymorphism of HMOX1 gene, and this gene may play a part in the pathogenesis of this disorder.
Collapse
|
12
|
Importance of Heme Oxygenase-1 in Gastrointestinal Cancers: Functions, Inductions, Regulations, and Signaling. J Gastrointest Cancer 2021; 52:454-461. [PMID: 33484436 DOI: 10.1007/s12029-021-00587-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION : Colorectal cancer (CRC) is one of the important gastrointestinal tract tumors. Heme is mainly absorbed in the colon and induces nitrosamine formation, genotoxicity, and oxidative stress, and increases the risk of CRC. MATERIALS AND METHODS Information was collected from articles on Scopus, Google Scholar, and PubMed. RESULTS Heme can irritate intestinal epithelial cells and increases the proliferation of colonic mucosa. Heme can be considered as a carcinogenic agent for CRC induction. In typical situations, Heme Oxygenase-1 (HO-1) is expressed at low concentration in the gastrointestinal tract, but its expression is elevated during lesion and inflammation. Based on the multiple reports, the impact of HO-1 on tumor growth is related to the cancer cell type. Increased HO-1 levels were also indicated in different human and animal malignancies, possibly through its contribution to tumor cell growth, metastasis, expression of angiogenic factors, and resistance to chemotherapy. Recent studies noted that HO-1 can act as an immunomodulator that suppresses immune cell maturation, activation, and infiltration. It also inhibits apoptosis through CO production that leads to p53 suppression. The upregulation of HO-1 significantly increases the endurance of colon cancer cell lines. Therefore, it is supposed that HO-1 inhibitors could become a novel antitumor agent. Lactobacillus rhamnosus and its metabolites can activate Nrf2 and improves anti-oxidant levels along with upregulation of its objective genes like HO-1, and downregulation of NF-κB which reduce phosphorylated TNF-α, IL-1β, and PAI-1. CONCLUSION The precise mechanism accountable for the anti-inflammatory features of HO-1 is not completely understood; nevertheless, the CO signaling function associated with the antioxidant property shown by bilirubin possibly will play an act in the improvement of inflammation.
Collapse
|
13
|
Xiang Y, Fu L, Xiang HX, Zheng L, Tan ZX, Wang LX, Cao W, Xu DX, Zhao H. Correlations among Pulmonary DJ-1, VDR and Nrf-2 in patients with Chronic Obstructive Pulmonary Disease: A Case-control Study. Int J Med Sci 2021; 18:2449-2456. [PMID: 33967623 PMCID: PMC8100631 DOI: 10.7150/ijms.58452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson protein 7 (PARK7)/DJ-1 (DJ-1) is a redox sensitive molecular and stabilizer of nuclear factor erythroid 2-related factor 2 (Nrf-2). Nrf-2 regulates the downstream antioxidant defense system and exerts a significant function in patients with chronic obstructive pulmonary disease (COPD). Vitamin D receptor (VDR) is the nuclear receptor that regulates the downstream target genes. This study aimed to analyze the associations among pulmonary function, DJ-1, VDR and Nrf-2 in COPD patients. Serum was collected from 180 COPD patients and control subjects. Thirty-five lung tissues were obtained. DJ-1 was measured using ELISA and western blotting. Nrf-2 and VDR were detected by immunohistochemistry. Serum and pulmonary DJ-1 levels were lower in COPD patients than those in control subjects. Pulmonary VDR-positive nuclei were reduced in COPD patients. Nrf-2-positive nuclei were reduced in lung tissues of COPD patients. On the contrary, Nrf-2-related downstream target proteins were elevated in COPD patients. Further correlation analysis indicated that forced expiratory volume in 1 second (FEV1) was positively associated with pulmonary DJ-1, VDR and Nrf-2 in patients with COPD. In addition, there were positive correlations among DJ-1, VDR and Nrf-2 in lung tissues of COPD patients. In conclusion, DJ-1, VDR and Nrf-2 were decreased in COPD patients compared with control subjects. The reduction of DJ-1 and VDR associating with Nrf-2 downregulation may be involved in the process of COPD.
Collapse
Affiliation(s)
- Ying Xiang
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui-Xian Xiang
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ling Zheng
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhu-Xia Tan
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Li-Xiang Wang
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Cao
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
14
|
Medina MV, Sapochnik D, Garcia Solá M, Coso O. Regulation of the Expression of Heme Oxygenase-1: Signal Transduction, Gene Promoter Activation, and Beyond. Antioxid Redox Signal 2020; 32:1033-1044. [PMID: 31861960 PMCID: PMC7153632 DOI: 10.1089/ars.2019.7991] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Significance: Heme oxygenase-1 (HO-1) is a ubiquitous 32-kDa protein expressed in many tissues and highly inducible. They catalyze the degradation of the heme group and the release of free iron, carbon monoxide, and biliverdin; the latter converted to bilirubin by biliverdin reductase. Its role in the regulation of cellular homeostasis is widely documented. Studying regulation of HO-1 expression is important not only to understand the life of healthy cells but also the unbalances in cell metabolism that lead to disease. Recent Advances: The regulation of its enzymatic activity depends heavily upon changes in expression studied mainly at the transcriptional level. Current knowledge regarding HO-1 gene expression focuses primarily on transcription factors such as Nrf2 (nuclear factor erythroid 2-related factor 2), AP-1 (activator protein-1), and hypoxia-inducible factor, which collect signal transduction pathway information at the HO-1 gene promoter. Understanding of gene expression regulation is not limited to transcription factor activity but also involves an extended range of post- or cotranscriptional regulated events. Critical Issues: In addition to the regulation of gene promoter activity, alternative splicing, alternative polyadenylation, and regulation of messenger RNA stability play critical roles in changes in HO-1 gene expression levels, involving specific factors, proteins, and microRNAs. All potential targets for diagnosis or treatment of diseases are related to HO-1 dysregulation. Future Directions: Unbalances in the tightly regulated gene expression mechanisms lead to cell transformation and cancer development. Knowledge of these events and signal transduction cascades triggered by oncogenes in which HO-1 plays a critical role is of upmost importance for research in this field.
Collapse
Affiliation(s)
- María Victoria Medina
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daiana Sapochnik
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Garcia Solá
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Kim JS, Oh JM, Choi H, Kim SW, Kim SW, Kim BG, Cho JH, Lee J, Lee DC. Activation of the Nrf2/HO-1 pathway by curcumin inhibits oxidative stress in human nasal fibroblasts exposed to urban particulate matter. BMC Complement Med Ther 2020; 20:101. [PMID: 32228565 PMCID: PMC7106591 DOI: 10.1186/s12906-020-02886-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Particulate matter (PM) can cause various negative acute and chronic diseases of the respiratory system, including the upper airways. Curcumin has been reported to have anti-inflammatory and anti-oxidative effects; therefore, we investigated the effects of curcumin on nasal fibroblasts exposed to urban PM (UPM). METHODS Samples of inferior turbinate tissue were obtained from six patients. Flow cytometry was used to assess the levels of reactive oxygen species (ROS) following the treatment of nasal fibroblasts with UPM and/or curcumin. We evaluated the effects of UPM and/or curcumin on the expression of phosphorylated ERK, Nrf2, HO-1, and SOD2 in fibroblasts by Western blotting. RESULTS When UPM was applied to nasal fibroblasts, ROS production was significantly increased in a dose-dependent manner. UPM-exposed fibroblasts caused the activation of ERK to increase HO-1 expression and decrease SOD2 expression. Treatment with curcumin reduced the UPM-mediated increase in ROS; this decrease in ROS occurred in a dose-dependent manner. The UPM-induced activation of ERK was inhibited by curcumin. Nrf2 production was also promoted to increase the expression of HO-1 and SOD2 by curcumin. CONCLUSION Curcumin reduced ROS production caused by UPM in human nasal fibroblasts in a dose-dependent manner, suggesting that curcumin has anti-oxidative effects and may be useful in the treatment of nasal diseases caused by UPM, such as allergic and chronic rhinitis.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Eunpyeong St. Mary's Hospital, Seoul, Republic of Korea
| | - Jeong-Min Oh
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Soo Whan Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Byung Guk Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Eunpyeong St. Mary's Hospital, Seoul, Republic of Korea
| | - Jin Hee Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Yeouido St. Mary's Hospital, Seoul, Republic of Korea
| | - Joohyung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Dong Chang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
16
|
Kataura T, Saiki S, Ishikawa KI, Akamatsu W, Sasazawa Y, Hattori N, Imoto M. BRUP-1, an intracellular bilirubin modulator, exerts neuroprotective activity in a cellular Parkinson's disease model. J Neurochem 2020; 155:81-97. [PMID: 32128811 DOI: 10.1111/jnc.14997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 01/20/2023]
Abstract
Bilirubin, the end product of heme redox metabolism, has cytoprotective properties and is an essential metabolite associated with cardiovascular disease, inflammatory bowel disease, type 2 diabetes, and neurodegenerative diseases including Parkinson's disease (PD). PD is characterized by progressive degeneration of nigral dopaminergic neurons and is associated with elevated oxidative stress due to mitochondrial dysfunction. In this study, using a ratiometric bilirubin probe, we revealed that the mitochondrial inhibitor, rotenone, which is widely used to create a PD model, significantly decreased intracellular bilirubin levels in HepG2 cells. Chemical screening showed that BRUP-1 was a top hit that restored cellular bilirubin levels that were lowered by rotenone. We found that BRUP-1 up-regulated the expression level of heme oxygenase-1 (HO-1), one of the rate-limiting enzyme of bilirubin production via nuclear factor erythroid 2-related factor 2 (Nrf2) activation. In addition, we demonstrated that this Nrf2 activation was due to a direct inhibition of the interaction between Nrf2 and Kelch-like ECH-associated protein 1 (Keap1) by BRUP-1. Both HO-1 up-regulation and bilirubin restoration by BRUP-1 treatment were significantly abrogated by Nrf2 silencing. In neuronal PC12D cells, BRUP-1 also activated the Nrf2-HO-1 axis and increased bilirubin production, resulted in the suppression of neurotoxin-induced cell death, reactive oxygen species production, and protein aggregation, which are hallmarks of PD. Furthermore, BRUP-1 showed neuroprotective activity against rotenone-treated neurons derived from induced pluripotent stem cells. These findings provide a new member of Keap1-Nrf2 direct inhibitors and suggest that chemical modulation of heme metabolism using BRUP-1 may be beneficial for PD treatment.
Collapse
Affiliation(s)
- Tetsushi Kataura
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan.,Research Fellow, Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Kei-Ichi Ishikawa
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan.,Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan.,Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| |
Collapse
|
17
|
Duan L, Ramachandran A, Akakpo JY, Woolbright BL, Zhang Y, Jaeschke H. Mice deficient in pyruvate dehydrogenase kinase 4 are protected against acetaminophen-induced hepatotoxicity. Toxicol Appl Pharmacol 2019; 387:114849. [PMID: 31809757 DOI: 10.1016/j.taap.2019.114849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Though mitochondrial oxidant stress plays a critical role in the progression of acetaminophen (APAP) overdose-induced liver damage, the influence of mitochondrial bioenergetics on this is not well characterized. This is important, since lifestyle and diet alter hepatic mitochondrial bioenergetics and an understanding of its effects on APAP-induced liver injury is clinically relevant. Pyruvate dehydrogenase (PDH) is critical to mitochondrial bioenergetics, since it controls the rate of generation of reducing equivalents driving respiration, and pyruvate dehydrogenase kinase 4 (PDK4) regulates (inhibits) PDH by phosphorylation. We examined APAP-induced liver injury in PDK4-deficient (PDK4-/-) mice, which would have constitutively active PDH and hence elevated flux through the mitochondrial electron transport chain. PDK4-/- mice showed significant protection against APAP-induced liver injury when compared to wild type (WT) mice as measured by ALT levels and histology. Deficiency of PDK4 did not alter APAP metabolism, with similar APAP-adduct levels in PDK4-/- and WT mice, and no difference in JNK activation and translocation to mitochondria. However, subsequent amplification of mitochondrial dysfunction with release of mitochondrial AIF, peroxynitrite formation and DNA fragmentation were prevented. Interestingly, APAP induced a rapid decline in UCP2 protein levels in PDK4-deficient mice. These data suggest that adaptive changes in mitochondrial bioenergetics induced by enhanced respiratory chain flux in PDK4-/- mice render them highly efficient in handling APAP-induced oxidant stress, probably through modulation of UCP2 levels. Further investigation of these specific adaptive mechanisms would provide better insight into the control exerted by mitochondrial bioenergetics on cellular responses to an APAP overdose.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
18
|
Abdelnour SA, Abd El-Hack ME, Swelum AAA, Saadeldin IM, Noreldin AE, Khafaga AF, Al-Mutary MG, Arif M, Hussein ESOS. The Usefulness of Retinoic Acid Supplementation during In Vitro Oocyte Maturation for the In Vitro Embryo Production of Livestock: A Review. Animals (Basel) 2019; 9:ani9080561. [PMID: 31443306 PMCID: PMC6720576 DOI: 10.3390/ani9080561] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 01/31/2023] Open
Abstract
Simple Summary In this review, we provide the previous studies, state-of-the-art practices, and potential implications of retinoic acid for improving in vitro livestock embryo production. Abstract Retinoic acid (RA) is an indigenous metabolite and descriptive physiologically functioning constituent of vitamin A. Retinoids were documented as vital regulators for cell development and distinction, embryonic growth, and reproductive function in both male and female livestock. Previously, RA has been shown to have several positive impacts in vivo and in vitro and critically control many reproductive events, such as oocyte development, follicular growth, and early embryonic growth. In addition, RA manages apoptotic signaling and oxidative damages in cells. Recently, RA has been used widely in assisted reproductive technology fields, especially during in vitro embryo development in various mammalian species, including buffaloes, bovine, goats, sheep, pigs, and rabbits. However, the optimum concentration of RA greatly differs based on the condition of maturation media and species. Based on the obtained findings, it was generally accepted that RA enhances nuclear oocyte maturation, cleavage and maturation rates, blastocyst formation, and embryo development. As such, it possesses antioxidant properties against reactive oxygen species (ROS) and an anti-apoptotic effect through enhancing the transcription of some related genes such as superoxide dismutase, prostaglandin synthase, glutathione peroxidase, peroxiredoxins, and heme oxygenase. Therefore, the current review concludes that an addition of RA (up to 50 nM) has the potential to improve the oocyte maturation media of various species of livestock due to its antioxidant activity.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mohsen G Al-Mutary
- Basic Sciences Department, College of Education, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - El-Sayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
19
|
Sevoflurane has postconditioning as well as preconditioning properties against hepatic warm ischemia-reperfusion injury in rats. J Anesth 2019; 33:390-398. [PMID: 31053929 DOI: 10.1007/s00540-019-02642-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/06/2019] [Indexed: 01/26/2023]
Abstract
PURPOSE Ischemia-reperfusion (IR) injury is inevitable after liver transplantation and liver resection with inflow occlusion. Sevoflurane has been widely used during hepatobiliary surgery and was reported to exhibit preconditioning (PreC) properties against hepatic IR injury; however, its postconditioning (PostC) properties remain unknown. This study examined whether a clinically applicable dose of sevoflurane has PostC and PreC properties against hepatic IR injury and roles of heme oxygenase-1 (HO-1). METHODS Warm ischemia was induced in male Wistar rats, excluding the sham group, for 1 h, followed by 3 h of reperfusion. Group C received propofol from 60 min before ischemia until the end of the experimental procedure. In the SPreC and SPostC groups, propofol was replaced by 2.5% sevoflurane for 30 min from 35 min before ischemia in the SPreC group and for 30 min from 5 min before reperfusion in the SPostC group. The SPreC+Z and SPostC+Z groups received a HO-1 inhibitor, zinc protoporphyrin (Znpp), 60 min before ischemia, and sevoflurane PreC and PostC were induced. RESULTS Serum aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase levels, and histological damage scores in the SPreC and SPostC groups were significantly lower than those in group C. Inhibiting HO-1 with Znpp partially blocked these protective effects of sevoflurane. Sevoflurane PreC and PostC significantly increased the number of HO-1-positive Kupffer cells in comparison with group C, and Znpp prevented sevoflurane-induced HO-1 expression. CONCLUSION PostC and PreC by sevoflurane at a clinically applicable dose have equally protective effects against hepatic IR injury by increasing HO-1 expression.
Collapse
|
20
|
Khanal T, Leung YK, Jiang W, Timchenko N, Ho SM, Kim K. NR2E3 is a key component in p53 activation by regulating a long noncoding RNA DINO in acute liver injuries. FASEB J 2019; 33:8335-8348. [PMID: 30991008 DOI: 10.1096/fj.201801881rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Damage-induced long noncoding RNA (DINO) is a long noncoding RNA that directly interacts with p53 and thereby enhances p53 stability and activity in response to various cellular stresses. Here, we demonstrate that nuclear receptor subfamily 2 group E member 3 (NR2E3) plays a crucial role in maintaining active DINO epigenetic status for its proper induction and subsequent p53 activation. In acetaminophen (APAP)- or carbon tetrachloride-induced acute liver injuries, NR2E3 knockout (KO) mice exhibited far more severe liver injuries due to impaired DINO induction and p53 activation. Mechanistically, NR2E3 loss both in vivo and in vitro induced epigenetic DINO repression accompanied by reduced DINO chromatin accessibility. Furthermore, compared with the efficient reversal by a typical antidote N-acetylcysteine (NAC) treatment of APAP-induced liver injury in wild-type mice, the liver injury of NR2E3 KO mice was not effectively reversed, indicating that an intact NR2E3-DINO-p53-signaling axis is essential for NAC-mediated recovery against APAP-induced hepatotoxicity. These findings establish that NR2E3 is a critical component in p53 activation and a novel susceptibility factor to drug- or toxicant-induced acute liver injuries.-Khanal, T., Leung, Y.-K., Jiang, W., Timchenko, N., Ho, S.-M., Kim, K. NR2E3 is a key component in p53 activation by regulating a long noncoding RNA DINO in acute liver injuries.
Collapse
Affiliation(s)
- Tilak Khanal
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yuet-Kin Leung
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wang Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nicolai Timchenko
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shuk-Mei Ho
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kyounghyun Kim
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Al‐Kishali HA, Abd El Fattah MA, Mohammad WA, El‐Abhar HS. Cilostazol against 2,4,6‐trinitrobenzene sulfonic acid‐induced colitis: Effect on tight junction, inflammation, and apoptosis. JGH Open 2019; 3:281-289. [PMID: 31406920 PMCID: PMC6684512 DOI: 10.1002/jgh3.12148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/13/2018] [Accepted: 12/29/2018] [Indexed: 11/07/2022]
Abstract
Background Aim Methods Results Conclusion
Collapse
Affiliation(s)
- Hiba A Al‐Kishali
- Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityCairoEgypt
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityCairoEgypt
| | | | - Hanan S El‐Abhar
- Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityCairoEgypt
| |
Collapse
|
22
|
Gad A, Abu Hamed S, Khalifa M, Amin A, El-Sayed A, Swiefy SA, El-Assal S. Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo ( Bubalus bubalis) oocytes. Int J Vet Sci Med 2018; 6:279-285. [PMID: 30564610 PMCID: PMC6286416 DOI: 10.1016/j.ijvsm.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023] Open
Abstract
Retinoic acid, vitamin A metabolite, plays a role in oocyte development and maturation in different ways including gene expression alteration and/or prohibiting oxidative stress. The objective of this study was to examine the effect of 9-cis-retinoic acid (9-cisRA) on the quality and maturation rate of buffalo oocytes. Cumulus-oocyte complexes (COCs, n = 460) were collected from ovaries of slaughtered buffalos. Varying concentrations of 9-cisRA (0, 5, 50, and 200 nM) were added to the maturation medium, and the following parameters were analyzed: (i) maturation and cleavage rates, (ii) mitochondrial activity and reactive oxygen species (ROS) levels, (iii) expression level of antioxidant-related genes (PRDX1, SOD1, CAT, HOMX1, and GPX4) using RT-qPCR. Maturation rate was significantly improved in 5 nM 9-cisRA oocyte group (95.8%, P < .05) compared to control and other treatment groups (86.7% in control group). The same oocyte group exhibited significantly higher mitochondrial membrane potential activity and lower ROS accumulation level compared to other treatment groups. Antioxidant-related genes were up-regulated in oocytes matured with 5 or 50 nM 9-cisRA compared to control and 200 nM 9-cisRA groups. In contrast, 200 nM of 9-cisRA showed a clear down-regulation for antioxidant-related genes except for PRDX1. In conclusion, supplementation of 9-cisRA with a lower concentration (5 nM) to the buffalo oocytes maturation media promotes maturation rate through a protection mechanism that maintains adequate levels of antioxidant-related transcripts and improves mitochondrial activity. However, 9-cisRA has no significant effect on the cleavage rate of the treated oocytes.
Collapse
Affiliation(s)
- Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Said Abu Hamed
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Khalifa
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Ahmed Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ashraf El-Sayed
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Swiefy A. Swiefy
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Salah El-Assal
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
23
|
Waza AA, Hamid Z, Ali S, Bhat SA, Bhat MA. A review on heme oxygenase-1 induction: is it a necessary evil. Inflamm Res 2018; 67:579-588. [PMID: 29693710 DOI: 10.1007/s00011-018-1151-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is considered to be the main protein in diseases arising as a result of oxidative and inflammatory insults. Tremendous research has been carried out on HO-1 since years, pertaining its cytoprotective effect against oxidative injury and other cellular stresses. HO-1, by regulating intracellular levels of pro-oxidant heme, or by other benefits of its by-products such as carbon monoxide (CO) and biliverdin (BV) had become an important candidate protein to be up-regulated to combat diverse stressful events. Although the beneficial effects of HO-1 induction have been reported in a number of cells and tissues, a growing body of evidence indicates that this increased HO-1 expression may lead to the progression of several diseases such as neurodegeneration, carcinogenesis. But it is not clear, what accounts for the increased expression of HO-1 in cells and tissues. The observed friendly role of HO-1 in a wide range of stress conditions since times is now doubtful. Therefore, more studies are needed to elucidate the exact role of HO-1 in various stressful events. Being more concise, elucidating the effect of HO-1 up-regulation on critical genes involved in particular diseases such as cancer will help to a larger extent to comprehend the exact role of HO-1. This review will assist in understanding the dual role (protective and detrimental) of HO-1 and the signaling pathway involved and will help in unraveling the doubtful role of HO-1 induction.
Collapse
Affiliation(s)
- Ajaz Ahmad Waza
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, India.
| | - Zeenat Hamid
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sajad Ali
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, India
| | | |
Collapse
|
24
|
Park SA, Lee MH, Na HK, Surh YJ. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression. Oncotarget 2018; 8:164-178. [PMID: 27438141 PMCID: PMC5352084 DOI: 10.18632/oncotarget.10516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Estrogen (17β-estradiol, E2) undergoes oxidative metabolism by CYP1B1 to form 4-hydroxyestradiol (4-OHE2), a putative carcinogenic metabolite of estrogen. Our previous study showed that 4-OHE2-induced production of reactive oxygen species contributed to neoplastic transformation of human breast epithelial (MCF-10A) cells. In this study, 4-OHE2, but not E2, increased the expression of heme oxygenase-1 (HO-1), a sensor and regulator of oxidative stress, in MCF-10A cells. Silencing the HO-1 gene in MCF-10A cells suppressed 4-OHE2-induced cell proliferation and transformation. In addition, subcutaneous administration of 4-OHE2 markedly enhanced the growth of the MDA-MB-231 human breast cancer xenografts, which was retarded by zinc protoporphyrin, a pharmacological inhibitor of HO-1. 4-OHE2-induced HO-1 expression was mediated by NF-E2-related factor 2 (Nrf2). We speculate that an electrophilic quinone formed as a consequence of oxidation of 4-OHE2 binds directly to Kelch-like ECH-associated protein 1 (Keap1), an inhibitory protein that sequesters Nrf2 in the cytoplasm. This will diminish association between Nrf2 and Keap1. 4-OHE2 failed to interrupt the interaction between Keap1 and Nrf2 and to induce HO-1 expression in Keap1-C273S or C288S mutant cells. Lano-LC-ESI-MS/MS analysis in MCF-10A-Keap1-WT cells which were treated with 4-OHE2 revealed that the peptide fragment containing Cys288 gained a molecular mass of 287.15 Da, equivalent to the addition of a single molecule of 4-OHE2-derived ortho-quinones.
Collapse
Affiliation(s)
- Sin-Aye Park
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Mee-Hyun Lee
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul 136-742, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea.,Cancer Research Institute, Seoul National University, Seoul 110-799, South Korea
| |
Collapse
|
25
|
Lee YJ, Beak SY, Choi I, Sung JS. Quercetin and its metabolites protect hepatocytes against ethanol-induced oxidative stress by activation of Nrf2 and AP-1. Food Sci Biotechnol 2017; 27:809-817. [PMID: 30263806 DOI: 10.1007/s10068-017-0287-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/17/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022] Open
Abstract
Alcohol-induced liver disease progresses due to increased reactive oxygen species (ROS) and cellular lipid peroxidation. Quercetin is a flavonoid with strong antioxidant and hepatoprotective effects. We investigated whether 3'-O-methyl quercetin (3'MQ) and quercetin-3-O-glucuronide (Q3GA), two metabolites of quercetin, have protective effects against ethanol-induced hepatotoxicity. Cell viability was increased by quercetin, 3'MQ, and Q3GA in HepG2 hepatocarcinoma cells exposed to ethanol. Our results show that this effect was mediated by diminished ROS generation, decreased lipid peroxidation and up-regulation of antioxidant capacity, including glutathione, superoxide dismutase and catalase. Moreover, down-regulated heme oxygenase-1 (HO-1) expression by ethanol was restored by quercetin, 3'MQ, and Q3GA through the activation of nuclear factor E2-related factor 2 and activator protein-1, but not nuclear factor-kappa B. Overall results suggest that 3'MQ, Q3GA, and quercetin attenuate oxidative stress in hepatocytes exposed to ethanol by up-regulating HO-1 expression and can be used as therapeutic agents for ameliorating alcohol-induced liver disease.
Collapse
Affiliation(s)
- Yoo-Jung Lee
- 1Department of Life Science, Dongguk University-Seoul, Biomedi Campus, Dongguk-ro 32, Goyang, Gyeonggi-do 10326 Republic of Korea
| | - Song-Yi Beak
- 1Department of Life Science, Dongguk University-Seoul, Biomedi Campus, Dongguk-ro 32, Goyang, Gyeonggi-do 10326 Republic of Korea
| | - Inho Choi
- 2Department of Pharmaceutical Engineering, Hoseo University, Hoseo-ro 79-20, Asan, Chungcheongnam-do 31499 Republic of Korea
| | - Jung-Suk Sung
- 1Department of Life Science, Dongguk University-Seoul, Biomedi Campus, Dongguk-ro 32, Goyang, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
26
|
Tseng CK, Hsu SP, Lin CK, Wu YH, Lee JC, Young KC. Celastrol inhibits hepatitis C virus replication by upregulating heme oxygenase-1 via the JNK MAPK/Nrf2 pathway in human hepatoma cells. Antiviral Res 2017; 146:191-200. [PMID: 28935193 PMCID: PMC7113881 DOI: 10.1016/j.antiviral.2017.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/13/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
background and purpose Celastrol, a quinone methide triterpene isolated from the root extracts of Tripterygium wilfordii, can greatly induce the gene expression activity of heme oxygenase-1 (HO-1) to achieve disease prevention and control. HO-1 induction was recently shown to result in anti-HCV activity by inducing type I interferon and inhibiting hepatitis C virus (HCV) NS3/4A protease activity. The aim of the present study is to evaluate the anti-HCV activity of celastrol and characterize its mechanism of inhibition. Methods The anti-HCV activity of celastrol was evaluated using the HCV subgenomic replicon and HCVcc infection systems. The anti-HCV mechanism of celastrol targeting HO-1 expression was clarified using specific inhibitors against several signaling pathways. The transcriptional regulation of celastrol on target gene expression was determined using promoter-based reporter activity assay. The synergistic effect of celastrol and a numbers of clinically used anti-HCV drugs was determined via a drug combination assay. Results Celastrol inhibited HCV replication in both the HCV subgenomic and HCVcc infection systems with EC50 values of 0.37 ± 0.022 and 0.43 ± 0.019 μM, respectively. Celastrol-induced heme oxygenase 1 (HO-1) expression promoted antiviral interferon responses and inhibition of NS3/4A protease activity, thereby blocking HCV replication. These antiviral effects were abrogated by treatment with the HO-1-specific inhibitor SnMP or silencing of HO-1 expression by transfection of shRNA, which indicates that HO-1 induction contributes to the anti-HCV activity of celastrol. JNK mitogen-activated protein kinase and nuclear factor erythroid 2-related factor 2 (Nrf2) were confirmed to be involved in the inductive effect of celastrol on HO-1 expression. Celastrol exhibited synergistic effects in combination with interferon-alpha, the NS5A inhibitor daclatasvir, and the NS5B inhibitor sofosbuvir. Conclusion Celastrol can serve as a potential supplement for blocking HCV replication. Targeting the JNK/Nrf2/HO-1 axis presents a promising strategy against HCV infection. Celastrol inhibits HCV replication. Celastrol induces HO-1 production. Celastrol induces interferon-α production and inhibits HCV NS3/4A protease. Celastrol synergistically inhibits HCV replication in combination with IFN-α, sofosbuvir or daclatasvir.
Collapse
Affiliation(s)
- Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Kung-Chia Young
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
27
|
Kawakami K, Moritani C, Uraji M, Fujita A, Kawakami K, Hatanaka T, Suzaki E, Tsuboi S. Sake lees hydrolysate protects against acetaminophen-induced hepatotoxicity via activation of the Nrf2 antioxidant pathway. J Clin Biochem Nutr 2017; 61:203-209. [PMID: 29203962 PMCID: PMC5703781 DOI: 10.3164/jcbn.17-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen is a commonly used analgesic. However, an overdose of acetaminophen causes severe hepatotoxicity via depletion of hepatic glutathione. Here, we investigated the protective effects of sake lees hydrolysate against acetaminophen-induced hepatotoxicity in mice. Sake lees hydrolysate was administered orally to ICR mice for seven days. Six hours after acetaminophen treatment, the mice were sacrificed, and blood and liver samples were collected for analysis. Treatment with acetaminophen markedly increased the levels of serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase. Pretreatment with sake lees hydrolysate significantly prevented the increases in the serum levels of these enzymes and inhibited acetaminophen-mediated glutathione depletion. In addition, histopathological evaluation of the livers also revealed that sake lees hydrolysate prevented acetaminophen-induced centrilobular necrosis. The expression of γ-glutamylcysteine synthetase (γ-GCS), hemeoxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the liver were decreased after acetaminophen treatment, whereas pretreatment with sake lees hydrolysate led to an increased expression of all three proteins. Furthermore, sake lees hydrolysate induced the expression of these proteins in HepG2. These results suggested that sake lees hydrolysate could induces HO-1 and γ-GCS expression via activation of the Nrf2 antioxidant pathway, and protects against acetaminophen-induced hepatotoxicity in mice.
Collapse
Affiliation(s)
- Kayoko Kawakami
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Chie Moritani
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Misugi Uraji
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan
| | - Akiko Fujita
- SATAKE Corporation, 2-30 Saijo Nishihonmachi, Higashi-Hiroshima-shi, Hiroshima 739-8602, Japan
| | - Koji Kawakami
- SATAKE Corporation, 2-30 Saijo Nishihonmachi, Higashi-Hiroshima-shi, Hiroshima 739-8602, Japan
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan
| | - Etsuko Suzaki
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Seiji Tsuboi
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| |
Collapse
|
28
|
Kim DC, Lee DS, Ko W, Kim KW, Kim HJ, Yoon CS, Oh H, Kim YC. Heme Oxygenase-1-Inducing Activity of 4-Methoxydalbergione and 4'-Hydroxy-4-methoxydalbergione from Dalbergia odorifera and Their Anti-inflammatory and Cytoprotective Effects in Murine Hippocampal and BV2 Microglial Cell Line and Primary Rat Microglial Cells. Neurotox Res 2017; 33:337-352. [PMID: 28836188 DOI: 10.1007/s12640-017-9796-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/05/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022]
Abstract
Dalbergia odorifera T. Chen (Leguminosae) grows in Central and South America, Africa, Madagascar, and Southern Asia. D. odorifera possesses many useful pharmacological properties, such as antioxidative and anti-inflammatory activities in various cell types. 4-Methoxydalbergione (MTD) and 4'-hydroxy-4-methoxydalbergione (HMTD) were isolated from the EtOH extract of D. odorifera by several chromatography methods. The chemical structures were elucidated by nuclear magnetic resonance (NMR) and mass spectrum (MS). Anti-inflammatory and cytoprotective effects were examined using BV2 microglial cells and murine hippocampus. MTD and HMTD were demonstrated to induce heme oxygenase (HO)-1 protein levels through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in BV2 microglial cells, while only MTD upregulated HO-1 in HT22 cells. MTD and HMTD induced HO-1 expression through JNK MAPK pathway in BV2 cells, whereas only MTD activated the ERK and p38 pathways in HT22 cells. MTD was also shown to activated MTD and HMTD suppressed lipopolysaccharide-stimulated nitric oxide (NO) and prostaglandin E2 production by inhibiting inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in a dose-dependent manner. Furthermore, MTD and HMTD attenuated pro-inflammatory cytokine productions. These anti-inflammatory effects were found to be mediated through the nuclear factor-kappa B (NF-κB) pathway. MTD exhibited neuroprotective effects on glutamate-induced neurotoxicity by promoting HO-1 in HT22 cells. The anti-inflammatory and cytoprotective effects of MTD and HMTD were partially reversed by an HO inhibitor tin protoporphyrin IX. In addition, MTD and HMTD inhibited pro-inflammatory cytokines and NF-κB pathway in primary rat microglia. These findings suggest that MTD and HMTD have therapeutic potential against neurodegenerative diseases accompanied by microglial activation and/or oxidative cellular injury.
Collapse
Affiliation(s)
- Dong-Cheol Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Wonmin Ko
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hye Jin Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Chi-Su Yoon
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea.,Hanbang Body-Fluid Research Center, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea. .,Hanbang Body-Fluid Research Center, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
29
|
Cao M, Wang H, Guo L, Yang S, Liu C, Khor TO, Yu S, Kong AN. Dibenzoylmethane Protects Against CCl4-Induced Acute Liver Injury by Activating Nrf2 via JNK, AMPK, and Calcium Signaling. AAPS JOURNAL 2017; 19:1703-1714. [PMID: 28828752 DOI: 10.1208/s12248-017-0133-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/13/2017] [Indexed: 12/13/2022]
Abstract
Oxidative stress is an important pathogenic factor in various hepatic diseases. Nuclear factor-erythroid 2-related factor-2 (Nrf2), which coordinates the expression of an array of antioxidant and detoxifying genes, has been proposed as a potential target for prevention and treatment of liver disease. Dibenzoylmethane (DBM) is a minor ingredient in licorice that activates Nrf2 and prevents various cancers and oxidative damage. In the present study, the mechanisms by which DBM activates Nrf2 signaling were delineated, and its protective effect against carbon tetrachloride (CCl4)-induced liver injury was examined. DBM potently induced the expression of HO-1 in cells and in the livers of mice, but this induction was diminished in Nrf2-deficient mice and cells. Overexpression of Nrf2 enhanced DBM-induced HO-1 expression, while overexpression of a dominant-negative fragment of Nrf2 inhibited this induction. DBM treatment resulted in dissociation from Keap1 and nuclear translocation of Nrf2. Moreover, DBM activated Akt/protein kinase B, mitogen-activated protein kinases, and AMP-activated protein kinase and increased intracellular calcium levels. Inhibition of JNK, AMPK, or intracellular calcium signaling significantly suppressed the induction of HO-1 expression by DBM. Finally, DBM treatment significantly inhibited CCl4-induced acute liver injury in wild-type but not in Nrf2-deficient mice. Taken together, our results revealed the mechanisms by which DBM activates Nrf2 and induces HO-1 expression, and provide molecular basis for the design and development of DBM and its derivatives for prevention or treatment of liver diseases by targeting Nrf2.
Collapse
Affiliation(s)
- Mingnan Cao
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Huixia Wang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Limei Guo
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | - Simin Yang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Chun Liu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Tin Oo Khor
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China.
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
30
|
Zhang L, Zhang Z, Liu B, Jin Y, Tian Y, Xin Y, Duan Z. The Protective Effect of Heme Oxygenase-1 against Intestinal Barrier Dysfunction in Cholestatic Liver Injury Is Associated with NF-κB Inhibition. Mol Med 2017; 23:215-224. [PMID: 28805232 DOI: 10.2119/molmed.2017.00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is reported to protect against liver injury, but little is known about its effect on the intestinal barrier in cholestatic liver injury. In this study, we investigated the effects of HO-1 and its enzymatic by-product on intestinal barrier dysfunction in bile duct ligation (BDL) rats and explored the possible mechanism. The HO-1 inducer cobalt protoporphyrin (CoPP) and carbon monoxide-releasing molecule-2 (CORM-2) were used; the expression levels of tight junction (TJ) proteins, intestinal inflammation and NF-κB p65 were measured. For an in vitro experiment, stable Caco-2 cell lines were constructed, one overexpressed the HO-1 gene and another with that gene knocked down, and the specific NF-κB inhibitor JSH-23 was used. CoPP and CORM-2 treatment alleviated liver and intestinal mucosa injury in BDL rats; improved ZO-1, claudin-1 and PCNA expression; and reduced cell apoptosis and intestinal interleukin-6 (IL-6) expression. In vitro studies confirmed that HO-1, ZO-1 and occludin were overexpressed in HO-1-transfected Caco-2 cells, while decreased in the sh-HO-1 group. JSH-23 significantly increased occludin expression in both the HO-1 overexpression and sh-HO-1 groups, compared with their respective controls. HO-1 overexpression also inhibited the nuclear translocation of NF-κB p65 after lipopolysaccharide (LPS) treatment. Additionally, phospho-p65 expression in sh-HO-1 cells was significantly increased compared with that of the HO-1 overexpression group. In conclusion, HO-1 and CORM-2 improved intestinal epithelial barrier function in BDL-induced cholestatic liver injury mainly by restoring TJ, reducing cell apoptosis and intestinal inflammation. HO-1 exerts a protective effect, which is partially correlated with the regulation of NF-κB.
Collapse
Affiliation(s)
- Lijing Zhang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhenling Zhang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bojia Liu
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yanling Jin
- Department of Pathology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Tian
- College of Pharmacy, Dalian Medical University, Dalian 116011, China
| | - Yi Xin
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Zhijun Duan
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
31
|
Chen LC, Hu LH, Yin MC. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury - Corrected and republished from: Biomedicine (Taipei). 2016 Jun; 6 (2): 9. doi: 10.7603/s40681-016-0009-1PMCID: PMC4864770. Biomedicine (Taipei) 2017; 7:13. [PMID: 28612711 PMCID: PMC5479439 DOI: 10.1051/bmdcn/2017070207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 01/10/2023] Open
Abstract
Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP up-regulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepato-protective agent.
Collapse
Affiliation(s)
- Lung-Che Chen
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Hong Hu
- Shanghai Research Center for the Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mei-Chin Yin
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
32
|
Raish M, Ahmad A, Alkharfy KM, Ahamad SR, Mohsin K, Al-Jenoobi FI, Al-Mohizea AM, Ansari MA. Hepatoprotective activity of Lepidium sativum seeds against D-galactosamine/lipopolysaccharide induced hepatotoxicity in animal model. Altern Ther Health Med 2016; 16:501. [PMID: 27912738 PMCID: PMC5135812 DOI: 10.1186/s12906-016-1483-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fulminant hepatic failure (FHF) is clinical syndrome with very poor prognosis and high mortality there is urgent need for the development of safe and non-toxic hepatoprotective agents for the adequate management of hepatitis. Hepatoprotective effect of the Lepidium sativum ethanolic extract (LSEE) was assessed by D-galactosamine-induced/lipopolysaccharide (400 mg/kg and 30 μg/kg) liver damage model in rats. METHODS Hepatoprotective activity of LSEE (150 and 300 mg/kg) and silymarin on D-GalN/LPS induced FHF in rat was assessed using several liver function enzyme parameters. Antioxidant properties as antioxidant stress enzymes were assessed in hepatic Liver as well as mRNA expression of cytokines genes such as TNF-α, IL-6, and IL-10 and stress related genes iNOS and HO-1 were determined by RT-PCR. Protein expression of apoptotic genes were evaluated through western blot. MPO and NF-κB DNA-binding activity was analyzed by ELISA. The magnitude of hepatic impairment was investigated through histopathological evaluation. RESULTS Marked amelioration of hepatic injuries by attenuation of serum and lipid peroxidation has been observed as comparable with silymarin (25 mg/kg p.o). D-GalN/LPS induced significant decrease in oxidative stress markers protein level, and albumin. LSEE significantly down-regulated the D-GalN/LPS induced pro-inflammatory cytokines TNFα and IL-6 mRNA expression in dose dependent fashion about 0.47 and 0.26 fold and up-regulates the IL-10 by 1.9 and 2.8 fold, respectively. While encourages hepatoprotective activity by down-regulating mRNA expression of iNOS and HO-1. MPO activity and NF-κB DNA-binding effect significantly increased and was mitigated by LSEE in a dose-dependent style as paralleled with silymarin. CONCLUSION Our data suggests that pretreatment of LSEE down regulates the caspase 3 and up-regulates the BCl2 protein expression. The above findings revealed that Lepidium sativum has significant hepatoprotective activity.
Collapse
|
33
|
Venkatachalam AB, Livingstone SM, Hu Q, Ray A, Wood C, Cimen S, Alwayn IPJ. Delivery of Soluble Heme Oxygenase 1 Cell-Penetrating Peptide into Liver Cells in in vitro and ex vivo Models of Cold Ischemia. Eur Surg Res 2016; 58:51-68. [PMID: 27838689 DOI: 10.1159/000451079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/PURPOSE Liver transplantation is the treatment of choice in patients with end-stage liver disease. During liver transplantation, ischemia-reperfusion injury (IRI) occurs, which is an inevitable consequence of the transplantation process. To reduce the extent of cellular injury, one of the proteins that have been extensively investigated is heme oxygenase 1 (HO-1), which plays an important role in protecting the organs against IRI. The aim of this study was to introduce an active and functional HO-1 protein conjugated to a cell-penetrating peptide (CPP) in vitro and ex vivo into liver cells in hypothermic and anoxic conditions and to assert its cytoprotective effects. METHODS We generated an enzymatically active soluble (s)HO-1-CPP recombinant protein. The ability of the sHO-1-CPP protein to penetrate McA-RH7777, Clone 9, and Hep G2 cells, primary hepatocytes, and Kupffer and human umbilical vein endothelial cells in vitro, as well as its ability to penetrate a whole liver ex vivo under hypothermic and anoxic conditions, was assessed. An in vitro hypoxia-reoxygenation (HR) model was used to determine the cytoprotective effect of the sHO-1-CPP protein. RESULTS We showed that our recombinant protein sHO-1-CPP can cross cell membranes into rodent and human liver cells in vitro, and the results were further validated ex vivo, where rodent livers were perfused with an organ preservation solution supplemented with sHO-1-CPP under anoxic and hypothermic conditions. Immunohistochemistry revealed an intracellular localization of sHO-1-CPP in zones 1-3 of the perfused livers. The CPP did not exert any significant toxicity on the cells. Treating cells with sHO-1-CPP showed significant cytoprotection in the in vitro HR model. CONCLUSIONS Our findings show that the recombinant protein sHO-1-CPP can be successfully delivered to cells of a whole organ in an ex vivo hypothermic and anoxic perfusion model and that it provides cytoprotection to hepatocytes in an in vitro HR model. These results hold great potential for future repair and protection of donor organs. Future experiments are planned to confirm these data in in vivo models of IRI.
Collapse
|
34
|
Gao Y, Cao Z, Yang X, Abdelmegeed MA, Sun J, Chen S, Beger RD, Davis K, Salminen WF, Song BJ, Mendrick DL, Yu LR. Proteomic analysis of acetaminophen-induced hepatotoxicity and identification of heme oxygenase 1 as a potential plasma biomarker of liver injury. Proteomics Clin Appl 2016; 11. [PMID: 27634590 DOI: 10.1002/prca.201600123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. EXPERIMENTAL DESIGN Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. RESULTS Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. CONCLUSIONS AND CLINICAL RELEVANCE This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury.
Collapse
Affiliation(s)
- Yuan Gao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Mohamed A Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - William F Salminen
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Donna L Mendrick
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
35
|
Chen LC, Hu LH, Yin MC. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury. Biomedicine (Taipei) 2016; 6:9. [PMID: 27161000 PMCID: PMC4864770 DOI: 10.7603/s40681-016-0009-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 02/03/2023] Open
Abstract
Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP upregulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepatoprotective agent.
Collapse
Affiliation(s)
- Lung-Che Chen
- Department of Otolaryngology, Taipei Medical University Hospital, 110, Taipei, Taiwan
| | - Li-Hong Hu
- Shanghai Research Center for the Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Mei-Chin Yin
- Department of Nutrition, China Medical University, 404, No. 91, Hsueh-Shih Road, Taichung, China.
| |
Collapse
|
36
|
Lee DS, Nam TG, Jeong BS, Jeong GS. The Aminopyridinol Derivative BJ-1201 Protects Murine Hippocampal Cells against Glutamate-Induced Neurotoxicity via Heme Oxygenase-1. Molecules 2016; 21:molecules21050594. [PMID: 27164069 PMCID: PMC6274493 DOI: 10.3390/molecules21050594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/25/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the brain. It can cause neuronal cell damage in the context of oxidative stress. BJ-1201 is a derivative of the compound aminopyridinol, which is known for its antioxidant activity. In this study, we examined the effect of BJ-1201, a 6-(diphenylamino)-2,4,5-trimethylpyridin-3-ol compound, on neuroprotection in HT22 cells. Our data showed that BJ-1201 can protect HT22 cells against glutamate-induced cell cytotoxicity. In addition, BJ-1201 upregulated heme oxygenase-1 (HO-1) to levels comparable to those of the CoPP-treated group. BJ-1201 treatment induced phosphorylation of JNK, but not p38-MAPK or ERK. It also increased the signal in the reporter assay based on β-galactosidase activity driven by the nuclear transcription factor erythroid-2 related factor 2 (Nrf2) promoter harboring antioxidant response elements (AREs) and induced the translocation of Nrf2. These results demonstrate that BJ-1201 may be a good therapeutic platform against neurodegenerative diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea.
| | - Tae-Gyu Nam
- Department of Pharmacy, Hanyang University, Ansan 15588, Korea.
| | | | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea.
| |
Collapse
|
37
|
Wang L, Ci X, Lv H, Wang X, Qin FX, Cheng G. Isotetrandrine ameliorates tert-butyl hydroperoxide-induced oxidative stress through upregulation of heme oxygenase-1 expression. Exp Biol Med (Maywood) 2016; 241:1568-76. [PMID: 27190261 DOI: 10.1177/1535370216647122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/06/2016] [Indexed: 12/19/2022] Open
Abstract
1R, 1'S-isotetrandrine, a naturally occurring plant alkaloid found in Mahonia of Berberidaceae, possesses anti-inflammatory, antibacterial, and antiviral properties, but the antioxidative activity and mechanism action remain unclear. In this study, we demonstrated the antioxidative effect and mechanism of 1R, 1'S-isotetrandrine against tert-butyl hydroperoxide-induced oxidative damage in HepG2 cells. We found that 1R, 1'S-isotetrandrine suppressed cytotoxicity, reactive oxygen species generation, and glutathione depletion. Additionally, our study confirmed that 1R, 1'S-isotetrandrine significantly increased the antioxidant enzyme heme oxygenase-1 expression and nuclear translocation of factor-erythroid 2 p45-related factor 2 (Nrf2). Specifically, the nuclear translocation of Nrf2 induced by 1R, 1'S-isotetrandrine was associated with Nrf2 negative regulatory protein Keap1 inactivation and phosphorylation of both extracellular signal-regulated protein kinase and c-Jun NH2-terminal kinase. Preincubation with thiol-reducing agents reduced 1R, 1'S-isotetrandrine-induced heme oxygenase-1 expression, and treatment with either extracellular signal-regulated protein kinase or c-Jun NH2-terminal kinase inhibitors attenuated the levels of 1R, 1'S-isotetrandrine-induced Nrf2 activation and heme oxygenase-1 expression. Furthermore, the cytoprotective effect of 1R, 1'S-isotetrandrine was abolished by heme oxygenase-1, extracellular signal-regulated protein kinase, and c-Jun NH2-terminal kinase inhibitors. These results indicated that the 1R, 1'S-isotetrandrine ameliorated tert-butyl hydroperoxide-induced oxidative damage through upregulation of heme oxygenase-1 expression by the dissociation of Nrf2 from Nrf2-Keap1 complex via extracellular signal-regulated protein kinase and c-Jun NH2-terminal kinase activation and Keap1 inactivation.
Collapse
Affiliation(s)
- Lidong Wang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Hongming Lv
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Xiaosong Wang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - F Xiaofeng Qin
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China Suzhou Institute of Systems Medicine, Suzhou 215123, China Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Genhong Cheng
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China Suzhou Institute of Systems Medicine, Suzhou 215123, China Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Maeda H, Yoshida KI. Intermittent hypoxia upregulates hepatic heme oxygenase-1 and ferritin-1, thereby limiting hepatic pathogenesis in rats fed a high-fat diet. Free Radic Res 2016; 50:720-31. [PMID: 27021659 DOI: 10.3109/10715762.2016.1170125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is prevalent in patients with sleep apnea syndrome (SAS). Intermittent hypoxia (IH) and a high-fat diet (HFD) reproduce SAS and NAFLD, respectively, in rodents. In this study, rats were fed either an HFD or a standard diet (SD) for 2 weeks, and breathed either IH air or normoxic air for 4 days (early phase) or 6 weeks (late phase), with the same diets maintained during the exposure. HFD increased hepatic lipid accumulation, as detected by oil-red staining and triglyceride content. However, IH exposure reversed the hepatic steatosis at the late phase in these HFD-rats. IH exposure also increased hepatic expression of HO-1 and iron-binding protein ferritin-1 at the late phase, in association with increase in serum iron, bilirubin, and hepatic levels of lipid peroxides, such as 4-hydroxy-2-nonenal (HNE). IH exposure increased serum levels of hemoglobin (Hb) at the early phase and immunofluorescence of Hb and HO-1 in CD68-positive Kupffer cells (KCs) at the late phase. These findings support that IH induces erythrocytosis, erythro-phagocytosis, and generation of Hb in the KCs. The Hb promotes HO-1 expression in KCs, thereby produces iron, bilirubin, and carbon monoxide (CO). The iron would be either sequestrated by ferritin-1, transferred to the bone marrow for erythropoiesis, or would produce hydroxyradicals and HNE in the liver of rats fed an HFD. HNE might also contribute to the upregulation of HO-1, transferrin-1, and IκB, thereby limiting hepatic steatosis and inflammation via inhibition of nuclear factor κB (NFκB) activation.
Collapse
Affiliation(s)
- Hideyuki Maeda
- a Department of Forensic Medicine , Tokyo Medical University , Shinjyuku-ku , Tokyo , Japan
| | - Ken-Ichi Yoshida
- a Department of Forensic Medicine , Tokyo Medical University , Shinjyuku-ku , Tokyo , Japan
| |
Collapse
|
39
|
Park JY, Han X, Piao MJ, Oh MC, Fernando PMDJ, Kang KA, Ryu YS, Jung U, Kim IG, Hyun JW. Hyperoside Induces Endogenous Antioxidant System to Alleviate Oxidative Stress. J Cancer Prev 2016; 21:41-7. [PMID: 27051648 PMCID: PMC4819665 DOI: 10.15430/jcp.2016.21.1.41] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
Background: Hyperoside, a flavonoid which is mainly found in Hypericum perforatum L., has many biological effects. One of the most important effects is to prevent the oxidative stress induced by reactive oxygen species. However, the molecular mechanisms underlying its effect are not fully understood. Oxidative stress is implicated in the occurrence of various physical diseases. A wide array of enzymatic antioxidant defense systems include NADH: quinone oxidoreductase 1, superoxide dismutase, and heme oxygenase-1 (HO-1). In the present study, the protective effects of hyperoside against hydrogen peroxide-induced oxidative stress in human lens epithelial cells, HLE-B3, were investigated in terms of HO-1 induction. Methods: The protein and mRNA expressions of HO-1 were examined by Western blotting and reverse transcriptase-PCR assays, respectively. To evaluate the ability of hyperoside to activate nuclear factor erythroid 2-related factor 2 (Nrf2), Western blotting and electrophoretic mobility shift assay were performed with nuclear extracts prepared from HLE-B3 cells treated with hyperoside. The activation of extracellular signal-regulated kinase (ERK), the upstream kinase of Nrf2 signaling, was monitored by Western blot analysis. The protective effect of hyperoside in HLE-B3 cells against hydrogen peroxide was performed by MTT assay. Results: Hyperoside increased both the mRNA and protein expression of HO-1 in a time- and dose-dependent manner. In addition, hyperoside elevated the level of of Nrf2 and its antioxidant response element-binding activity, which was modulated by upstream of ERK. Moreover, it activated ERK and restored cell viability which was decreased by hydrogen peroxide. Conclusions: Hyperoside is an effective compound to protect cells against oxidative stress via HO-1 induction.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Xia Han
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Mei Jing Piao
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Min Chang Oh
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | | | - Kyoung Ah Kang
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Yea Seong Ryu
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup, Korea University of Science and Technology, Daejeon, Korea
| | - In Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Korea University of Science and Technology, Daejeon, Korea; Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon, Korea
| | - Jin Won Hyun
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
40
|
Singh D, Cho WC, Upadhyay G. Drug-Induced Liver Toxicity and Prevention by Herbal Antioxidants: An Overview. Front Physiol 2016; 6:363. [PMID: 26858648 PMCID: PMC4726750 DOI: 10.3389/fphys.2015.00363] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
The liver is the center for drug and xenobiotic metabolism, which is influenced most with medication/xenobiotic-mediated toxic activity. Drug-induced hepatotoxicity is common and its actual frequency is hard to determine due to underreporting, difficulties in detection or diagnosis, and incomplete observation of exposure. The death rate is high, up to about 10% for drug-induced liver damage. Endorsed medications represented >50% of instances of intense liver failure in a study from the Acute Liver Failure Study Group of the patients admitted in 17 US healing facilities. Albeit different studies are accessible uncovering the mechanistic aspects of medication prompted hepatotoxicity, we are in the dilemma about the virtual story. The expanding prevalence and effectiveness of Ayurveda and natural products in the treatment of various disorders led the investigators to look into their potential in countering drug-induced liver toxicity. Several natural products have been reported to date to mitigate the drug-induced toxicity. The dietary nature and less adverse reactions of the natural products provide them an extra edge over other candidates of supplementary medication. In this paper, we have discussed the mechanism involved in drug-induced liver toxicity and the potential of herbal antioxidants as supplementary medication.
Collapse
Affiliation(s)
- Divya Singh
- Department of Biology, City College of New YorkNew York, NY, USA
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth HospitalKowloon, Hong Kong
| | | |
Collapse
|
41
|
Yoshida T, Ashino T, Kobayashi Y. Chemical-induced coordinated and reciprocal changes in heme metabolism, cytochrome P450 synthesis and others in the liver of humans and rodents. J Toxicol Sci 2016; 41:SP89-SP103. [PMID: 28320986 DOI: 10.2131/jts.41.sp89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A wide variety of drugs and chemicals have been shown to produce induction and inhibition of heme-metabolizing enzymes, and of drug-metabolizing enzymes, including cytochrome P450s (P450s, CYPs), which consist of many molecular species with lower substrate specificity. Such chemically induced enzyme alterations are coordinately or reciprocally regulated through the same and/or different signal transductions. From the toxicological point of view, these enzymatic changes sometimes exacerbate inherited diseases, such as precipitation of porphyrogenic attacks, although the induction of these enzymes is dependent on the animal species in response to the differences in the stimuli of the liver, where they are also metabolized by P450s. Since P450s are hemoproteins, their induction and/or inhibition by chemical compounds could be coordinately accompanied by heme synthesis and/or inhibition. This review will take a retrospective view of research works carried out in our department and current findings on chemical-induced changes in hepatic heme metabolism in many places, together with current knowledge. Specifically, current beneficial aspects of induction of heme oxygenase-1, a rate-limiting heme degradation enzyme, and its relation to reciprocal and coordinated changes in P450s, with special reference to CYP2A5, in the liver are discussed. Mechanistic studies are also summarized in relation to current understanding on these aspects. Emphasis is also paid to an example of a single chemical compound that could cause various changes by mediating multiple signal transduction systems. Current toxicological studies have been developing by utilizing a sophisticated "omics" technology and survey integrated changes in the tissues produced by the administration of a chemical, even in time- and dose-dependent manners. Toxicological studies are generally carried out step by step to determine and elucidate mechanisms produced by drugs and chemicals. Such approaches are correct; however, current "omics" technology can clarify overall changes occurring in the cells and tissues after treating animals with drugs and chemicals, integrate them and discuss the results. In the present review, we will discuss chemical-induced similar changes of heme synthesis and degradation, and of P450s and finally convergence to similar or different directions.
Collapse
|
42
|
The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1958174. [PMID: 26697129 PMCID: PMC4677237 DOI: 10.1155/2016/1958174] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.
Collapse
|
43
|
Meng X, Kim I, Jeong YJ, Cho YM, Kang SC. Anti-inflammatory effects of Saururus chinensis aerial parts in murine macrophages via induction of heme oxygenase-1. Exp Biol Med (Maywood) 2015; 241:396-408. [PMID: 26553125 DOI: 10.1177/1535370215614657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
Saururus chinensis (Lour.) Baill. is a perennial plant distributed throughout Northeast Asia and its roots have been widely used as a traditional medicine for hepatitis, asthma, pneumonia, and gonorrhea. This study was designed to investigate the anti-inflammatory activity of an extract of S. chinensis of the aerial parts (rather than the root), and the signaling pathway responsible for this effect in lipopolysaccharide-stimulated murine macrophages. The subfraction 4 (SCF4) from the n-hexane layer of the ethanol extract of the aerial parts of S. chinensis exhibited the highest nitrite-inhibitory activity. SCF4 significantly inhibited the production of nitrite and the expression of pro-inflammatory mediators via heme oxygenase-1 upregulation. SCF4 caused significant phosphorylation of p38 MAPK and Akt, which subsequently induced the nuclear translocation of p-p65 nuclear factor-κB and Nrf2. SCF4 also suppressed the phosphorylation of signal transducers and activators of transcription 1 (p-STAT1). The heme oxygenase-1 inhibitor zinc protoporphyrin attenuated the inhibitory effect of SCF4 on lipopolysaccharide-stimulated nitrite production and expression of inflammatory mediators, tumor necrosis factor alpha, and p-STAT1. We identified sauchinone as the active compound in S. chinensis extract and SCF4. Sauchinone was shown to significantly inhibit nitrite production and inflammatory mediators expression via heme oxygenase-1 upregulation. These results suggest that S. chinensis extract, SCF4, and its active compound, sauchinone, could be used as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Xue Meng
- Department of Life Science, Gachon University, Seongnam 461-701, Republic of Korea
| | - Inhye Kim
- Department of Life Science, Gachon University, Seongnam 461-701, Republic of Korea
| | - Yong Joon Jeong
- Department of Life Science, Gachon University, Seongnam 461-701, Republic of Korea
| | - Young Mi Cho
- Department of Life Science, Gachon University, Seongnam 461-701, Republic of Korea
| | - Se Chan Kang
- Department of Life Science, Gachon University, Seongnam 461-701, Republic of Korea
| |
Collapse
|
44
|
Yang HL, Korivi M, Lin MW, Chen SC, Chou CW, Hseu YC. Anti-angiogenic properties of coenzyme Q0 through downregulation of MMP-9/NF-κB and upregulation of HO-1 signaling in TNF-α-activated human endothelial cells. Biochem Pharmacol 2015; 98:144-156. [PMID: 26348871 DOI: 10.1016/j.bcp.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023]
Abstract
Various coenzyme Q (CoQ) analogs have been reported as anti-inflammatory and antioxidant substances. However, coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a novel quinone derivative, has not been well studied for its pharmacological efficacies, and its response to cytokine stimulation remains unclear. Therefore, we investigated the potential anti-angiogenic properties of CoQ0 in human endothelial (EA.hy 926) cells against tumor necrosis factor-α (TNF-α) stimulation. We found that the non-cytotoxic concentrations of CoQ0 (2.5-10μM) significantly suppressed the TNF-α-induced migration/invasion and tube formation abilities of endothelial cells. CoQ0 suppressed TNF-α-induced activity and protein expressions of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) followed by an abridged adhesion of U937 leukocytes to endothelial cells. CoQ0 treatment remarkably downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) possibly through suppressed I-κBα degradation. Furthermore, CoQ0 triggered the expressions of heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCLC), followed by an increased nuclear accumulation of NF-E2 related factor-2 (Nrf2)/antioxidant response element (ARE) activity. In agreement with these, intracellular glutathione levels were significantly increased in CoQ0 treated cells. More interestingly, knockdown of HO-1 gene by specific shRNA showed diminished anti-angiogenic effects of CoQ0 against TNF-α-induced invasion, tube formation and adhesion of leukocyte to endothelial cells. Our findings reveal that CoQ0 protective effects against cytokine-stimulation are mediated through the suppression of MMP-9/NF-κB and/or activation of HO-1 signaling cascades. This novel finding emphasizes the pharmacological efficacies of CoQ0 to treat inflammation and angiogenesis.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ming-Wei Lin
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li 32001, Taiwan
| | - Chih-Wei Chou
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
45
|
Tang J, Li L, Li CM, Wu J, Sun Y, Wang GL. Upregulation of HO-1 with Haemin Alleviates LPS-Stimulated Pro-inflammatory Responses Through Downregulation of p38 Signalling Pathways in Rat Liver. Scand J Immunol 2015; 82:443-51. [DOI: 10.1111/sji.12352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/10/2015] [Indexed: 12/21/2022]
Affiliation(s)
- J. Tang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - L. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - C.-M. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - J. Wu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Y. Sun
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - G.-L. Wang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
46
|
Shen YF, Tsai MR, Chen SC, Leung YS, Hsieh CT, Chen YS, Huang FL, Obena RP, Zulueta MML, Huang HY, Lee WJ, Tang KC, Kung CT, Chen MH, Shieh DB, Chen YJ, Liu TM, Chou PT, Sun CK. Imaging Endogenous Bilirubins with Two-Photon Fluorescence of Bilirubin Dimers. Anal Chem 2015; 87:7575-82. [DOI: 10.1021/acs.analchem.5b01903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Fang Shen
- 3D
Printing Medical Research Center, China Medical University Hospital, Taichung
City 40447, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | - Min-Huey Chen
- Graduate
Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10051, Taiwan
| | - Dar-Bin Shieh
- Institute
of Oral Medicine, National Cheng-Kung University, Tainan 70101, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Lin C, Lin HY, Chen JH, Tseng WP, Ko PY, Liu YS, Yeh WL, Lu DY. Effects of paeonol on anti-neuroinflammatory responses in microglial cells. Int J Mol Sci 2015; 16:8844-60. [PMID: 25906473 PMCID: PMC4425112 DOI: 10.3390/ijms16048844] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/07/2015] [Accepted: 04/14/2015] [Indexed: 12/17/2022] Open
Abstract
Increasing studies suggest that inflammatory processes in the central nervous system mediated by microglial activation plays an important role in numerous neurodegenerative diseases. Development of planning for microglial suppression is considered a key strategy in the search for neuroprotection. Paeonol is a major phenolic component of Moutan Cortex, widely used as a nutrient supplement in Chinese medicine. In this study, we investigated the effects of paeonol on microglial cells stimulated by inflammagens. Paeonol significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with paeonol also reduced reactive oxygen species (ROS) production and inhibited an ATP-induced increased cell migratory activity. Furthermore, the inhibitory effects of neuroinflammation by paeonol were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) and glycogen synthase kinase 3 α/β (GSK 3α/β). Treatment with AMPK or GSK3 inhibitors reverse the inhibitory effect of neuroinflammation by paeonol in microglial cells. Furthermore, paeonol treatment also showed significant improvement in the rotarod performance and microglial activation in the mouse model as well. The present study is the first to report a novel inhibitory role of paeonol on neuroinflammation, and presents a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Hsiao-Yun Lin
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40402, Taiwan.
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
| | - Wen-Pei Tseng
- Graduate Institute of Sports and Health, National Changhua University of Education, Changhua 500, Taiwan.
| | - Pei-Ying Ko
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Shu Liu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40402, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 40402, Taiwan.
| |
Collapse
|
48
|
Ahmad A, Raish M, Ganaie MA, Ahmad SR, Mohsin K, Al-Jenoobi FI, Al-Mohizea AM, Alkharfy KM. Hepatoprotective effect of Commiphora myrrha against d-GalN/LPS-induced hepatic injury in a rat model through attenuation of pro inflammatory cytokines and related genes. PHARMACEUTICAL BIOLOGY 2015; 53:1759-1767. [PMID: 25864920 DOI: 10.3109/13880209.2015.1005754] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Commiphora myrrha (Burseraceae), a shrub resembling a small tree, has been used for several centuries for the treatment of various diseases. OBJECTIVE This study investigates the hepatoprotective activity of C. myrrha ethanol extract against d-galactosamine/lipopolysaccharide (d-GalN/LPS)-induced acute hepatic injury in an animal model. MATERIALS AND METHODS Rats were pretreated with ethanolic extract C. myrrha (250 and 500 mg/kg; p.o.) for 7 d prior to the induction of an acute phase response by d-GalN/LPS. Animals were sacrificed 24 h after d-GalN/LPS (800 mg/kg and 50 µg/kg i.p.) administration for the biochemical and histological analyses. RESULTS The administration of d-GalN/LPS increased plasma aminotransferases (174.47 ± 4.5761 and 260.96 ± 1.9839 µkat/l) and total bilirubin levels (1.012 ± 0.0288 mg/dl), which were attenuated by C. myrrha treatment. Hepatic lipid peroxidation activity and nitric oxide content also increased, while the antioxidant activity measured by GSH (0.76 nmol/g protein), SOD (81.91 U/mg protein), and CAT (15.78 U/mg protein) was reduced. Commiphora myrrha provided significant restoration of GSH (0.815 nmol/gm protein), SOD (140.57 U/mg protein), and CAT (27.02 U/mg protein) levels. Furthermore, the acute phase response elicited by d-GalN/LPS administration enhanced mRNA expressions of TNF-α, IL-6, IL-10, iNOS-2, and HO-1, which were ameliorated by C. myrrha treatment. DISCUSSION AND CONCLUSION These findings indicate that C. myrrha considerably reduces the oxidative stress of d-GalN/LPS-induced hepatic injury via multiple pathways including adown regulation of inflammatory mediators and cytokines. Such a property might be sufficient to combat cellular damage caused by various conditions that resemble fulminant hepatitis and could be of a potential clinical application.
Collapse
Affiliation(s)
- Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chang PF, Lin YC, Liu K, Yeh SJ, Ni YH. Heme oxygenase-1 gene promoter polymorphism and the risk of pediatric nonalcoholic fatty liver disease. Int J Obes (Lond) 2015; 39:1236-40. [PMID: 25835554 DOI: 10.1038/ijo.2015.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/16/2015] [Accepted: 03/29/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Oxidative stress and the insulin-resistant state are thought to be key components in the pathogenesis of pediatric nonalcoholic fatty liver disease (NAFLD). Heme oxygenase (HO) is important in the defense against oxidative stress. This study aimed to assess the association of HO-1 gene promoter polymorphism and insulin resistance with NAFLD among obese children. METHODS A total of 101 obese children aged 6-17 years were recruited. Anthropometric, serum biochemical variables and biomarkers for glucose and insulin metabolism were measured. We screened the allelic frequencies of (GT)n repeats in the HO-1 gene promoter among these obese children. NAFLD was determined through liver ultrasonography. Because the distribution of numbers of (GT)n repeats was bimodal, we divided the alleles into two classes: class S included shorter (27) repeats, and class L included longer (⩾27) repeats. We assessed the effects of the length of (GT)n repeats in HO-1 gene promoter on pediatric NAFLD. RESULTS Of the 101 obese subjects, 27 (26.7%) had NAFLD. The alanine aminotransferase level was higher in patients carrying L alleles (L/L and L/S) than patients with S alleles (S/S) (46.2±49.3 IU|(-1) versus 30.2±20.1 IU|(-1); P=0.027). The significant risk factors for pediatric NAFLD were patients carrying L alleles (L/L and L/S) (odds ratio (OR)=18.84; 95% confidence interval (CI): 1.45-245.22; P=0.025), homeostasis model assessment of insulin resistance (OR=1.40; 95% CI: 1.07-1.83; P=0.014) and age (OR=1.24; 95% CI: 1.03-1.50; P=0.025). CONCLUSION In this hospital-based study, the obese children with longer GT repeats in the HO-1 gene promoter and insulin resistance were susceptible to NAFLD.
Collapse
Affiliation(s)
- P-F Chang
- 1] Department of Pediatrics, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan [2] Department of Healthcare Administration, Oriental Institute of Technology, Pan-Chiao, New Taipei, Taiwan
| | - Y-C Lin
- 1] Department of Pediatrics, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan [2] Department of Healthcare Administration, Oriental Institute of Technology, Pan-Chiao, New Taipei, Taiwan
| | - K Liu
- Department of Pediatrics, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan
| | - S-J Yeh
- 1] Department of Pediatrics, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan [2] Department of Healthcare Administration, Oriental Institute of Technology, Pan-Chiao, New Taipei, Taiwan
| | - Y-H Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
50
|
Byun HG, Lee JK. Chlorella ethanol extract induced phase II enzyme through NFE2L2 (nuclear factor [erythroid-derived] 2-like 2, NRF2) activation and protected ethanol-induced hepatoxicity. J Med Food 2015; 18:182-9. [PMID: 25602788 DOI: 10.1089/jmf.2014.3159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the hepatoprotective effects of ethanol extracts from Chlorella vulgaris (CH) on animals. We measured its effect on the quinone reductase (QR) activity in Hepa1c1c7 cells, finding that CH induced a significantly higher QR activity in these cells. We isolated the active fraction (CH F4-2) from CH using chromatography methods. CH F4-2 may activate cellular antioxidant enzymes through upregulation of the Nrf2 pathway in hepatocarcinoma cells with CH F4-2 (25.0-200 μg/mL) for 48 h. Furthermore, CH F4-2 increased the expression of NQO1 [ NAD(P)H quinone oxidoreductase, also known as QR], heme oxygenase-1, and glutathione-S-transferase P. Moreover, we found that ethanol-induced hepatic pathological changes-elevations in glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, γ-glutamyltransferase, and lactate dehydrogenase-were significantly decreased. The inhibitory effect of CH on alcohol-induced liver injury was associated with the suppression of alcohol-induced increases in intestinal permeability. The ethanol extract from CH was found to induce QR activation, making it a potentially good candidate for a hepatoprotection agent.
Collapse
Affiliation(s)
- Hee-Guk Byun
- Department of Marine Biotechnology, Gangneung-Wonju National University , Gangneung, Korea
| | | |
Collapse
|