1
|
Kang YJ, Kim DS, Kim S, Seo YJ, Ko K. Plant-derived PAP proteins fused to immunoglobulin A and M Fc domains induce anti-prostate cancer immune response in mice. BMB Rep 2023; 56:392-397. [PMID: 37037672 PMCID: PMC10390288 DOI: 10.5483/bmbrep.2022-0207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 01/01/2025] Open
Abstract
In this study, recombinant Fc-fused Prostate acid phosphatase (PAP) proteins were produced in transgenic plants. PAP was fused to immunoglobulin (Ig) A and M Fc domain (PAP-IgA Fc and PAP-IgM Fc), which were tagged to the ER retention sequence KDEL to generate PAP-IgA FcK and PAP-IgM FcK. Agrobacteriummediated transformation was performed to produce transgenic tobacco plants expressing four recombinant proteins. Genomic PCR and RT-PCR analyses confirmed the transgene insertion and mRNA transcription of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK in tobacco plant leaves. Western blot confirmed the expression of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK proteins. SEC-HPLC and Bio-TEM analyses were performed to confirm the size and shape of the plant-derived recombinant PAP-Fc fusion proteins. In mice experiments, the plant-derived IgA and IgM Fc fused proteins induced production of total IgGs including IgG1 against PAP. This result suggests that IgA and IgM Fc fusion can be applied to produce recombinant PAP proteins as a prostate cancer vaccine in plant expression system. [BMB Reports 2023; 56(7): 392-397].
Collapse
Affiliation(s)
- Yang Joo Kang
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Deuk-Su Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seyoung Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
2
|
Song I, Lee YK, Kim JW, Lee SW, Park SR, Lee HK, Oh S, Ko K, Kim MK, Park SJ, Kim DH, Kim MS, Kim DS, Ko K. Effect of an Endoplasmic Reticulum Retention Signal Tagged to Human Anti-Rabies mAb SO57 on Its Expression in Arabidopsis and Plant Growth. Mol Cells 2021; 44:770-779. [PMID: 34711693 PMCID: PMC8560589 DOI: 10.14348/molcells.2021.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Transgenic Arabidopsis thaliana expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using Agrobacterium-mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth. We generated T1 transformants and obtained homozygous T3 seeds from transgenic Arabidopsis to investigate the effect of KDEL on plant growth. The germination rate did not significantly differ between plants expressing mAb SO57 without KDEL (SO plant) and mAb SO57 with KDEL (SOK plant). The primary roots of SOK agar media grown plants were slightly shorter than those of SO plants. Transcriptomic analysis showed that expression of all 11 ER stress-related genes were not significantly changed in SOK plants relative to SO plants. SOK plants showed approximately three-fold higher mAb expression levels than those of SO plants. Consequently, the purified mAb amount per unit of SOK plant biomass was approximately three times higher than that of SO plants. A neutralization assay revealed that both plants exhibited efficient rapid fluorescent focus inhibition test values against the rabies virus relative to commercially available human rabies immunoglobulins. KDEL did not upregulate ER stress-related genes; therefore, the enhanced production of the mAb did not affect plant growth. Thus, KDEL fusion is recommended for enhancing mAb production in plant systems.
Collapse
Affiliation(s)
- Ilchan Song
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Young Koung Lee
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan 54004, Korea
| | - Jin Wook Kim
- Department of Urology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seung-Won Lee
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Se Ra Park
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Hae Kyung Lee
- Division of Zoonotic and Vector Borne Diseases Research, Korea National Institute of Health, Osong 28159, Korea
| | - Soyeon Oh
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Mi Kyung Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Soon Ju Park
- Division of Biological Sciences, Wonkwang University, Iksan 54538, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon 57922, Korea
| | - Moon-Soo Kim
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Do Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju 55365, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
3
|
Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants. Molecules 2021; 26:4032. [PMID: 34279372 PMCID: PMC8272150 DOI: 10.3390/molecules26134032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of drug-resistant pathogens poses a serious critical threat to global public health and requires immediate action. Antimicrobial peptides (AMPs) are a class of short peptides ubiquitously found in all living forms, including plants, insects, mammals, microorganisms and play a significant role in host innate immune system. These peptides are considered as promising candidates to treat microbial infections due to its distinct advantages over conventional antibiotics. Given their potent broad spectrum of antimicrobial action, several AMPs are currently being evaluated in preclinical/clinical trials. However, large quantities of highly purified AMPs are vital for basic research and clinical settings which is still a major bottleneck hindering its application. This can be overcome by genetic engineering approaches to produce sufficient amount of diverse peptides in heterologous host systems. Recently plants are considered as potential alternatives to conventional protein production systems such as microbial and mammalian platforms due to their unique advantages such as rapidity, scalability and safety. In addition, AMPs can also be utilized for development of novel approaches for plant protection thereby increasing the crop yield. Hence, in order to provide a spotlight for the expression of AMP in plants for both clinical or agricultural use, the present review presents the importance of AMPs and efforts aimed at producing recombinant AMPs in plants for molecular farming and plant protection so far.
Collapse
Affiliation(s)
| | - Christine Joy I Bulaon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Lim S, Kim DS, Ko K. Expression of a Large Single-Chain 13F6 Antibody with Binding Activity against Ebola Virus-Like Particles in a Plant System. Int J Mol Sci 2020; 21:E7007. [PMID: 32977599 PMCID: PMC7582593 DOI: 10.3390/ijms21197007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
Pathogenic animal and human viruses present a growing and persistent threat to humans worldwide. Ebola virus (EBOV) causes zoonosis in humans. Here, two structurally different anti-Ebola 13F6 antibodies, recognizing the heavily glycosylated mucin-like domain (MLD) of the glycoprotein (GP), were expressed in transgenic Nicotiana tabacum plants and designed as inexpensive and effective diagnostic antibodies against Ebola virus disease (EVD). The first was anti-EBOV 13F6 full size antibody with heavy chain (HC) and light chain (LC) (monoclonal antibody, mAb 13F6-FULL), while the second was a large single-chain (LSC) antibody (mAb 13F6-LSC). mAb 13F6-LSC was constructed by linking the 13F6 LC variable region (VL) with the HC of mAb 13F6-FULL using a peptide linker and extended to the C-terminus using the endoplasmic reticulum (ER) retention motif KDEL. Agrobacterium-mediated plant transformation was employed to express the antibodies in N. tabacum. PCR, RT-PCR, and immunoblot analyses confirmed the gene insertion, transcription, and protein expression of these antibodies, respectively. The antibodies tagged with the KDEL motif displayed high-mannose type N-glycan structures and efficient binding to EBOV-like particles (VLPs). Thus, various forms of anti-EBOV plant-derived mAbs 13F6-FULL and LSC with efficient binding affinity to EBOV VLP can be produced in the plant system.
Collapse
Affiliation(s)
- Sohee Lim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea;
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| |
Collapse
|
5
|
A Plant-Derived Antigen-Antibody Complex Induces Anti-Cancer Immune Responses by Forming a Large Quaternary Structure. Int J Mol Sci 2020; 21:ijms21165603. [PMID: 32764343 PMCID: PMC7460599 DOI: 10.3390/ijms21165603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/06/2023] Open
Abstract
The antigen–antibody complex (AAC) has novel functions for immunomodulation, encouraging the application of diverse quaternary protein structures for vaccination. In this study, GA733 antigen and anti-GA733 antibody proteins were both co-expressed to obtain the AAC protein structures in a F1 plant obtained by crossing the plants expressing each protein. In F1 plant, the antigen and antibody assembled to form a large quaternary circular ACC structure (~30 nm). The large quaternary protein structures induced immune response to produce anticancer immunoglobulins G (IgGs) that are specific to the corresponding antigens in mouse. The serum containing the anticancer IgGs inhibited the human colorectal cancer cell growth in the xenograft nude mouse. Taken together, antigens and antibodies can be assembled to form AAC protein structures in plants. Plant crossing represents an alternative strategy for the formation of AAC vaccines that efficiently increases anticancer antibody production.
Collapse
|