1
|
Bakheet T, Al-Mutairi N, Doubi M, Al-Ahmadi W, Alhosaini K, Al-Zoghaibi F. A Computational Recognition Analysis of Promising Prognostic Biomarkers in Breast, Colon and Lung Cancer Patients. Int J Mol Sci 2025; 26:1017. [PMID: 39940786 PMCID: PMC11817791 DOI: 10.3390/ijms26031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Breast, colon, and lung carcinomas are classified as aggressive tumors with poor relapse-free survival (RFS), progression-free survival (PF), and poor hazard ratios (HRs) despite extensive therapy. Therefore, it is essential to identify a gene expression signature that correlates with RFS/PF and HR status in order to predict treatment efficiency. RNA-binding proteins (RBPs) play critical roles in RNA metabolism, including RNA transcription, maturation, and post-translational regulation. However, their involvement in cancer is not yet fully understood. In this study, we used computational bioinformatics to classify the functions and correlations of RBPs in solid cancers. We aimed to identify molecular biomarkers that could help predict disease prognosis and improve the therapeutic efficiency in treated patients. Intersection analysis summarized more than 1659 RBPs across three recently updated RNA databases. Bioinformatics analysis showed that 58 RBPs were common in breast, colon, and lung cancers, with HR values < 1 and >1 and a significant Q-value < 0.0001. RBP gene clusters were identified based on RFS/PF, HR, p-value, and fold induction. To define union RBPs, common genes were subjected to hierarchical clustering and were classified into two groups. Poor survival was associated with high genes expression, including CDKN2A, MEX3A, RPL39L, VARS, GSPT1, SNRPE, SSR1, and TIA1 in breast and colon cancer but not with lung cancer; and poor survival was associated with low genes expression, including PPARGC1B, EIF4E3, and SMAD9 in breast, colon, and lung cancer. This study highlights the significant contribution of PPARGC1B, EIF4E3, and SMAD9 out of 11 RBP genes as prognostic predictors in patients with breast, colon, and lung cancers and their potential application in personalized therapy.
Collapse
Affiliation(s)
- Tala Bakheet
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (T.B.); (N.A.-M.); (M.D.); (W.A.-A.)
| | - Nada Al-Mutairi
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (T.B.); (N.A.-M.); (M.D.); (W.A.-A.)
| | - Mosaab Doubi
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (T.B.); (N.A.-M.); (M.D.); (W.A.-A.)
| | - Wijdan Al-Ahmadi
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (T.B.); (N.A.-M.); (M.D.); (W.A.-A.)
| | - Khaled Alhosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Fahad Al-Zoghaibi
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (T.B.); (N.A.-M.); (M.D.); (W.A.-A.)
| |
Collapse
|
2
|
Wang S, Sun H, Chen G, Wu C, Sun B, Lin J, Lin D, Zeng D, Lin B, Huang G, Lu X, Lin H, Liang Y. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities. Crit Rev Oncol Hematol 2024; 195:104271. [PMID: 38272151 DOI: 10.1016/j.critrevonc.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) refer to a class of proteins that participate in alternative splicing, RNA stability, polyadenylation, localization and translation of RNAs, thus regulating gene expression in post-transcriptional manner. Dysregulation of RNA-RBP interaction contributes to various diseases, including cancer. In breast cancer, disorders in RBP expression and function influence the biological characteristics of tumor cells. Targeting RBPs has fostered the development of innovative therapies for breast cancer. However, the RBP-related mechanisms in breast cancer are not completely clear. In this review, we summarize the regulatory mechanisms of RBPs and their signaling crosstalk in breast cancer. Specifically, we emphasize the potential of certain RBPs as prognostic factors due to their effects on proliferation, invasion, apoptosis, and therapy resistance of breast cancer cells. Most importantly, we present a comprehensive overview of the latest RBP-related therapeutic strategies and novel therapeutic targets that have proven to be useful in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Guanyuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Chengyu Wu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Bingmei Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Jiajia Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Danping Lin
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaofeng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| |
Collapse
|
3
|
Ploypetch S, Wongbandue G, Roytrakul S, Phaonakrop N, Prapaiwan N. Comparative Serum Proteome Profiling of Canine Benign Prostatic Hyperplasia before and after Castration. Animals (Basel) 2023; 13:3853. [PMID: 38136890 PMCID: PMC10740436 DOI: 10.3390/ani13243853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
BPH is the most prevalent prostatic condition in aging dogs. Nevertheless, clinical diagnosis and management remain inconsistent. This study employed in-solution digestion coupled with nano-liquid chromatography tandem mass spectrometry to assess serum proteome profiling of dogs with BPH and those dogs after castration. Male dogs were divided into two groups; control and BPH groups. In the BPH group, each dog was evaluated at two time points: Day 0 (BF subgroup) and Day 30 after castration (AT subgroup). In the BF subgroup, three proteins were significantly upregulated and associated with dihydrotestosterone: solute carrier family 5 member 5, tyrosine-protein kinase, and FRAT regulator of WNT signaling pathway 1. Additionally, the overexpression of polymeric immunoglobulin receptors in the BF subgroup hints at its potential as a novel protein linked to the BPH development process. Conversely, alpha-1-B glycoprotein (A1BG) displayed significant downregulation in the BF subgroup, suggesting A1BG's potential as a predictive protein for canine BPH. Finasteride was associated with increased proteins in the AT subgroup, including apolipoprotein C-I, apolipoprotein E, apolipoprotein A-II, TAO kinase 1, DnaJ homolog subfamily C member 16, PH domain and leucine-rich repeat protein phosphatase 1, neuregulin 1, and pseudopodium enriched atypical kinase 1. In conclusion, this pilot study highlighted alterations in various serum proteins in canine BPH, reflecting different pathological changes occurring in this condition. These proteins could be a source of potential non-invasive biomarkers for diagnosing this disease.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Grisnarong Wongbandue
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Nawarus Prapaiwan
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| |
Collapse
|
4
|
Dey A. Structural Modifications and Novel Protein-Binding Sites in Pre-miR-675-Explaining Its Regulatory Mechanism in Carcinogenesis. Noncoding RNA 2023; 9:45. [PMID: 37624037 PMCID: PMC10457854 DOI: 10.3390/ncrna9040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Pre-miR-675 is a microRNA expressed from the exon 1 of H19 long noncoding RNA, and the atypical expression of pre-miR-675 has been linked with several diseases and disorders including cancer. To execute its function inside the cell, pre-miR-675 is folded into a particular conformation, which aids in its interaction with several other biological molecules. However, the exact folding dynamics of pre-miR-675 and its protein-binding motifs are currently unknown. Moreover, how H19 lncRNA and pre-miR-675 crosstalk and modulate each other's activities is also unclear. The detailed structural analysis of pre-miR-675 in this study determines its earlier unknown conformation and identifies novel protein-binding sites on pre-miR-675, thus making it an excellent therapeutic target against cancer. Co-folding analysis between H19 lncRNA and pre-miR-675 determine structural transformations in pre-miR-675, thus describing the earlier unknown mechanism of interaction between these two molecules. Comprehensively, this study details the conformation of pre-miR-675 and its protein-binding sites and explains its relationship with H19 lncRNA, which can be interpreted to understand the role of pre-miR-675 in the development and progression of tumorigenesis and designing new therapeutics against cancers.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER-R)-Raebareli, Lucknow 226002, India
| |
Collapse
|
5
|
Yin X, Wang S, Ge R, Chen J, Gao Y, Xu S, Yang T. Long non-coding RNA DNMBP-AS1 promotes prostate cancer development by regulating LCLAT1. Syst Biol Reprod Med 2023; 69:142-152. [PMID: 36602957 DOI: 10.1080/19396368.2022.2129520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is as a serious threat to male's health around the world. Recent studies have indicated that long non-coding RNAs (lncRNAs) occupy an important position in various human cancers. However, the function and mechanism of lncRNA DNMBP antisense RNA 1 (DNMBP-AS1) in PCa is rarely investigated. RT-qPCR analysis was used to test gene expression. CCK-8, colony formation, EdU staining and transwell assays were conducted to assess the function of DNMBP-AS1 on PCa cell behaviors. RNA pull down, RIP and luciferase reporter assays were implemented to verify the mechanism of DNMBP-AS1. DNMBP-AS1 was obviously up-regulated in PCa cell lines. Functionally, DNMBP-AS1 knockdown weakened cell proliferation, migration and invasion of PCa. Mechanistically, DNMBP-AS1 sponged microRNA-6766-3p (miR-6766-3p) to regulate lysocardiolipin acyltransferase 1 (LCLAT1) expression. Furthermore, DNMBP-AS1 could stabilize LCLAT1 expression by recruiting ELAV like RNA binding protein 1 (ELAVL1). Consequently, rescue assays demonstrated that DNMBP-AS1 regulated PCa cell proliferation, migration and invasion through enhancing LCLAT1 expression. Collectively, we elucidated the function and regulatory mechanism of DNMBP-AS1 and provided the first evidence of DNMBP-AS1 as a driver for PCa.
Collapse
Affiliation(s)
- Xiangang Yin
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Suying Wang
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Rong Ge
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Jinping Chen
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Youliang Gao
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Shanshan Xu
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Ting Yang
- Beijing Jinglai Huake Biotechnology Co., Ltd, Beijing, China
| |
Collapse
|
6
|
Gökmen-Polar Y, Gu Y, Polar A, Gu X, Badve SS. The Role of ESRP1 in the Regulation of PHGDH in Estrogen Receptor-Positive Breast Cancer. J Transl Med 2023; 103:100002. [PMID: 36925195 DOI: 10.1016/j.labinv.2022.100002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
Resistance to hormone therapy leads to a recurrence of estrogen receptor-positive breast cancer. We have demonstrated that the epithelial splicing regulatory protein 1 (ESRP1) significantly affects cell/tumor growth and metabolism and is associated with a poor prognosis in this breast cancer subtype. In this study, we aimed to investigate the ESRP1 protein-messenger RNA (mRNA) interaction in hormone therapy-resistant breast cancer. RNA-binding protein immunoprecipitation (RIP) followed by Clariom D (Applied Biosystems/Thermo Fisher Scientific) transcriptomics microarray (RIP-Chip) was performed to identify mRNA-binding partners of ESRP1. The integration of RIP-Chip and immunoprecipitation-mass spectrometry analyses identified phosphoglycerate dehydrogenase (PHGDH), a key metabolic enzyme, as a binding partner of ESRP1 in hormone-resistant breast cancer. Bioinformatic analysis showed ESRP1 binding to the 5' untranslated region of PHGDH. RNA electrophoresis mobility shift assay and RIP-quantitative reverse transcription-polymerase chain reaction further validated the ESRP1-PHGDH binding. In addition, knockdown of ESRP1 decreased PHGDH mRNA stability significantly, suggesting the posttranscriptional regulation of PHGDH by ESRP1. The presence or absence of ESRP1 levels significantly affected the stability in tamoxifen-resistant LCC2 and fulvestrant-resistant LCC9 cells. PHGDH knockdown in tamoxifen-resistant cells further reduced the oxygen consumption rate (ranging from P = .005 and P = .02), mimicking the effects of ESRP1 knockdown. Glycolytic parameters were also altered (ranging P = .001 and P = .005). ESRP1 levels did not affect the stability of PHGDH in T-47D cells, although knockdown of PHGDH affected the growth of these cells. In conclusion, to our knowledge, this study, for the first time, reports that ESRP1 binds to the 5' untranslated region of PHGDH, increasing its mRNA stability in hormone therapy-resistant estrogen receptor-positive breast cancer. These findings provide evidence for a novel mechanism of action of RNA-binding proteins such as ESRP1. These new insights could assist in developing novel strategies for the treatment of hormone therapy-resistant breast cancer.
Collapse
Affiliation(s)
- Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory University Winship Cancer Institute, Atlanta, Georgia.
| | - Yuan Gu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Alper Polar
- Department of Chemistry, University of Florida, Gainesville, Florida
| | - Xiaoping Gu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory University Winship Cancer Institute, Atlanta, Georgia
| |
Collapse
|
7
|
Ma Q, Yang F, Huang B, Pan X, Li W, Yu T, Wang X, Ran L, Qian K, Li H, Li H, Liu Y, Liang C, Ren J, Zhang Y, Wang S, Xiao B. CircARID1A binds to IGF2BP3 in gastric cancer and promotes cancer proliferation by forming a circARID1A-IGF2BP3-SLC7A5 RNA–protein ternary complex. J Exp Clin Cancer Res 2022; 41:251. [PMID: 35986300 PMCID: PMC9389715 DOI: 10.1186/s13046-022-02466-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors in China. Circular RNAs (circRNAs) are novel non-coding RNAs with important regulatory roles in cancer progression. IGF2BP3 has been found to play oncogenic roles in various cancers including GC, while the exact mechanism of IGF2BP3 is largely unknown. Methods The expression of IGF2BP3 in GC was evaluated by Western Blot and bioinformatics analysis. CircRNA expression profiles were screened via IGF2BP3 RIP-seq in GC. Sanger sequencing, RNase R digestion, nucleo-plasmic separation and RNA-FISH assays were used to detect the existence and expression of circARID1A. RNA ISH assay was employed to test the expression of circARID1A in paraffin-embedded GC tissues. Moreover, the function of circARID1A on cellular proliferation was assessed by CCK-8, plate colony formation, EdU assays and GC xenograft mouse model in vivo. Furthermore, the location or binding of circARID1A, IGF2BP3 protein and SLC7A5 in GC was evaluated by RNA-FISH/IF or RNA pull-down assays. Results We identified a novel circRNA, circARID1A, that can bind to IGF2BP3 protein. CircARID1A was significantly upregulated in GC tissues compared with noncancerous tissues and positively correlated with tumor length, tumor volume, and TNM stage. CircARID1A knockdown inhibited the proliferation of GC cells in vitro and in vivo and circARID1A played an important role in the oncogenic function of IGF2BP3. Mechanistically, circARID1A served as a scaffold to facilitate the interaction between IGF2BP3 and SLC7A5 mRNA, finally increasing SLC7A5 mRNA stability. Additionally, circARID1A was able to directly bind SLC7A5 mRNA through complementary base-pairing and then formed the circARID1A-IGF2BP3-SLC7A5 RNA–protein ternary complex and promoted the proliferation of GC via regulating AKT/mTOR pathway. Conclusions Altogether, our data suggest that circARID1A is involved in the function of IGF2BP3 and GC proliferation, and the circARID1A-IGF2BP3-SLC7A5 axis has the potential to serve as a novel therapeutic target for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02466-3.
Collapse
|
8
|
Qin T, Cheng Y, Wang X. RNA-binding proteins as drivers of AML and novel therapeutic targets. Leuk Lymphoma 2022; 63:1045-1057. [PMID: 35075986 DOI: 10.1080/10428194.2021.2008381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acute myeloid leukemia (AML) is a group of genetically complex and heterogeneous invasive hematological malignancies with a low 5-year overall survival rate of 30%, which highlights the urgent need for improved treatment measures. RNA-binding proteins (RBPs) regulate the abundance of isoforms of related proteins by regulating RNA splicing, translation, stability, and localization, thereby affecting cell differentiation and self-renewal. It is increasingly believed that RBPs are essential for normal hematopoiesis, and RBPs play a key role in hematological tumors, especially AML, by acting as oncogenes or tumor suppressors. In addition, targeting an RBP that is significantly related to AML can trigger the apoptosis of leukemic stem cells or promote the proliferation of stem and progenitor cells by modulating the expression of important pathway regulatory factors such as HOXA9, MYC, and CDKN1A. Accordingly, RBPs involved in normal myeloid differentiation and the occurrence of AML may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Tingyu Qin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Jiang L, Guo F, Tang J, Yu H, Ness S, Duan M, Mao P, Zhao YY, Guo Y. SBSA: an online service for somatic binding sequence annotation. Nucleic Acids Res 2022; 50:e4. [PMID: 34606615 PMCID: PMC8500130 DOI: 10.1093/nar/gkab877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Efficient annotation of alterations in binding sequences of molecular regulators can help identify novel candidates for mechanisms study and offer original therapeutic hypotheses. In this work, we developed Somatic Binding Sequence Annotator (SBSA) as a full-capacity online tool to annotate altered binding motifs/sequences, addressing diverse types of genomic variants and molecular regulators. The genomic variants can be somatic mutation, single nucleotide polymorphism, RNA editing, etc. The binding motifs/sequences involve transcription factors (TFs), RNA-binding proteins, miRNA seeds, miRNA-mRNA 3'-UTR binding target, or can be any custom motifs/sequences. Compared to similar tools, SBSA is the first to support miRNA seeds and miRNA-mRNA 3'-UTR binding target, and it unprecedentedly implements a personalized genome approach that accommodates joint adjacent variants. SBSA is empowered to support an indefinite species, including preloaded reference genomes for SARS-Cov-2 and 25 other common organisms. We demonstrated SBSA by annotating multi-omics data from over 30,890 human subjects. Of the millions of somatic binding sequences identified, many are with known severe biological repercussions, such as the somatic mutation in TERT promoter region which causes a gained binding sequence for E26 transformation-specific factor (ETS1). We further validated the function of this TERT mutation using experimental data in cancer cells. Availability:http://innovebioinfo.com/Annotation/SBSA/SBSA.php.
Collapse
Affiliation(s)
- Limin Jiang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Yu
- Comprehensive cancer center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Scott Ness
- Comprehensive cancer center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Mingrui Duan
- Comprehensive cancer center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Peng Mao
- Comprehensive cancer center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China
| | - Yan Guo
- Comprehensive cancer center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| |
Collapse
|
10
|
Zhu L, Liu Y, Tang H, Wang P. FOXP3 activated-LINC01232 accelerates the stemness of non-small cell lung carcinoma by activating TGF-β signaling pathway and recruiting IGF2BP2 to stabilize TGFBR1. Exp Cell Res 2022; 413:113024. [PMID: 35026283 DOI: 10.1016/j.yexcr.2022.113024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 12/25/2022]
Abstract
Non-small cell lung carcinoma (NSCLC) is one of the most common malignant tumors worldwide with high incidence and mortality. Long non-coding RNAs (lncRNAs) have been reported to affect human cancer progression. The present study aimed to investigate the regulatory role and mechanism of long intergenic non-protein coding RNA 1232 (LINC01232) in NSCLC cells. RT-qPCR results revealed that LINC01232 expression was high in NSCLC cells. Flow cytometry and sphere formation assays indicated that LINC01232 significantly promoted NSCLC cell stemness. Luciferase reporter assay and ChIP assay validated that forkhead box P3 (FOXP3) could bind to LINC01232 promoter and activate LINC01232 transcription. Further, LINC01232 was certified to activate TGF-β signaling pathway through regulating transforming growth factor beta receptor 1 (TGFBR1). After RIP and RNA pull down assays, insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) was proven as the RNA-binding protein (RBP) for LINC01232. LINC01232 promoted TGFBR1 mRNA stability via recruiting IGF2BP2. Subsequently, LINC01232 was verified to accelerate NSCLC cell stemness and induce macrophage M2 polarization via upregulating TGFBR1. Taken together, FOXP3 activated-LINC01232 accelerated NSCLC cell stemness by activating TGF-β signaling pathway and recruiting IGF2BP2 to stabilize TGFBR1, which might offer a rationale for lncRNA-based treatment to NSCLC.
Collapse
Affiliation(s)
- Lihua Zhu
- Department of Health Management, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Liu
- Department of Hematology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haijuan Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peng Wang
- Department of Health Management, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
11
|
Abbadi D, Andrews JJ, Katsara O, Schneider RJ. AUF1 gene transfer increases exercise performance and improves skeletal muscle deficit in adult mice. Mol Ther Methods Clin Dev 2021; 22:222-236. [PMID: 34485607 PMCID: PMC8399044 DOI: 10.1016/j.omtm.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Muscle function and mass begin declining in adults long before evidence of sarcopenia and include reduced mitochondrial function, although much remains to be characterized. We found that mRNA decay factor AU-rich mRNA binding factor 1 (AUF1), which stimulates myogenesis, is strongly reduced in skeletal muscle of adult and older mice in the absence of evidence of sarcopenia. Muscle-specific adeno-associated virus (AAV)8-AUF1 gene therapy increased expression of AUF1, muscle function, and mass. AAV8 AUF1 muscle gene transfer in 12-month-old mice increased the levels of activated muscle stem (satellite) cells, increased muscle mass, reduced markers of muscle atrophy, increased markers of mitochondrial content and muscle fiber oxidative capacity, and enhanced exercise performance to levels of 3-month-old mice. With wild-type and AUF1 knockout mice and cultured myoblasts, AUF1 supplementation of muscle fibers was found to increase expression of Peroxisome Proliferator-activated Receptor Gamma Co-activator 1-alpha (PGC1α), a major effector of skeletal muscle mitochondrial oxidative metabolism. AUF1 stabilized and increased translation of the pgc1α mRNA, which is strongly reduced in adult muscle in the absence of AUF1 supplementation. Skeletal muscle-specific gene transfer of AUF1 therefore restores muscle mass, increases exercise endurance, and may provide a therapeutic strategy for age-related muscle loss.
Collapse
Affiliation(s)
- Dounia Abbadi
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - John J. Andrews
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Olga Katsara
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
12
|
Della Volpe S, Linciano P, Listro R, Tumminelli E, Amadio M, Bonomo I, Elgaher WAM, Adam S, Hirsch AKH, Boeckler FM, Vasile F, Rossi D, Collina S. Identification of N,N-arylalkyl-picolinamide derivatives targeting the RNA-binding protein HuR, by combining biophysical fragment-screening and molecular hybridization. Bioorg Chem 2021; 116:105305. [PMID: 34482166 DOI: 10.1016/j.bioorg.2021.105305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
Hu proteins are members of the RNA-binding protein (RBP) family and play a pivotal role in the regulation of post-transcriptional processes. Through interaction with selected mRNAs, RBPs regulate their function and stability; as a consequence, RBP dysregulation can cause abnormal translation of key proteins involved in several pathologies. In the past few years, this observation has sparked interest to develop new treatments against these pathologies by using small molecules able to modulate RBP activity. Among the four Hu proteins, we have directed our efforts towards the isoform HuR, which is mainly involved in cancer, inflammation and retinopathy. Aimed at developing compounds able to modulate the stability of HuR-mRNA complexes, in the present work, we applied a biophysical fragment screening by assessing a library of halogen-enriched heterocyclic fragments (HEFLibs) via Surface Plasmon Resonance (SPR) and Saturation Transfer Difference (STD) NMR to select promising fragments able to interact with HuR. One selected fragment and a few commercially available congeners were exploited to design and synthesize focused analogues of compound N-(3-chlorobenzyl)-N-(3,5-dihydroxyphenethyl)-4-hydroxybenzamide (1), our previously reported hit. STDNMR spectroscopy, molecular modeling, and SPR offered further insight into the HuR-small molecule interaction and showed that fragment-based approaches represent a promising and yet underexplored strategy to tackle such unusual targets. Lastly, fluorescence polarization (FP) studies revealed the capability of the new compounds to interfere with the formation of the HuR-mRNA complex. This is, to our knowledge, the first fragment-based campaign performed on the Hu protein class, and one of the few examples in the larger RBP field and constitutes an important step in the quest for the rational modulation of RBPs and related RNA functions by small molecules.
Collapse
Affiliation(s)
- S Della Volpe
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany.
| | - P Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - R Listro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - E Tumminelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany.
| | - M Amadio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - I Bonomo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - W A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany.
| | - S Adam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany.
| | - A K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany.
| | - F M Boeckler
- Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany; Center for Bioinformatics Tübingen (ZBIT), Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - F Vasile
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy.
| | - D Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - S Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| |
Collapse
|
13
|
Ji CM, Zhang X, Fang W, Meng L, Wei X, Lu C. RNA-binding protein RNPC1 acts as an oncogene in gastric cancer by stabilizing aurora kinase B mRNA. Exp Cell Res 2021; 406:112741. [PMID: 34302858 DOI: 10.1016/j.yexcr.2021.112741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND RNPC1 is reported to act as a tumor suppressor by binding and regulating the expression of target genes in various cancers. However, the role of RNPC1 in gastric cancer and the underlying mechanisms are still unclear. METHODS Gastric cancer cells were stably transfected with lentivirus. Proliferation, migration, invasion, cell cycle in vitro and tumorigenesis in vivo were used to assess the role of RNPC1. Quantitative real-time PCR, western blotting and immunohistochemistry were used to detect the relationship between RNPC1 and aurora kinase B (AURKB). RNA immunoprecipitation (RIP), RNA electrophoretic mobility shift assays (REMSAs), and dual-luciferase reporter assays were used to identify the direct binding sites of RNPC1 with AURKB mRNA. A CCK-8 assay was conducted to confirm the function of AURKB in RNPC1-induced growth promotion. RESULTS High RNPC1 expression was found in gastric cancer tissues and cell lines and was associated with high TNM stage. RNPC1 overexpression significantly promoted the proliferation, migration, and invasion of gastric cancer cells. Knockdown of RNPC1 could impede gastric cancer tumorigenesis in nude mice. AURKB expression was positively related to RNPC1. RNPC1 directly binds to the 3'-untranslated region (3'-UTR) of AURKB and enhances AURKB mRNA stability. AURKB reversed the proliferation induced by RNPC1 in gastric cancer cells. RNPC1 resulted in mitotic defects, aneuploidy and chromosomal instability in gastric cancer cells, similar to AURKB. CONCLUSION RNPC1 acts as an oncogene in gastric cancer by influencing cell mitosis by increasing AURKB mRNA stability, which may provide a potential biomarker and a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chun-Mei Ji
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China; Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xu Zhang
- Jiangsu Breast Disease Center, The First Affliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Wentong Fang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ling Meng
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Chen Lu
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
14
|
Wang Y, Liang Q, Lei K, Zhu Q, Zeng D, Liu Y, Lu Y, Kang T, Tang N, Huang L, Ye L, Tang D, Zhu C. Targeting MEX3A attenuates metastasis of breast cancer via β-catenin signaling pathway inhibition. Cancer Lett 2021; 521:50-63. [PMID: 34425185 DOI: 10.1016/j.canlet.2021.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/09/2022]
Abstract
Metastasis is the major cause of mortality in patients with breast cancer. Understanding the metastatic mechanism to guide clinical diagnoses and the treatment of breast cancer remains a challenge. We found that the expression of Mex-3 RNA binding family member A (MEX3A) was upregulated significantly and related to tumor grade in breast cancer. The results of in vitro and in vivo studies showed that knockdown of MEX3A inhibited the metastasis and impaired the stemness of breast cancer cells. Furthermore, activation of the β-catenin signaling pathway was discovered as a molecular intermediate of MEX3A-mediated regulation. We also found that ectopic expression of β-catenin restored the migration ability, invasion ability, and CD44+/CD24- percentage of MDA-MB-231 and BT549 cells when MEX3A was depleted. In addition, we revealed that MEX3A positively regulated the expression of β-catenin by downregulating Dickkopf WNT signaling pathway inhibitor 1 (DKK1) expression. Therefore, a previously undiscovered role of MEX3A comprising a critical contribution to promoting metastasis and maintaining the stemness of breast cancer via the Wnt/β-catenin pathway was demonstrated in the present study.
Collapse
Affiliation(s)
- Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qian Liang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Kefeng Lei
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingqing Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Delong Zeng
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yuhong Liu
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingsi Lu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Nannan Tang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lifen Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liping Ye
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
15
|
Li Y, Liu LL, Hu R, Sun Q, Wen XB, Luo RZ, Yan SM. Elevated expression of the RNA-binding motif protein 43 predicts poor prognosis in esophageal squamous cell carcinoma. Int J Clin Oncol 2021; 26:1847-1855. [PMID: 34398362 PMCID: PMC8449765 DOI: 10.1007/s10147-021-01976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/04/2021] [Indexed: 11/13/2022]
Abstract
RNA-binding proteins (RBPs) play crucial roles in the post-transcriptional regulation of mRNA during numerous physiological and pathological processes, including tumor genesis and development. However, the role of RNA-binding motif protein 43 (RBM43) in esophageal squamous cell carcinoma (ESCC) has not been reported so far. The current study was the first to evaluate RBM43 protein expression by immunohistochemistry (IHC) in an independent cohort of 207 patients with ESCC, to explore its potential prognostic value and clinical relevance in ESCC. The results indicated that RBM43 protein levels were significantly elevated in ESCC tissues and increased RBM43 expression was associated with age and N categories. In addition, ESCC patients with high expression of RBM43 had shorter overall survival (OS) and disease‐free survival (DFS) than those with low RBM43 expression. Furthermore, when survival analyses were conducted at different clinical stages, overexpression of RBM43 was significantly correlated with shortened survival in patients with ESCC at early stages (TNM stage I–II and N0 stage). Cox regression analysis further proved that high RBM43 expression was an independent predictor of poor prognosis in ESCC patients. In conclusion, increased expression of RBM43 is correlated with malignant attributes to ESCC and predicts unfavorable prognosis, suggesting an effective prognostic biomarker and potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Li-Li Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Rui Hu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310022, China
| | - Qi Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Xiao-Bo Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Rong-Zhen Luo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| | - Shu-Mei Yan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
16
|
Manco M, Ala U, Cantarella D, Tolosano E, Medico E, Altruda F, Fagoonee S. The RNA-Binding Protein ESRP1 Modulates the Expression of RAC1b in Colorectal Cancer Cells. Cancers (Basel) 2021; 13:4092. [PMID: 34439247 PMCID: PMC8392041 DOI: 10.3390/cancers13164092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
RNA binding proteins are well recognized as critical regulators of tumorigenic processes through their capacity to modulate RNA biogenesis, including alternative splicing, RNA stability and mRNA translation. The RNA binding protein Epithelial Splicing Regulatory Protein 1 (ESRP1) can act as a tumor suppressor or promoter in a cell type- and disease context-dependent manner. We have previously shown that elevated expression of ESRP1 in colorectal cancer cells can drive tumor progression. To gain further insights into the pro-tumorigenic mechanism of action of ESRP1, we performed cDNA microarray analysis on two colorectal cells lines modulated for ESRP1 expression. Intriguingly, RAC1b was highly expressed, both at mRNA and protein levels, in ESRP1-overexpressing cells, while the opposite trend was observed in ESRP1-silenced CRC cells. Moreover, RAC1 and RAC1b mRNA co-immunoprecipitate with ESRP1 protein. Silencing of RAC1b expression significantly reduced the number of soft agar colonies formed by ESRP1-overexpressing cells, suggesting that ESRP1 acted, at least partially, through RAC1b in its tumor-promoting activities in CRC cells. Thus, our data provide molecular cues on targetable candidates in CRC cases with high ESRP1 expression.
Collapse
Affiliation(s)
- Marta Manco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.)
| | - Ugo Ala
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Daniela Cantarella
- Department of Oncology, University of Torino, S.P. 142, km 3.95, Torino, 10060 Candiolo, Italy; (D.C.); (E.M.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.)
| | - Enzo Medico
- Department of Oncology, University of Torino, S.P. 142, km 3.95, Torino, 10060 Candiolo, Italy; (D.C.); (E.M.)
| | - Fiorella Altruda
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR) c/o Molecular Biotechnology Center, 10126 Turin, Italy
| |
Collapse
|
17
|
He Q, Li Z, Lei X, Zou Q, Yu H, Ding Y, Xu G, Zhu W. The underlying molecular mechanisms and prognostic factors of RNA binding protein in colorectal cancer: a study based on multiple online databases. Cancer Cell Int 2021; 21:325. [PMID: 34193169 PMCID: PMC8244213 DOI: 10.1186/s12935-021-02031-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND RNA binding protein (RBP) is an active factor involved in the occurrence and development of colorectal cancer (CRC). Therefore, the potential mechanism of RBP in CRC needs to be clarified by dry-lab analyses or wet-lab experiments. METHODS The differential RBP gene obtained from the GEPIA 2 (Gene Expression Profiling Interactive Analysis 2) were performed functional enrichment analysis. Then, the alternative splicing (AS) events related to survival were acquired by univariate regression analysis, and the correlation between RBP and AS was analyzed by R software. The online databases were conducted to analyze the mutation and methylation of RBPs in CRC. Moreover, 5 key RBP signatures were obtained through univariate and multivariate Cox regression analysis and established as RBP prognosis model. Subsequently, the above model was verified through another randomized group of TCGA CRC cohorts. Finally, multiple online databases and qRT-PCR analysis were carried to further confirm the expression of the above 5 RBP signatures in CRC. RESULTS Through a comprehensive bioinformatics analysis, it was revealed that RBPs had genetic and epigenetic changes in CRC. We obtained 300 differentially expressed RBPs in CRC samples. The functional analysis suggested that they mainly participated in spliceosome. Then, a regulatory network for RBP was established to participate in AS and DDX39B was detected to act as a potentially essential factor in the regulation of AS in CRC. Our analysis discovered that 11 differentially expressed RBPs with a mutation frequency higher than 5%. Furthermore, we found that 10 differentially expressed RBPs had methylation sites related to the prognosis of CRC, and a prognostic model was constructed by the 5 RBP signatures. In another randomized group of TCGA CRC cohorts, the prognostic performance of the 5 RBP signatures was verified. CONCLUSION The potential mechanisms that regulate the aberrant expression of RBPs in the development of CRC was explored, a network that regulated AS was established, and the RBP-related prognosis model was constructed and verified, which could improve the individualized prognosis prediction of CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Qian Zou
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
18
|
Bonnet-Magnaval F, DesGroseillers L. The Staufen1-dependent cell cycle regulon or how a misregulated RNA-binding protein leads to cancer. Biol Rev Camb Philos Soc 2021; 96:2192-2208. [PMID: 34018319 DOI: 10.1111/brv.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of reports have linked the RNA-binding protein Staufen1 (STAU1) to the control of cell decision making. In non-transformed cells, STAU1 balances the expression of messenger RNA (mRNA) regulons that regulate differentiation and well-ordered cell division. Misregulation of STAU1 expression and/or functions changes the fragile balance in the expression of pro- and anti-proliferative and apoptotic genes and favours a novel equilibrium that supports cell proliferation and cancer development. The misregulation of STAU1 functions causes multiple coordinated modest effects in the post-transcriptional regulation of many RNA targets that code for cell cycle regulators, leading to dramatic consequences at the cellular level. The new tumorigenic equilibrium in STAU1-mediated gene regulation observed in cancer cells can be further altered by a slight increase in STAU1 expression that favours expression of pro-apoptotic genes and cell death. The STAU1-dependent cell cycle regulon is a good model to study how abnormal expression of an RNA-binding protein promotes cell growth and provides an advantageous selection of malignant cells in the first step of cancer development.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
19
|
Liu YF, Sun XY, Zhang JK, Wang ZH, Ren ZG, Li J, Guo WZ, Zhang SJ. hMex-3A is associated with poor prognosis and contributes to the progression of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2021; 20:147-153. [PMID: 32291179 DOI: 10.1016/j.hbpd.2020.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/10/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND HMex-3A, an RNA-binding protein, was found to be associated with tumorigenesis. However, the roles of hMex-3A in hepatocellular carcinoma (HCC) progression remained unclear. METHODS The different expression of hMex-3A between HCC tissues and non-tumor tissues was evaluated using The Cancer Genome Atlas database. Thereafter, the hMex-3A expression was evaluated in HCC tissues using Western blotting and qRT-PCR. Immunohistochemistry was performed to investigate the association between hMex-3A level and clinicopathological features including prognosis in HCC patients. In addition, we used si-hMex-3A to knockdown hMex-3A in HCC cells to test Cell Counting Kit-8, colony formation, cell migration and invasion. RESULTS The hMex-3A expression was significantly elevated in HCC tissues. Analysis of the clinicopathological parameters suggested that hMex-3A expression was significantly associated with pathological grade (P = 0.019) and TNM stage (P = 0.001) in HCC. Moreover, univariate and multivariate Cox-regression analyses revealed that high hMex-3A expression (HR = 1.491, 95% CI: 1.107-2.007; P = 0.009) was an independent risk factor for overall survival in HCC patients. Finally, we confirmed that si-hMex-3A could significantly inhibit HCC cell proliferation, migration, and invasion in vitro. CONCLUSIONS HMex-3A may contribute to the progression of HCC and might be used as a novel therapeutic target and prognostic marker in HCC.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Xiao-Yan Sun
- Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi-Hui Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jie Li
- Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Wen-Zhi Guo
- Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shui-Jun Zhang
- Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
20
|
Chang K, Yuan C, Liu X. A New RBPs-Related Signature Predicts the Prognosis of Colon Adenocarcinoma Patients. Front Oncol 2021; 11:627504. [PMID: 33767995 PMCID: PMC7985171 DOI: 10.3389/fonc.2021.627504] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
The dysregulation of RNA binding proteins (RBPs) is closely related to tumorigenesis and development. However, the role of RBPs in Colon adenocarcinoma (COAD) is still poorly understood. We downloaded COAD’s RNASeq data from the Cancer Genome Atlas (TCGA) database, screened the differently expressed RBPs in normal tissues and tumor, and constructed a protein interaction network. COAD patients were randomly divided into a training set (N = 315) and a testing set (N = 132). In the training set, univariate Cox analysis identified 12 RBPs significantly related to the prognosis of COAD. By multivariate COX analysis, we constructed a prognostic model composed of five RBPs (CELF4, LRRFIP2, NOP14, PPARGC1A, ZNF385A) based on the lowest Akaike information criterion. Each COAD patient was scored according to the model formula. Further analysis showed that compared with the low-risk group, the overall survival rate (OS) of patients in the high-risk group was significantly lower. The area under the curve of the time-dependent receiver operator characteristic (ROC) curve was 0.722 in the training group and 0.738 in the test group, which confirmed a good prediction feature. In addition, a nomogram was constructed based on clinicopathological characteristics and risk scores. C-index and calibration curve proved the accuracy in predicting the 1-, 3-, and 5-year survival rates of COAD patients. In short, we constructed a superior prognostic and diagnostic signature composed of five RBPs, which indicates new possibilities for individualized treatment of COAD patients.
Collapse
Affiliation(s)
- Kaili Chang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chong Yuan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xueguang Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
21
|
He C, Huang F, Zhang K, Wei J, Hu K, Liang M. Establishment and validation of an RNA binding protein-associated prognostic model for ovarian cancer. J Ovarian Res 2021; 14:27. [PMID: 33550985 PMCID: PMC7869493 DOI: 10.1186/s13048-021-00777-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer (OC) is one of the most common gynecological malignant tumors worldwide, with high mortality and a poor prognosis. As the early symptoms of malignant ovarian tumors are not obvious, the cause of the disease is still unclear, and the patients’ postoperative quality of life of decreases. Therefore, early diagnosis is a problem requiring an urgent solution. Methods We obtained the gene expression profiles of ovarian cancer and normal samples from TCGA and GTEx databases for differential expression analysis. From existing literature reports, we acquired the RNA-binding protein (RBP) list for the human species. Utilizing the online tool Starbase, we analyzed the interaction relationship between RBPs and their target genes and selected the modules of RBP target genes through Cytoscape. Finally, univariate and multivariate Cox regression analyses were used to determine the prognostic RBP signature. Results We obtained 527 differentially expressed RBPs, which were involved in many important cellular events, such as RNA splicing, the cell cycle, and so on. We predicted several target genes of RBPs, constructed the interaction network of RBPs and their target genes, and obtained many modules from the Cytoscape analysis. Functional enrichment of RBP target genes also includes these important biological processes. Through Cox regression analysis, OC prognostic RBPs were identified and a 10-RBP model constructed. Further analysis showed that the model has high accuracy and sensitivity in predicting the 3/5-year survival rate. Conclusions Our study identified differentially expressed RBPs and their target genes in OC, and the results promote our understanding of the molecular mechanism of ovarian cancer. The current study could develop novel biomarkers for the diagnosis, treatment, and prognosis of OC and provide new ideas and prospects for future clinical research. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00777-1.
Collapse
Affiliation(s)
- Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Fuxin Huang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Kejia Zhang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Jun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China.
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China.
| |
Collapse
|
22
|
Yuan P, Ling L, Gao X, Sun T, Miao J, Yuan X, Liu J, Wang Z, Liu B. Identification of RNA-binding protein SNRPA1 for prognosis in prostate cancer. Aging (Albany NY) 2021; 13:2895-2911. [PMID: 33460399 PMCID: PMC7880319 DOI: 10.18632/aging.202387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the deadliest cancers in men. RNA-binding proteins play a critical role in human cancers; however, whether they have a significant effect on the prognosis of prostate cancer has yet to be elucidated. In the present study, we performed a comprehensive analysis of RNA sequencing and clinical data from the Cancer Genome Atlas dataset and obtained differentially expressed RNA-binding proteins between prostate cancer and benign tissues. We constructed a protein-protein interaction network and Cox regression analyses were conducted to identify prognostic hub RNA-binding proteins. SNRPA1 was associated with the highest risk of poor prognosis and was therefore selected for further analysis. SNRPA1 expression was positively correlated with Gleason score and pathological TNM stage in prostate cancer patients. Furthermore, the expression profile of SNRPA1 was validated using the Oncomine, Human Protein Atlas, and Cancer Cell Line Encyclopedia databases. Meanwhile, the prognostic profile of SNRPA1 was successfully verified in GSE70769. Additionally, the results of molecular experiments revealed the proliferative role of SNRPA1 in prostate cancer cells. In summary, our findings evidenced a relationship between RNA-binding proteins and prostate cancer and indicated the prognostic significance of SNRPA1 in prostate cancer.
Collapse
Affiliation(s)
- Penghui Yuan
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Le Ling
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xintao Gao
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Taotao Sun
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianping Miao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jihong Liu
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhihua Wang
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
23
|
Cheung FKM, Qin J. The Methods and Tools for Molecular Network Construction. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Tan DJ, Mitra M, Chiu AM, Coller HA. Intron retention is a robust marker of intertumoral heterogeneity in pancreatic ductal adenocarcinoma. NPJ Genom Med 2020; 5:55. [PMID: 33311498 PMCID: PMC7733475 DOI: 10.1038/s41525-020-00159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a 5-year survival rate of <8%. Unsupervised clustering of 76 PDAC patients based on intron retention (IR) events resulted in two clusters of tumors (IR-1 and IR-2). While gene expression-based clusters are not predictive of patient outcome in this cohort, the clusters we developed based on intron retention were associated with differences in progression-free interval. IR levels are lower and clinical outcome is worse in IR-1 compared with IR-2. Oncogenes were significantly enriched in the set of 262 differentially retained introns between the two IR clusters. Higher IR levels in IR-2 correlate with higher gene expression, consistent with detention of intron-containing transcripts in the nucleus in IR-2. Out of 258 genes encoding RNA-binding proteins (RBP) that were differentially expressed between IR-1 and IR-2, the motifs for seven RBPs were significantly enriched in the 262-intron set, and the expression of 25 RBPs were highly correlated with retention levels of 139 introns. Network analysis suggested that retention of introns in IR-2 could result from disruption of an RBP protein-protein interaction network previously linked to efficient intron removal. Finally, IR-based clusters developed for the majority of the 20 cancer types surveyed had two clusters with asymmetrical distributions of IR events like PDAC, with one cluster containing mostly intron loss events. Taken together, our findings suggest IR may be an important biomarker for subclassifying tumors.
Collapse
Affiliation(s)
- Daniel J Tan
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alec M Chiu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Jiang L, Duan M, Guo F, Tang J, Oybamiji O, Yu H, Ness S, Zhao YY, Mao P, Guo Y. SMDB: pivotal somatic sequence alterations reprogramming regulatory cascades. NAR Cancer 2020; 2:zcaa030. [PMID: 33094288 PMCID: PMC7556404 DOI: 10.1093/narcan/zcaa030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
Binding motifs for transcription factors, RNA-binding proteins, microRNAs (miRNAs), etc. are vital for proper gene transcription and translation regulation. Sequence alteration mechanisms including single nucleotide mutations, insertion, deletion, RNA editing and single nucleotide polymorphism can lead to gains and losses of binding motifs; such consequentially emerged or vanished binding motifs are termed 'somatic motifs' by us. Somatic motifs have been studied sporadically but have never been curated into a comprehensive resource. By analyzing various types of sequence altering data from large consortiums, we successfully identified millions of somatic motifs, including those for important transcription factors, RNA-binding proteins, miRNA seeds and miRNA-mRNA 3'-UTR target motifs. While a few of these somatic motifs have been well studied, our results contain many novel somatic motifs that occur at high frequency and are thus likely to cause important biological repercussions. Genes targeted by these altered motifs are excellent candidates for further mechanism studies. Here, we present the first database that hosts millions of somatic motifs ascribed to a variety of sequence alteration mechanisms.
Collapse
Affiliation(s)
- Limin Jiang
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Mingrui Duan
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Jijun Tang
- Department of Computer Science, University of South Carolina, Columbia, SC 29208, USA
| | - Olufunmilola Oybamiji
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Hui Yu
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Scott Ness
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Peng Mao
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| | - Yan Guo
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87109, USA
| |
Collapse
|
26
|
Alam T, Al-Absi HRH, Schmeier S. Deep Learning in LncRNAome: Contribution, Challenges, and Perspectives. Noncoding RNA 2020; 6:E47. [PMID: 33266128 PMCID: PMC7711891 DOI: 10.3390/ncrna6040047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNA), the pervasively transcribed part of the mammalian genome, have played a significant role in changing our protein-centric view of genomes. The abundance of lncRNAs and their diverse roles across cell types have opened numerous avenues for the research community regarding lncRNAome. To discover and understand lncRNAome, many sophisticated computational techniques have been leveraged. Recently, deep learning (DL)-based modeling techniques have been successfully used in genomics due to their capacity to handle large amounts of data and produce relatively better results than traditional machine learning (ML) models. DL-based modeling techniques have now become a choice for many modeling tasks in the field of lncRNAome as well. In this review article, we summarized the contribution of DL-based methods in nine different lncRNAome research areas. We also outlined DL-based techniques leveraged in lncRNAome, highlighting the challenges computational scientists face while developing DL-based models for lncRNAome. To the best of our knowledge, this is the first review article that summarizes the role of DL-based techniques in multiple areas of lncRNAome.
Collapse
Affiliation(s)
- Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar;
| | - Hamada R. H. Al-Absi
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar;
| | - Sebastian Schmeier
- School of Natural and Computational Sciences, Massey University, Auckland 0632, New Zealand;
| |
Collapse
|
27
|
Meng L, Ding P, Liu S, Li Z, Sang M, Shan B. The emerging prospects of circular RNA in tumor immunity. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1091. [PMID: 33145310 PMCID: PMC7575963 DOI: 10.21037/atm-19-4751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Circular RNA (circRNA), as a cluster of endogenous non-coding RNA (ncRNA) with tissue-specific expression in various eukaryotic species, may be involved in a variety of human physiological and pathological processes. With the continuous development of high-throughput sequencing in recent years, circRNA has been increasingly widely studied and become a hot spot in the field of tumor research. The immune system plays a crucial and complex role in tumor development. It is not only capable of inhibiting tumor progression, but it can also create conditions suitable for tumor development, thereby promoting tumor progression. Moreover, through ncRNA, tumor immunotherapy, as an essential means of tumor therapy, may regulate tumor immunity to achieve the purpose of treatment. This article reviews the role of circRNA in tumor immunity to supply a sufficient theoretical basis for tumor immunotherapy.
Collapse
Affiliation(s)
- Lingjiao Meng
- Research Center and Tumor Research Institute, the Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pingan Ding
- The Third Department of Surgery, the Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sihua Liu
- Research Center and Tumor Research Institute, the Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziyi Li
- Research Center and Tumor Research Institute, the Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, the Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Research Center and Tumor Research Institute, the Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
28
|
Sonnenschein K, Fiedler J, Pfanne A, Just A, Mitzka S, Geffers R, Pich A, Bauersachs J, Thum T. Therapeutic modulation of RNA-binding protein Rbm38 facilitates re-endothelialization after arterial injury. Cardiovasc Res 2020; 115:1804-1810. [PMID: 30843048 PMCID: PMC6755352 DOI: 10.1093/cvr/cvz063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/13/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Aims Delayed re-endothelialization after balloon angioplasty in patients with coronary or peripheral artery disease impairs vascular healing and leads to neointimal proliferation. In the present study, we examined the effect of RNA-binding motif protein 38 (Rbm38) during re-endothelialization in a murine model of experimental vascular injury. Methods and results Left common carotid arteries of C57BL/6 mice were electrically denudated and endothelial regeneration was evaluated. Profiling of RNA-binding proteins revealed dysregulated expression of Rbm38 in the denudated and regenerated areas. We next tested the importance of Rbm38 in human umbilical vein endothelial cells (HUVECS) and analysed its effects on cellular proliferation, migration and apoptosis. Rbm38 silencing in vitro demonstrated important beneficial functional effects on migratory capacity and proliferation of endothelial cells. In vivo, local silencing of Rbm38 also improved re-endothelialization of denuded carotid arteries. Luciferase reporter assay identified miR-98 and let-7f to regulate Rbm38 and the positive proliferative properties of Rbm38 silencing in vitro and in vivo were mimicked by therapeutic overexpression of these miRNAs. Conclusion The present data identified Rbm38 as an important factor of the regulation of various endothelial cell functions. Local inhibition of Rbm38 as well as overexpression of the upstream regulators miR-98 and let-7f improved endothelial regeneration in vivo and thus may be a novel therapeutic entry point to avoid endothelial damage after balloon angioplasty.
Collapse
Affiliation(s)
- Kristina Sonnenschein
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Saskia Mitzka
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
29
|
Chen F, Keleş S. SURF: integrative analysis of a compendium of RNA-seq and CLIP-seq datasets highlights complex governing of alternative transcriptional regulation by RNA-binding proteins. Genome Biol 2020; 21:139. [PMID: 32532357 PMCID: PMC7291511 DOI: 10.1186/s13059-020-02039-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/08/2020] [Indexed: 01/10/2023] Open
Abstract
Advances in high-throughput profiling of RNA-binding proteins (RBPs) have resulted inCLIP-seq datasets coupled with transcriptome profiling by RNA-seq. However, analysis methods that integrate both types of data are lacking. We describe SURF, Statistical Utility for RBP Functions, for integrative analysis of large collections of CLIP-seq and RNA-seq data. We demonstrate SURF's ability to accurately detect differential alternative transcriptional regulation events and associate them to local protein-RNA interactions. We apply SURF to ENCODE RBP compendium and carry out downstream analysis with additional reference datasets. The results of this application are browsable at http://www.statlab.wisc.edu/shiny/surf/.
Collapse
Affiliation(s)
- Fan Chen
- Department of Statistics, University of Wisconsin-Madison, 1220 Medical Sciences Center, 1300 University Avenue, Madison, 53706 WI USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, 1220 Medical Sciences Center, 1300 University Avenue, Madison, 53706 WI USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, K6/446 Clinical Sciences Center, 600 Highland Avenue, Madison, 53792-4675 WI USA
| |
Collapse
|
30
|
Liebig JK, Kuphal S, Bosserhoff AK. HuRdling Senescence: HuR Breaks BRAF-Induced Senescence in Melanocytes and Supports Melanoma Growth. Cancers (Basel) 2020; 12:cancers12051299. [PMID: 32455577 PMCID: PMC7281285 DOI: 10.3390/cancers12051299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/17/2023] Open
Abstract
In addition to genetic changes, post-transcriptional events strongly contribute to the progression of malignant tumors. The RNA-binding protein HuR (ELAVL1) is able to bind and stabilize a large group of target mRNAs, which contain AU-rich elements (ARE) in their 3′-untranslated region. We found HuR to be upregulated in malignant melanoma in vitro and in vivo, significantly correlating with progression in vivo. Additionally, we could show that miR-194-5p can regulate HuR expression level. HuR knockdown in melanoma cells led to the suppression of proliferation and the induction of cellular senescence. Interestingly, HuR overexpression was sufficient to inhibit senescence in BRAFV600E-expressing melanocytes and to force their growth. Here, MITF (Microphthalmia-associated transcription factor), a key player in suppressing senescence and an ARE containing transcript, is positively regulated by HuR. Our results show for the first time that the overexpression of HuR is an important part of the regulatory pathway in the development of malignant melanoma and functions as a switch to overcome oncogene-induced senescence and to support melanoma formation. These newly defined alterations may provide possibilities for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Janika K. Liebig
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.K.L.); (S.K.)
| | - Silke Kuphal
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.K.L.); (S.K.)
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.K.L.); (S.K.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-24191
| |
Collapse
|
31
|
A computational approach to the study of interactions between proteins and miR10-b, miR-335, and miR-21 involved in breast cancer. Contemp Oncol (Pozn) 2020; 23:220-225. [PMID: 31992954 PMCID: PMC6978763 DOI: 10.5114/wo.2019.91544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
MiR-10b, miR-335, and miR-21 are classes of microRNAs (miRNAs) that are overexpressed in breast cancer. Thus, in our study we aimed to test the hypothesis that miRNAs may have direct interactions with proteins and the possibility to inhibit/activate the functional site of proteins and enzymes. For this purpose, we choose three miRNAs involved in breast cancer to study interactions between some proteins and genes, including BRCA1 and PTEN, by processing the docking and matching tools using the Hex8 and HADDOCK server. Mathematically, the hidden Markov models were created by using MATLAB script according to the algorithm in order to study and validate the interactions and bonds between proteins and miRNAs. The main results demonstrate the ability of miR-10b, miR-335, and miR-21 to create direct interactions with 3D protein structures. Furthermore, these results may lead to another pathway of research, i.e. the direct interaction between proteins and their sub-units, to highlight the data obtained previously and demonstrate that proteins may directly interact with ncRNA instead of mRNA. Moreover, our study suggests developing research on different pathways of association proteins-miRNAs as a part of epigenetic extra-nuclear regulation. Taken together, our study provides the first evidence of direct interactions between miRNAs and proteins.
Collapse
|
32
|
Yang D, Jiao Y, Li Y, Fang X. Clinical characteristics and prognostic value of MEX3A mRNA in liver cancer. PeerJ 2020; 8:e8252. [PMID: 31998552 PMCID: PMC6979405 DOI: 10.7717/peerj.8252] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MEX3A is an RNA-binding proteins (RBPs) that promotes the proliferation, invasion, migration and viability of cancer cells. The aim of this study was to explore the clinicopathological characteristics and prognostic significance of MEX3A mRNA expression in liver cancer. METHODS RNA-Seq and clinical data were collected from The Cancer Genome Atlas (TCGA). Boxplots were used to represent discrete variables of MEX3A. Chi-square tests were used to analyze the correlation between clinical features and MEX3A expression. Receiver operating characteristic (ROC) curves were used to confirm diagnostic ability. Independent prognostic ability and values were assessed using Kaplan-Meier curves and Cox analysis. RESULTS We acquired MEX3A RNA-Seq from 50 normal liver tissues and 373 liver cancer patients along with clinical data. We found that MEX3A was up-regulated in liver cancer which increased according to histological grade (p < 0.001). MEX3A showed moderate diagnostic ability for liver cancer (AUC = 0.837). Kaplan-Meier curves and Cox analysis revealed that the high expression of MEX3A was significantly associated with poor survival (OS and RFS) (p < 0.001). Moreover, MEX3A was identified as an independent prognostic factor of liver cancer (p < 0.001). CONCLUSIONS MEX3A expression shows promise as an independent predictor of liver cancer prognosis.
Collapse
Affiliation(s)
- Dingquan Yang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
33
|
Bao G, Huang J, Pan W, Li X, Zhou T. Long noncoding RNA CERS6-AS1 functions as a malignancy promoter in breast cancer by binding to IGF2BP3 to enhance the stability of CERS6 mRNA. Cancer Med 2020; 9:278-289. [PMID: 31701672 PMCID: PMC6943159 DOI: 10.1002/cam4.2675] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) leads to the highest mortality in women worldwide, characterized by inevitable proliferation and metastasis of BC cells. Mounting evidence confirm that lncRNAs play a significant role in the tumorigenesis and development of BC. lncRNA CERS6-AS1 is a novel discovery, and its role and molecular mechanism in BC has not been studied. In this study, it was discovered that CERS6-AS1 was overexpressed in BC tissues and cells. CERS6-AS1 accelerated cell proliferation and suppressed cell apoptosis in BC. Moreover, molecular mechanism exploration uncovered that there was a positive association between CERS6 and CERS6-AS1 (or IGF2BP3) expression in BC. Furthermore, IGF2BP3 serves as a RNA-binding protein for CERS6-AS1 and CERS6-AS1 promoted CERS6 mRNA stability by binding to IGF2BP3. In the end, rescue experiments verified that overexpression of CERS6 rescues the inhibition of CERS6-AS1 deficiency on BC progression in vitro and vivo. Taken together, these evidences suggested that CERS6-AS1 promoted the progression of BC by binding to IGF2BP3 and thus enhancing the stability of CERS6 mRNA, providing a new underlying therapeutic target for BC to improve prognosis.
Collapse
Affiliation(s)
- Gang Bao
- Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Jianjun Huang
- Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Wei Pan
- Inspection InstituteGuizhou Medical UniversityGuiyangGuizhouChina
| | - Xing Li
- Inspection InstituteGuizhou Medical UniversityGuiyangGuizhouChina
| | - Tian Zhou
- Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
34
|
Wang Y, Zhao H, Zhi W. SEMA4D under the posttranscriptional regulation of HuR and miR-4319 boosts cancer progression in esophageal squamous cell carcinoma. Cancer Biol Ther 2019; 21:122-129. [PMID: 31651222 DOI: 10.1080/15384047.2019.1669996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major type of esophageal carcinoma, one of the main reasons of cancer-caused death. While the therapeutic effect on ESCC patents is still unsatisfactory as a result of tumor aggression, recurrence and metastasis. RNA-binding proteins, microRNAs and specific genes get involved in tumorigenesis and development of tumors in a large proportion. In several reports, SEMA4D is an oncogene and miR-4319 is a tumor suppressor. We discovered the interaction of SEMA4D with HuR and miR-4319, whereas the detailed mechanism in ESCC was yet to be researched. At first, SEMA4D was significantly overexpressed in ESCC cells, and its knockdown repressed cell proliferation and migration as well as accelerated cell apoptosis. And then HuR was proved to stabilize SEMA4D mRNA by binding to its 3'UTR. In addition, miR-4319 targeted and degraded SEMA4D. Taken together, SEMA4D was regulated competitively by HuR and miR-4319. Collectively, HuR and miR-4319 co-regulating SEMA4D affected cell proliferation, apoptosis and migration in ESCC. This research explored the regulatory mechanism on SEMA4D in ESCC and provided optional therapeutic targets for ESCC patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Huxi Hospital Affiliated to Jining Medical College, Shandong, China
| | - Hongli Zhao
- Department of Gastroenterology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Weiwei Zhi
- Department of Cardio-Thoracic Surgery, Xi'an No .3 Hospital, Xi'an, China
| |
Collapse
|
35
|
Dong M, Dong Z, Zhu X, Zhang Y, Song L. Long non-coding RNA MIR205HG regulates KRT17 and tumor processes in cervical cancer via interaction with SRSF1. Exp Mol Pathol 2019; 111:104322. [PMID: 31655037 DOI: 10.1016/j.yexmp.2019.104322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/09/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) has been demonstrated to be a vital regulatory factor in a large number of malignancies. The investigation in cervical cancer and the associated modulation mechanisms are yet to be probed. The aim of this study is to specifically investigate the expression pattern and modulatory mechanism of MIR205HG in cervical cancer. Our paper firstly revealed the up-regulation of KRT17 in cervical cancer. Function assays further displayed that KRT17 silencing impaired the proliferation and migration, and activated the apoptosis of cervical cancer cells. Based on the finding that MIR205HG could regulate KRT17 expression, we further probed the detailed mechanism between MIR205HG and KRT17. It was observed from mechanism experiments that MIR205HG depleted SRSF1 to increase KRT17 expression. The whole mechanism of MIR205HG/SRSF1/KRT17 axis affecting cell proliferation, apoptosis and migration in cervical cancer was validated using rescue assays. In conclusion, MIR205HG modulated the biological activities of cervical cancer cells via targeting SRSF1 and regulating KRT17, which better understood the pathogenesis of cervical carcinoma and excavated a novel therapeutic target.
Collapse
Affiliation(s)
- Mingli Dong
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhennan Dong
- Department of Medical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinyu Zhu
- Department of Obstetrics and Gynecology, Beijing Corps Hospital of Chinese People's Armed Police Force, Beijing 100027, China
| | - Yunhe Zhang
- Department of Obstetrics and Gynecology, China Mei-tan General Hospital, Beijing 100028, China
| | - Lei Song
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, China..
| |
Collapse
|
36
|
Lehr FX, Hanst M, Vogel M, Kremer J, Göringer HU, Suess B, Koeppl H. Cell-Free Prototyping of AND-Logic Gates Based on Heterogeneous RNA Activators. ACS Synth Biol 2019; 8:2163-2173. [PMID: 31393707 DOI: 10.1021/acssynbio.9b00238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA-based devices controlling gene expression bear great promise for synthetic biology, as they offer many advantages such as short response times and light metabolic burden compared to protein-circuits. However, little work has been done regarding their integration to multilevel regulated circuits. In this work, we combined a variety of small transcriptional activator RNAs (STARs) and toehold switches to build highly effective AND-gates. To characterize the components and their dynamic range, we used an Escherichia coli (E. coli) cell-free transcription-translation (TX-TL) system dispensed via nanoliter droplets. We analyzed a prototype gate in vitro as well as in silico, employing parametrized ordinary differential equations (ODEs), for which parameters were inferred via parallel tempering, a Markov chain Monte Carlo (MCMC) method. On the basis of this analysis, we created nine additional AND-gates and tested them in vitro. The functionality of the gates was found to be highly dependent on the concentration of the activating RNA for either the STAR or the toehold switch. All gates were successfully implemented in vivo, offering a dynamic range comparable to the level of protein circuits. This study shows the potential of a rapid prototyping approach for RNA circuit design, using cell-free systems in combination with a model prediction.
Collapse
Affiliation(s)
- François-Xavier Lehr
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Maleen Hanst
- Department of Electrical Engineering, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| | - Marc Vogel
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Jennifer Kremer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - H. Ulrich Göringer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Heinz Koeppl
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Department of Electrical Engineering, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
37
|
Lan Y, Xiao X, He Z, Luo Y, Wu C, Li L, Song X. Long noncoding RNA OCC-1 suppresses cell growth through destabilizing HuR protein in colorectal cancer. Nucleic Acids Res 2019; 46:5809-5821. [PMID: 29931370 PMCID: PMC6009600 DOI: 10.1093/nar/gky214] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
Overexpressed in colon carcinoma-1 (OCC-1) is one of the earliest annotated long noncoding RNAs (lncRNAs) in colorectal cancer (CRC); however, its function remains largely unknown. Here, we revealed that OCC-1 plays a tumor suppressive role in CRC. OCC-1 knockdown by RNA interference promotes cell growth both in vitro and in vivo, which is largely due to its ability to inhibit G0 to G1 and G1 to S phase cell cycle transitions. In addition, overexpression of OCC-1 can suppress cell growth in OCC-1 knockdown cells. OCC-1 exerts its function by binding to and destabilizing HuR (ELAVL1), a cancer-associated RNA binding protein (RBP) which can bind to and stabilize thousands of mRNAs. OCC-1 enhances the binding of ubiquitin E3 ligase β-TrCP1 to HuR and renders HuR susceptible to ubiquitination and degradation, thereby reducing the levels of HuR and its target mRNAs, including the mRNAs directly associated with cancer cell growth. These findings reveal that lncRNA OCC-1 can regulate the levels of a large number of mRNAs at post-transcriptional level through modulating RBP HuR stability.
Collapse
Affiliation(s)
- Yang Lan
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xuewei Xiao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Zhengchi He
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Yu Luo
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Chuanfang Wu
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
38
|
Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform 2019; 16:/j/jib.2019.16.issue-3/jib-2019-0027/jib-2019-0027.xml. [PMID: 31301674 PMCID: PMC6798851 DOI: 10.1515/jib-2019-0027] [Citation(s) in RCA: 425] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic genomes are pervasively transcribed. Besides protein-coding RNAs, there are different types of non-coding RNAs that modulate complex molecular and cellular processes. RNA sequencing technologies and bioinformatics methods greatly promoted the study of ncRNAs, which revealed ncRNAs' essential roles in diverse aspects of biological functions. As important key players in gene regulatory networks, ncRNAs work with other biomolecules, including coding and non-coding RNAs, DNAs and proteins. In this review, we discuss the distinct types of ncRNAs, including housekeeping ncRNAs and regulatory ncRNAs, their versatile functions and interactions, transcription, translation, and modification. Moreover, we summarize the integrated networks of ncRNA interactions, providing a comprehensive landscape of ncRNAs regulatory roles.
Collapse
Affiliation(s)
- Peijing Zhang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyi Wu
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
Tong J, Xu X, Zhang Z, Ma C, Xiang R, Liu J, Xu W, Wu C, Li J, Zhan F, Wu Y, Yan H. Hypoxia-induced long non-coding RNA DARS-AS1 regulates RBM39 stability to promote myeloma malignancy. Haematologica 2019; 105:1630-1640. [PMID: 31289203 PMCID: PMC7271587 DOI: 10.3324/haematol.2019.218289] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma is a malignant plasma-cell disease, which is highly dependent on the hypoxic bone marrow microenvironment. However, the underlying mechanisms of hypoxia contributing to myeloma genesis are not fully understood. Here, we show that long non-coding RNA DARS-AS1 in myeloma is directly upregulated by hypoxia inducible factor (HIF)-1. Importantly, DARS-AS1 is required for the survival and tumorigenesis of myeloma cells both in vitro and in vivo. DARS-AS1 exerts its function by binding RNA-binding motif protein 39 (RBM39), which impedes the interaction between RBM39 and its E3 ubiquitin ligase RNF147, and prevents RBM39 from degradation. The overexpression of RBM39 observed in myeloma cells is associated with poor prognosis. Furthermore, knockdown of DARS-AS1 inhibits the mammalian target of rapamycin signaling pathway, an effect that is reversed by RBM39 overexpression. We reveal that a novel HIF-1/DARS-AS1/RBM39 pathway is implicated in the pathogenesis of myeloma. Targeting DARS-AS1/RBM39 may, therefore, represent a novel strategy to combat myeloma.
Collapse
Affiliation(s)
- Jia Tong
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Xu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilu Zhang
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengning Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rufang Xiang
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenghuang Zhan
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Chaichian S, Shafabakhsh R, Mirhashemi SM, Moazzami B, Asemi Z. Circular RNAs: A novel biomarker for cervical cancer. J Cell Physiol 2019; 235:718-724. [PMID: 31240697 DOI: 10.1002/jcp.29009] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022]
Abstract
Besides messenger RNAs, recent RNA-Seq and biochemical analysis showed another type of RNAs as a product of splicing which is named circular RNA (circRNA). Evidence demonstrated that circRNAs are abundant in the cells and are able to show cell/tissue-specific expression or tissue developmental stage which suggest that circRNAs may have regulatory potentials. In recent years, researchers have focused attention on circRNAs because of their key functions in various cellular mechanisms. CircRNAs also have the potential to be as promising biomarkers for diagnosis of various diseases such as cancer. Growing up evidence has shown the various roles of circRNAs in multiple cancers. In recent years, cervical cancer as one of the main causes of cancer death in women has been interesting for molecular research. CircRNAs are one of the novel objects which have recently been evaluated in this cancer. The improvement in our knowledge of the roles of circRNAs in cervical cancer may lead to new transcription therapeutic approaches to cervical cancer inhibition. Therefore, the purpose of this review is to review many studies which examined the role of circRNAs in cervical cancer carcinogenesis and progression up till date and to summarize possible mechanisms of action of circRNAs in cervical neoplasm.
Collapse
Affiliation(s)
- Shala Chaichian
- Minimally Invasive Techniques Research Center in Women, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.,Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
41
|
Choi S, Sa M, Cho N, Kim KK, Park SH. Rbfox2 dissociation from stress granules suppresses cancer progression. Exp Mol Med 2019; 51:1-12. [PMID: 31028247 PMCID: PMC6486603 DOI: 10.1038/s12276-019-0246-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
Stress granules (SGs) are stalled translation initiation complexes comprising untranslated mRNAs and RNA-binding proteins (RBPs). RBP fox-1 homolog 2 (Rbfox2), a component of SGs, binds to retinoblastoma 1 (RB1) mRNA, which is closely related to cancer progression; however, the role of Rbfox2 in cancer progression remains largely unknown. In this study, we confirmed that Rbfox2, which is present in the nucleus as a splicing regulator, localizes to the cytoplasm of human colon cancer tissues and that induction of Rbfox2 dissociation from SGs by resveratrol treatment inhibits cancer progression. We also observed that Rbfox2 in SGs inhibited RB1 protein expression and promoted cell cycle progression. Additionally, resveratrol treatment inhibited SG-mediated Rbfox2 localization, further inhibiting RB1 protein expression, and inhibited specific Rbfox2 localization to the cytoplasm in melanoma B16-F10 cells, thereby effectively inhibiting metastasis and tumor growth ability. These results indicate that Rbfox2 dissociation from SGs attenuates cancer progression and offer insight into the mechanism associated with Rbfox2 dissociation, thereby marking Rbfox2 as a potential candidate target for cancer therapy. Resveratrol, an antioxidant found in red grapes, slows cancer progression by interfering with the localization and function of the RNA-binding protein Rbfox2. A study led by Kee Kim at Chungnam National University and Su-Hyung Park at Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, showed that in human colon cancer cells Rbfox2 is located in the cytoplasm where it promotes cell proliferation by blocking the assembly of the tumor suppressor protein RB1. Treatment with resveratrol prevented the migration of Rbfox2 from the nucleus to the cytoplasm and significantly reduced tumor growth in a mouse model of melanoma. This study not only sheds light on the protective effects of resveratrol but also suggests that Rbfox2 could be a potential target for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Moa Sa
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
42
|
Soni S, Anand P, Padwad YS. MAPKAPK2: the master regulator of RNA-binding proteins modulates transcript stability and tumor progression. J Exp Clin Cancer Res 2019; 38:121. [PMID: 30850014 PMCID: PMC6408796 DOI: 10.1186/s13046-019-1115-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/21/2019] [Indexed: 01/09/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK) pathway has been implicated in a variety of pathological conditions including inflammation and metastasis. Post-transcriptional regulation of genes harboring adenine/uridine-rich elements (AREs) in their 3'-untranslated region (3'-UTR) is controlled by MAPK-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of the p38MAPK. In response to diverse extracellular stimuli, MK2 influences crucial signaling events, regulates inflammatory cytokines, transcript stability and critical cellular processes. Expression of genes involved in these vital cellular cascades is controlled by subtle interactions in underlying molecular networks and post-transcriptional gene regulation that determines transcript fate in association with RNA-binding proteins (RBPs). Several RBPs associate with the 3'-UTRs of the target transcripts and regulate their expression via modulation of transcript stability. Although MK2 regulates important cellular phenomenon, yet its biological significance in tumor progression has not been well elucidated till date. In this review, we have highlighted in detail the importance of MK2 as the master regulator of RBPs and its role in the regulation of transcript stability, tumor progression, as well as the possibility of use of MK2 as a therapeutic target in tumor management.
Collapse
Affiliation(s)
- Sourabh Soni
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh India
- Academy of Scientific and Innovative Research, Chennai, Tamil Nadu India
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh India
- Academy of Scientific and Innovative Research, Chennai, Tamil Nadu India
| | - Yogendra S. Padwad
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh India
- Academy of Scientific and Innovative Research, Chennai, Tamil Nadu India
| |
Collapse
|
43
|
Wang H, Wu P. Prediction of RNA-protein interactions using conjoint triad feature and chaos game representation. Bioengineered 2019; 9:242-251. [PMID: 30117758 PMCID: PMC6984769 DOI: 10.1080/21655979.2018.1470721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RNA-protein interactions (RPIs) play a very important role in a wide range of post-transcriptional regulations, and identifying whether a given RNA-protein pair can form interactions or not is a vital prerequisite for dissecting the regulatory mechanisms of functional RNAs. Currently, expensive and time-consuming biological assays can only determine a very small portion of all RPIs, which calls for computational approaches to help biologists efficiently and correctly find candidate RPIs. Here, we integrated a successful computing algorithm, conjoint triad feature (CTF), and another method, chaos game representation (CGR), for representing RNA-protein pairs and by doing so developed a prediction model based on these representations and random forest (RF) classifiers. When testing two benchmark datasets, RPI369 and RPI2241, the combined method (CTF+CGR) showed some superiority compared with four existing tools. Especially on RPI2241, the CTF+CGR method improved prediction accuracy (ACC) from 0.91 (the best record of all published works) to 0.95. When independently testing a newly constructed dataset, RPI1449, which only contained experimentally validated RPIs released between 2014 and 2016, our method still showed some generalization capability with an ACC of 0.75. Accordingly, we believe that our hybrid CTF+CGR method will be an important tool for predicting RPIs in the future.
Collapse
Affiliation(s)
- Hongchu Wang
- a Department of Mathematics , South China Normal University , Guangzhou P.R. of China
| | - Pengfei Wu
- b College of Informatics , Huazhong Agricultural University , Wuhan P.R. of China
| |
Collapse
|
44
|
Lucchesi CA, Zhang J, Ma B, Chen M, Chen X. Disruption of the Rbm38-eIF4E Complex with a Synthetic Peptide Pep8 Increases p53 Expression. Cancer Res 2019; 79:807-818. [PMID: 30591552 PMCID: PMC6377842 DOI: 10.1158/0008-5472.can-18-2209] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/05/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Rbm38 is a p53 target and an RNA-binding protein known to suppress p53 translation by preventing eukaryotic translation initiation factor 4E (eIF4E) from binding to p53 mRNA. In this study, we show that synthetic peptides corresponding to the binding interface between Rbm38 and eIF4E, including an 8 amino acid peptide (Pep8) derived from Rbm38, are effective in relieving Rbm38-mediated repression of p53. Molecular simulations showed that Ser-6 in Pep8 forms a hydrogen bond with Asp-202 in eIF4E. Substitution of Ser-6 with Lys, but not with Asp, enhanced the ability of Pep8 to inhibit the Rbm38-eIF4E complex. Importantly, Pep8 alone or together with a low dose of doxorubicin potently induced p53 expression and suppressed colony and tumor sphere formation and xenograft tumors in Rbm38- and p53-dependent manners. Together, we conclude that modulating the Rbm38-eIF4E complex may be explored as a therapeutic strategy for cancers that carry wild-type p53. SIGNIFICANCE: Disruption of the Rbm38-eIF4E complex via synthetic peptides induces wild-type p53 expression, suppresses tumor growth and progression, and may serve as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Christopher A Lucchesi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, California
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, California
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland
| | - Mingyi Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, California.
| |
Collapse
|
45
|
Kim S, Jeong S. Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases. Mol Cells 2019; 42:8-16. [PMID: 30699286 PMCID: PMC6354055 DOI: 10.14348/molcells.2018.0436] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 02/08/2023] Open
Abstract
Mutations in the β-catenin gene (CTNNB1) have been implicated in the pathogenesis of some cancers. The recent development of cancer genome databases has facilitated comprehensive and focused analyses on the mutation status of cancer-related genes. We have used these databases to analyze the CTNNB1 mutations assembled from different tumor types. High incidences of CTNNB1 mutations were detected in endometrial, liver, and colorectal cancers. This finding agrees with the oncogenic role of aberrantly activated β-catenin in epithelial cells. Elevated frequencies of missense mutations were found in the exon 3 of CTNNB1, which is responsible for encoding the regulatory amino acids at the N-terminal region of the protein. In the case of metastatic colorectal cancers, inframe deletions were revealed in the region spanning exon 3. Thus, exon 3 of CTNNB1 can be considered to be a mutation hotspot in these cancers. Since the N-terminal region of the β-catenin protein forms a flexible structure, many questions arise regarding the structural and functional impacts of hotspot mutations. Clinical identification of hotspot mutations could provide the mechanistic basis for an oncogenic role of mutant β-catenin proteins in cancer cells. Furthermore, a systematic understanding of tumor-driving hotspot mutations could open new avenues for precision oncology.
Collapse
Affiliation(s)
- Sewoon Kim
- Graduate Department of Bioconvergence Science and Technology, Dankook University, Jukjeon, Yongin, Gyeonggi 16890,
Korea
| | - Sunjoo Jeong
- Graduate Department of Bioconvergence Science and Technology, Dankook University, Jukjeon, Yongin, Gyeonggi 16890,
Korea
| |
Collapse
|
46
|
RBMS2 inhibits the proliferation by stabilizing P21 mRNA in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:298. [PMID: 30514345 PMCID: PMC6278172 DOI: 10.1186/s13046-018-0968-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 11/10/2022]
Abstract
Background RNA binding proteins (RBPs) play an important role in regulating the metabolism of target RNAs. Aberrant expression of RBPs plays a vital role in the initiation and development of many cancers. The RBM family, which has the conserved RNA binding motif RNP1 and RNP2, shares the similar function in RNA processing and RBMS2 is a member of them. P21, also named CDKN1A, promotes cell cycle arrest and plays an important role in halting cell proliferation. In our study, we identified RBMS2 as a tumor suppressor in breast cancer. It inhibited the proliferation of breast cancer by positively regulating the stability of P21 mRNA in posttranscriptional way. Methods TCGA was used to identify differentially expressed RBPs in breast cancer. The effect of RBMS2 on breast cancer proliferation was evaluated in vitro using CCK-8 assays, colony formation assays and cell-cycle assays and the in vivo effect was investigated using a mouse tumorigenicity model. The main pathway and genes regulated by RBMS2 was detected by RNA sequencing. The RNA immunoprecipitation combined with dual-luciferase reporter assay were conducted to testify the direct binding between RBMS2 and P21. Rescue assay was used to detect P21 as the main target of RBMS2. Results The expression of RBMS2 was lower in breast cancer compared with normal tissues and was a favorable biomarker in breast cancer. RBMS2 inhibited the proliferation of breast cancer and P21 was the main target of RBMS2. RBMS2 stabilized the mRNA of P21 by directly binding to the AU-rich element of 3′-UTR region. Anti-proliferation activity induced by overexpression of RBMS2 was rescued by interfering with the expression of P21. Conclusion In conclusion, RBMS2 acted as a tumor suppressor in breast cancer and positively regulated the expression of P21 by stabilizing its mRNA. Electronic supplementary material The online version of this article (10.1186/s13046-018-0968-z) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Lu M, Ge Q, Wang G, Luo Y, Wang X, Jiang W, Liu X, Wu CL, Xiao Y, Wang X. CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1α. Cell Death Dis 2018; 9:1046. [PMID: 30315244 PMCID: PMC6185914 DOI: 10.1038/s41419-018-1109-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
Cold-inducible RNA binding protein (CIRBP) has been reported to be associated with distinct tumorigenesis. In this study, we investigated the role of CIRBP in human bladder cancer (BCa), indicating that CIRBP is overexpressed in BCa tissues and cell lines to promote proliferation and migration. Moreover, CIRBP could induce expression of HIF-1α via binding to the 3'-UTR of its mRNA to increase the mRNA stability in BCa cells. Furthermore, we demonstrated that PTGIS is a HIF-1α targeted gene, a major regulator in hypoxic cancer progression by activating transcription of various oncogenes. Our results also suggested that overexpression of HIF-1α may suppress the expression of PTGIS in BCa cells, by binding to HRE sequence at the promoter region of PTGIS. In addition, we found a strongly downregulation of PTGIS in BCa tissue and transcriptionally inhibited by HIF-1α in BCa cells, which could be triggered by its DNA methylation. Further result suggested that knockdown of CIRBP could promote the expression of PTGIS, meanwhile knockdown of PTGIS could partially rescue CIRBP-deficiency induced inhibition of migration and proliferation in BCa cells. Taken together, our study indicated that CIRBP could be a novel oncogene in human bladder cancer inducing transcription of HIF-1α, which could inhibit expression of methylated PTGIS.
Collapse
Affiliation(s)
- Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiangqiang Ge
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Department of Urology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.
| |
Collapse
|
48
|
Ye J, Liang R, Bai T, Lin Y, Mai R, Wei M, Ye X, Li L, Wu F. RBM38 plays a tumor-suppressor role via stabilizing the p53-mdm2 loop function in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:212. [PMID: 30176896 PMCID: PMC6122209 DOI: 10.1186/s13046-018-0852-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/20/2018] [Indexed: 02/04/2023]
Abstract
Background Misregulation of the p53-mdm2 loop function is a major mechanism to promote hepatocellular carcinoma (HCC). RBM38, a member of the RNA recognition motif (RRM) family of RNA binding proteins (RBPs), plays a fundamental role in the posttranscriptional control of gene expression and regulatory functions in human tumors. A novel RBM38-p53-mdm2 autoregulatory feedback loop has been demonstrated. However, its mechanistic role in HCC remains unclear. Methods In the present study, we investigated the role and molecular mechanism of misregulation in the p53-mdm2 loop function by RBM38 in HCC. First we investigated the correlation of RBM38 activity and p53-mdm2 loop function in liver cancer cells and HCC tissues by western blot and quantitative RT-PCR. We then conducted functional assays to investigate the molecular roles of RBM38 in inhibiting liver cancer cells aggressiveness in vitro and suppressing tumorigenicity in vivo. Results We observed RBM38 protein expression was commonly silenced coupled with increased mdm2 and decreased wild type (wt) p53 in liver cancer cells and HCC tissues compared to the corresponding normal liver cells and adjacent liver tissues. RBM38 mRNA level was significantly lower in HCC than adjacent liver tissues, whereas mdm2 and wtp53 mRNA levels were similar between HCC and adjacent liver tissues. This implied that deactivation of RBM38 could disrupt the p53-mdm2 loop and promote HCC, even though p53 and mdm2 transcript amounts were stable. Then, we generated stable liver cancer cell lines with overexpressed RBM38 (RBM38-OE) and found that up-regulation of RBM38 could inhibit mdm2 and restore wtp53 expression. Luciferase assay shown that RBM38 destabilized the mdm2 transcript through binding to multiple AU-/U-rich elements in mdm2 3’-UTR. Furthermore, functional assays showed that ectopic expression of RBM38 could induce liver cancer cell apoptosis and senescence, inhibit proliferation and colony growth, and suppress migration and invasion in vitro. Lastly, RBM38 could suppress HCC tumorigenicity in vivo. Conclusion Our findings suggested that RBM38 may be a core contributor in stabilizing the p53-mdm2 loop function to prevent HCC, and a potential novel target to provide a therapeutic strategy for HCC by inhibiting mdm2 and rescuing p53 from inactivation. Electronic supplementary material The online version of this article (10.1186/s13046-018-0852-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiazhou Ye
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Rong Liang
- Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yan Lin
- Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Rongyun Mai
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Meng Wei
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xinqin Ye
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China. .,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
49
|
Simile MM, Latte G, Feo CF, Feo F, Calvisi DF, Pascale RM. Alterations of methionine metabolism in hepatocarcinogenesis: the emergent role of glycine N-methyltransferase in liver injury. Ann Gastroenterol 2018; 31:552-560. [PMID: 30174391 PMCID: PMC6102450 DOI: 10.20524/aog.2018.0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
The methionine and folate cycles play a fundamental role in cell physiology and their alteration is involved in liver injury and hepatocarcinogenesis. Glycine N-methyltransferase is implicated in methyl group supply, DNA methylation, and nucleotide biosynthesis. It regulates the cellular S-adenosylmethionine/S-adenosylhomocysteine ratio and S-adenosylmethionine-dependent methyl transfer reactions. Glycine N-methyltransferase is absent in fast-growing hepatocellular carcinomas and present at a low level in slower growing HCC ones. The mechanism of tumor suppression by glycine N-methyltransferase is not completely known. Glycine N-methyltransferase inhibits hepatocellular carcinoma growth through interaction with Dep domain-containing mechanistic target of rapamycin (mTor)-interacting protein, a binding protein overexpressed in hepatocellular carcinoma. The interaction of the phosphatase and tensin homolog inhibitor, phosphatidylinositol 3,4,5-trisphosphate-dependent rac exchanger, with glycine N-methyltransferase enhances proteasomal degradation of this exchanger by the E3 ubiquitin ligase HectH. Glycine N-methyltransferase also regulates genes related to detoxification and antioxidation pathways. It supports pyrimidine and purine syntheses and minimizes uracil incorporation into DNA as consequence of folate depletion. However, recent evidence indicates that glycine N-methyltransferase targeted into nucleus still exerts strong anti-proliferative effects independent of its catalytic activity, while its restriction to cytoplasm prevents these effects. Our current knowledge suggest that glycine N-methyltransferase plays a fundamental, even if not yet completely known, role in cellular physiology and highlights the need to further investigate this role in normal and cancer cells.
Collapse
Affiliation(s)
- Maria M. Simile
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Gavinella Latte
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Claudio F. Feo
- Department of Clinical, Surgical and Experimental Medicine, Division of Surgery (Claudio F. Feo), University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Diego F. Calvisi
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Rosa M. Pascale
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| |
Collapse
|
50
|
Zhou R, Wu Y, Wang W, Su W, Liu Y, Wang Y, Fan C, Li X, Li G, Li Y, Xiong W, Zeng Z. Circular RNAs (circRNAs) in cancer. Cancer Lett 2018; 425:134-142. [PMID: 29625140 DOI: 10.1016/j.canlet.2018.03.035] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that do not have 5' end caps or 3' end poly (A) tails. There are more than one hundred thousand genes that encode circRNAs. Clinical data show that there are differences in the expression of circRNAs in a variety of diseases, including cancer, suggesting that circRNA has a regulatory effect on some diseases. Further studies reveal that circRNA can be used as an endogenous competitive RNA, thereby regulating the proliferation, invasion or other physiological activities of tumor cells. In addition, some circRNAs located in the nucleus can regulate the transcription of the parental gene by binding to RNA polymerase II. circRNA can also combine with proteins to influence the cell cycle. Furthermore, recent studies have shown that circRNA can encode proteins, similarly to mRNA. circRNAs are found extensively in human cells and have tissue specificity. They have the potential to be used in clinical applications as tumor markers and therapeutic targets.
Collapse
Affiliation(s)
- Ruoyu Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuwei Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenxi Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjia Su
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yicong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|