1
|
Noori L, Saqagandomabadi V, Di Felice V, David S, Caruso Bavisotto C, Bucchieri F, Cappello F, Conway de Macario E, Macario AJL, Scalia F. Putative Roles and Therapeutic Potential of the Chaperone System in Amyotrophic Lateral Sclerosis and Multiple Sclerosis. Cells 2024; 13:217. [PMID: 38334609 PMCID: PMC10854686 DOI: 10.3390/cells13030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
The putative pathogenic roles and therapeutic potential of the chaperone system (CS) in amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are reviewed to provide a bibliographic and conceptual platform for launching research on the diagnostic and therapeutic applications of CS components. Various studies suggest that dysfunction of the CS contributes to the pathogenesis of ALS and MS, and here, we identify some of the implicated CS members. The physiology and pathophysiology of the CS members can be properly understood if they are studied or experimentally or clinically manipulated for diagnostic or therapeutic purposes, bearing in mind that they belong to a physiological system with multiple interacting and dynamic components, widespread throughout the body, intra- and extracellularly. Molecular chaperones, some called heat shock protein (Hsp), are the chief components of the CS, whose canonical functions are cytoprotective. However, abnormal chaperones can be etiopathogenic factors in a wide range of disorders, chaperonopathies, including ALS and MS, according to the data reviewed. Chaperones typically form teams, and these build functional networks to maintain protein homeostasis, the canonical role of the CS. However, members of the CS also display non-canonical functions unrelated to protein homeostasis. Therefore, chaperones and other members of the CS, if abnormal, may disturb not only protein synthesis, maturation, and migration but also other physiological processes. Thus, in elucidating the role of CS components in ALS and MS, one must look at protein homeostasis abnormalities and beyond, following the clues emerging from the works discussed here.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
- Department of Anatomy, School of Medicine, Medical University of Babol, Babol 47176-47745, Iran
| | - Vahid Saqagandomabadi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
| | - Sabrina David
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore—Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore—Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| |
Collapse
|
2
|
Malik JA, Kaur G, Agrewala JN. Revolutionizing medicine with toll-like receptors: A path to strengthening cellular immunity. Int J Biol Macromol 2023; 253:127252. [PMID: 37802429 DOI: 10.1016/j.ijbiomac.2023.127252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Toll-like receptors play a vital role in cell-mediated immunity, which is crucial for the immune system's defense against pathogens and maintenance of homeostasis. The interaction between toll-like-receptor response and cell-mediated immunity is complex and essential for effectively eliminating pathogens and maintaining immune surveillance. In addition to pathogen recognition, toll-like receptors serve as adjuvants in vaccines, as molecular sensors, and recognize specific patterns associated with pathogens and danger signals. Incorporating toll-like receptor ligands into vaccines can enhance the immune response to antigens, making them potent adjuvants. Furthermore, they bridge the innate and adaptive immune systems and improve antigen-presenting cells' capacity to process and present antigens to T cells. The intricate signaling pathways and cross-talk between toll-like-receptor and T cell receptor (TCR) signaling emphasize their pivotal role in orchestrating effective immune responses against pathogens, thus facilitating the development of innovative vaccine strategies. This article provides an overview of the current understanding of toll-like receptor response and explores their potential clinical applications. By unraveling the complex mechanisms of toll-like-receptor signaling, we can gain novel insights into immune responses and potentially develop innovative therapeutic approaches. Ongoing investigations into the toll-like-receptor response hold promise in the future in enhancing our ability to combat infections, design effective vaccines, and improve clinical outcomes.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India
| | - Gurpreet Kaur
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India; Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India.
| |
Collapse
|
3
|
Repac J, Božić B, Božić Nedeljković B. Microbes as triggers and boosters of Type 1 Diabetes - Mediation by molecular mimicry. Diabetes Res Clin Pract 2023:110824. [PMID: 37429362 DOI: 10.1016/j.diabres.2023.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
AIMS Type 1 diabetes is characterized by steadily increasing incidence and largely obscured pathogenesis. Molecular mimicry is well-established as trigger for different autoimmune pathologies, but obscurely explored in the context of T1D. The presented study explores the underestimated role of molecular mimicry in T1D-etiology/progression in search for etiologic factors among human pathogens and commensals. METHODS A comprehensive immunoinformatics analysis of T1D-specific experimental T-cell epitopes across bacterial, fungal, and viral proteomes was performed, coupled with MHC-restricted mimotope validation and docking of most potent epitopes/mimotopes to T1D-high-risk MHCII molecules. In addition, re-analysis of the publicly available T1D-microbiota dataset was performed, including samples at the pre-T1D disease stage. RESULTS A number of bacterial pathogens/commensals were tagged as putative T1D triggers/boosters, including ubiquitous gut residents. The prediction of most likely mimicked epitopes revealed heat-shock proteins as most potent autoantigens for autoreactive T-cell priming via molecular mimicry. Docking revealed analogous interactions for predicted bacterial mimotopes and corresponding experimental epitopes. Finally, re-analysis of T1D gut microbiota datasets prompted pre-T1D as most significantly different/dysbiotic, compared to other explored categories (T1D stage/controls). CONCLUSIONS Obtained results support the unrecognized role of molecular mimicry in T1D, suggesting that autoreactive T-cell priming might be the triggering factor of disease development.
Collapse
Affiliation(s)
- Jelana Repac
- University of Belgrade, Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Belgrade, Serbia
| | - Bojan Božić
- University of Belgrade, Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Belgrade, Serbia
| | - Biljana Božić Nedeljković
- University of Belgrade, Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Belgrade, Serbia.
| |
Collapse
|
4
|
Mining the capacity of human-associated microorganisms to trigger rheumatoid arthritis-A systematic immunoinformatics analysis of T cell epitopes. PLoS One 2021; 16:e0253918. [PMID: 34185818 PMCID: PMC8241107 DOI: 10.1371/journal.pone.0253918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)–a painful condition characterized by the chronic inflammation of joints—comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.
Collapse
|
5
|
Ramakrishnan P, Pavan Kumar T, Saraswathy GR, Sujatha S. In silico evaluation of drugs used in treatment of oral lichen planus. J Oral Pathol Med 2020; 49:926-932. [PMID: 32813925 DOI: 10.1111/jop.13100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic T cell-mediated, immunological, mucocutaneous disease with a number of genes and inflammatory mediators implicated in its pathogenesis. Heart shock protein 70 and the proinflammatory mediator TNFα have been predominantly involved in the etiopathogenesis of oral lichen planus. METHODS In this study, the action of 27 commonly used drugs for treating OLP at HSP70 and TNFα were evaluated by molecular docking using Maestro Schrodinger version 10.1. X-ray crystallographic structures of the target proteins, that is, Heat Shock Protein 70 (PDB Code: 6FDT) and tumor necrosis factor alpha-1 (PDB Code: 1TNF) were obtained from Protein Data Bank (PDB). The structures of the ligands (27 drugs) were obtained from PubChem in.sdf format. Using Ligprep, pre-processing of the ligands was done. Extra-precision docking was performed with the prepared protein and the ligands. RESULTS With respect to HSP70, the highest dock score (-4.768) and glide score (-4.818) were seen with hydroxychloroquine (HCQ), followed by epigallocatechin gallate (green tea), methotrexate, and curcumin. The highest dock (-9.525) and glide score (-9.584) in TNFα were seen in with epigallocatechin gallate, followed by HCQ, dapsone, and methotrexate. CONCLUSION The results of the study tend to explain the clinical use of HCQ in recalcitrant and severe cases, as well as the anti-inflammatory property of epigallocatechin gallate. The results of the study open ventures for exploring the in silico behavior of drugs for effective pathological management.
Collapse
Affiliation(s)
- Priyadharshini Ramakrishnan
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bangalore, India
| | - T Pavan Kumar
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bangalore, India
| | - G R Saraswathy
- Department of Pharmacy Practice, Pharmacological Modelling and Simulation Centre, Faculty of Pharmacy, Ramaiah University of Applied Sciences, Bangalore, India
| | - S Sujatha
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bangalore, India
| |
Collapse
|
6
|
Chiricosta L, Gugliandolo A, Bramanti P, Mazzon E. Could the Heat Shock Proteins 70 Family Members Exacerbate the Immune Response in Multiple Sclerosis? An in Silico Study. Genes (Basel) 2020; 11:genes11060615. [PMID: 32503176 PMCID: PMC7348765 DOI: 10.3390/genes11060615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system. It represents one of the main causes of neurological disability in young people. In MS, the autoimmune response is directed against myelin antigens but other possible bio-molecular markers are investigated. The aim of this work was, through an in silico study, the evaluation of the transcriptional modifications between healthy subjects and MS patients in six brain areas (corpus callosum, hippocampus, internal capsule, optic chiasm, frontal and parietal cortex) in order to identify genes representative of the disease. Our results show the upregulation of the Heat Shock Proteins (HSPs) HSPA1A, HSPA1B, HSPA7, HSPA6, HSPH1 and HSPA4L of the HSP70 family, among which HSPA1A and HSPA1B are upregulated in all the brain areas. HSP70s are molecular chaperones indispensable for protein folding, recently associated with immune system maintenance. The little overexpression of the HSPs protects the cells from stress but extreme upregulation can contribute to the MS pathogenesis. We also investigated the genes involved in the immune system that result in overall upregulation in the corpus callosum, hippocampus, internal capsule, optic chiasm and are absent in the cortex. Interestingly, the genes of the immune system and the HSP70s have comparable levels of expression.
Collapse
|
7
|
Kabir M, Ahmad S, Iqbal M, Hayat M. iNR-2L: A two-level sequence-based predictor developed via Chou's 5-steps rule and general PseAAC for identifying nuclear receptors and their families. Genomics 2019; 112:276-285. [PMID: 30779939 DOI: 10.1016/j.ygeno.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/09/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
Nuclear receptor proteins (NRPs) perform a vital role in regulating gene expression. With the rapidity growth of NRPs in post-genomic era, it is highly recommendable to identify NRPs and their sub-families accurately from their primary sequences. Several conventional methods have been used for discrimination of NRPs and their sub-families, but did not achieve considerable results. In a sequel, a two-level new computational model "iNR-2 L" is developed. Two discrete methods namely: Dipeptide Composition and Tripeptide Composition were used to formulate NRPs sequences. Further, both the descriptor spaces were merged to construct hybrid space. Furthermore, feature selection technique minimum redundancy and maximum relevance was employed in order to select salient features as well as reduce the noise and redundancy. The experiential outcomes exhibited that the proposed model iNR-2 L achieved outstanding results. It is anticipated that the proposed computational model might be a practical and effective tool for academia and research community.
Collapse
Affiliation(s)
- Muhammad Kabir
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Saeed Ahmad
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Muhammad Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan.
| |
Collapse
|
8
|
Abdulle AE, Diercks GFH, Feelisch M, Mulder DJ, van Goor H. The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy. Front Physiol 2018; 9:1177. [PMID: 30197602 PMCID: PMC6117399 DOI: 10.3389/fphys.2018.01177] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc.
Collapse
Affiliation(s)
- Amaal E. Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gilles F. H. Diercks
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Douwe J. Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Cappello F, Conway de Macario E, Rappa F, Zummo G, Macario AJL. Immunohistochemistry of Human Hsp60 in Health and Disease: From Autoimmunity to Cancer. Methods Mol Biol 2018; 1709:293-305. [PMID: 29177667 DOI: 10.1007/978-1-4939-7477-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hsp60 (also called Cpn60) is a chaperonin with essential functions for cell physiology and survival. Additionally, its involvement in the pathogenesis of a variety of diseases (e.g., some autoimmune disorders and cancer) is becoming evident with new research. For example, the distribution and levels of Hsp60 in cells and tissues have been found altered in many pathologic conditions, and the significance of these alterations is being investigated in a number of laboratories. The aim of this ongoing research is to determine the meaning of these Hsp60 alterations with regard to pathogenetic mechanisms, diagnosis, classification of lesions, and assessing prognosis and response to treatment.Hsp60 occurs in the mitochondria, i.e., its typical residence according to classic knowledge, and also in other locales, such as the cytosol, the cell membrane, the intercellular space, and biological fluids (e.g., blood and cerebrospinal fluid). Detection and quantitative determinations in all these locations are becoming essential components of laboratory pathology in clinics and research. Consequently, immunohistochemistry targeting Hsp60 is also becoming essential for pathologists and researchers interested in disorders involving this chaperonin.In this chapter, we summarize some recent discoveries on the participation of Hsp60 in the pathogenesis of human diseases, and describe in detail how to perform immunohistochemical reactions for detecting the chaperonin, determining its location, and measuring its quantitative levels.
Collapse
Affiliation(s)
- Francesco Cappello
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and IMET; Columbus Center, 701 East Pratt Street, Baltimore, MD, 21202, USA
| | - Francesca Rappa
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giovanni Zummo
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy. .,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and IMET; Columbus Center, 701 East Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
10
|
The Role of Toll-Like Receptors in Autoimmune Diseases through Failure of the Self-Recognition Mechanism. Int J Inflam 2017; 2017:8391230. [PMID: 28553556 PMCID: PMC5434307 DOI: 10.1155/2017/8391230] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs), part of the innate immune system that recognises molecular signatures, are important in the recognition of pathogenic components. However, when specific cellular contexts develop in which TLRs are inappropriately activated by self-components, this may lead to sterile inflammation and result in the occurrence of autoimmunity. This review analyses the available data regarding TLR biochemistry, the specific mechanisms which are brought about by TLR activation, and the importance of these mechanisms in the light of any existing and potential therapies in the field of autoimmunity.
Collapse
|
11
|
Uzunoglu E, Yentur S, Kayar AH, Turan M, Donmez A, Direskeneli GS, Erdogan N. Effect of mild heat stress on heat shock protein 70 in a balneotherapy model. Eur J Integr Med 2017. [DOI: 10.1016/j.eujim.2016.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Ahmad S, Kabir M, Hayat M. Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou's general PseAAC. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 122:165-174. [PMID: 26233307 DOI: 10.1016/j.cmpb.2015.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/21/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
Heat Shock Proteins (HSPs) are the substantial ingredients for cell growth and viability, which are found in all living organisms. HSPs manage the process of folding and unfolding of proteins, the quality of newly synthesized proteins and protecting cellular homeostatic processes from environmental stress. On the basis of functionality, HSPs are categorized into six major families namely: (i) HSP20 or sHSP (ii) HSP40 or J-proteins types (iii) HSP60 or GroEL/ES (iv) HSP70 (v) HSP90 and (vi) HSP100. Identification of HSPs family and sub-family through conventional approaches is expensive and laborious. It is therefore, highly desired to establish an automatic, robust and accurate computational method for prediction of HSPs quickly and reliably. Regard, a computational model is developed for the prediction of HSPs family. In this model, protein sequences are formulated using three discrete methods namely: Split Amino Acid Composition, Pseudo Amino Acid Composition, and Dipeptide Composition. Several learning algorithms are utilized to choice the best one for high throughput computational model. Leave one out test is applied to assess the performance of the proposed model. The empirical results showed that support vector machine achieved quite promising results using Dipeptide Composition feature space. The predicted outcomes of proposed model are 90.7% accuracy for HSPs dataset and 97.04% accuracy for J-protein types, which are higher than existing methods in the literature so far.
Collapse
Affiliation(s)
- Saeed Ahmad
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Kabir
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan.
| |
Collapse
|
13
|
Zachova K, Krupka M, Raska M. Antigen Cross-Presentation and Heat Shock Protein-Based Vaccines. Arch Immunol Ther Exp (Warsz) 2015; 64:1-18. [DOI: 10.1007/s00005-015-0370-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022]
|
14
|
Temajo NO, Howard N. The virus-induced HSPs regulate the apoptosis of operatus APCs that result in autoimmunity, not in homeostasis. Immunol Res 2015; 60:208-18. [PMID: 25403694 DOI: 10.1007/s12026-014-8585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The viruses stand salient as environmental factors that trigger autoimmunity. The virus realizes its effects through induction of heat-shock proteins (HSPs) as well as by the viral IE-axis-mediated conversion of organ epithelial cells into virgin de novo professional antigen-presenting cells (APCs). The HSP is the accomplished operator in homeostasis by the logic of it being the regulator of apoptosis. By virtue of its regulation of apoptosis, the HSP is also involved in autoimmunity: (1) adornment of viral IE-axis-generated virgin de novo professional APCs with HSP-induced co-stimulatory molecules which transform these otherwise epithelial cells to competent antigen presenters, the operatus APCs, liable to apoptosis that becomes the initiator of organ damages; (2) molecular mimicry mechanism: epitopes on the HSP may be mistaken for viral peptides and be presented by operatus APCs to autoreactive TCRs resulting in the apoptosis of the operatus APCs; (3) regulation of MHC class II DR-mediated apoptosis of operatus APCS which can result in organ-specific autoimmune syndromes. We should remember, however, that Nature's intended purpose for apoptosis of the professional APCs is benevolence: as a principal regulator of immune homeostasis. But the apoptosis of our postulated operatus APCs can result in autoimmunity. The transformation of virgin de novo professional APCs to operatus APCs mirrors the maturation of DCs through their acquisition of HSP-induced costimulatory molecules. What happens to mature DCs as antigen presenters that end in homeostasis is replicated by what happens to operatus APCs that ends instead in autoimmunity.
Collapse
Affiliation(s)
- Norbert O Temajo
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia,
| | | |
Collapse
|
15
|
Endotoxin-minimized HIV-1 p24 fused to murine hsp70 activates dendritic cells, facilitates endocytosis and p24-specific Th1 response in mice. Immunol Lett 2015; 166:36-44. [PMID: 26021827 DOI: 10.1016/j.imlet.2015.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/22/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
Heat shock proteins hsp70 and gp96 have been confirmed as adjuvants enabling induction of cell- and antibody-mediated immunity specific to associated protein or peptide antigens due to the activation of naive dendritic cells and supporting cross-presentation of associated antigen. An efficacious vaccine preventing HIV-1 infection should induce (1) antibodies neutralizing HIV-1 Env protein, preventing virus spreading and (2) CD4(+) Th1 and CD8(+) T cells specific to viral proteins, especially gag p24, important for elimination of HIV-1 infected cells. As p24 is relatively poorly recognized by dendritic cells, its targeting to DC is important for enhancement of vaccine efficacy. In this study, a p24 protein fused to the C- or N-terminus of murine hsp70 was produced as a recombinant protein and administered without any adjuvant to experimental BALB/c mice. Consequently, p24-specific cellular and humoral immune responses were measured. To minimize the effect of bacterial endotoxin, each protein was subjected to a repeated endotoxin phase extraction until each preparation contained less than 2.5 endotoxin unit (EU) per mg of antigen. In addition, endocytosis of p24 fused to hsp70 by dendritic cells and their activation were characterized. The fusion to hsp70 protein enhanced endocytosis of p24 as well as activation of dendritic cells in vitro. After immunization of mice, hsp70-p24 fusion protein induced the strongest p24-specific CD4(+) and CD8(+) T cells (IFN-γ production) and humoral (IgG2b) responses corresponding to Th1 type dominance, whereas p24-hsp70 or p24 itself induced weaker responses.
Collapse
|
16
|
Sechi LA, Dow CT. Mycobacterium avium ss. paratuberculosis Zoonosis - The Hundred Year War - Beyond Crohn's Disease. Front Immunol 2015; 6:96. [PMID: 25788897 PMCID: PMC4349160 DOI: 10.3389/fimmu.2015.00096] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 12/15/2022] Open
Abstract
The factitive role of Mycobacterium avium ss. paratuberculosis (MAP) in Crohn's disease has been debated for more than a century. The controversy is due to the fact that Crohn's disease is so similar to a disease of MAP-infected ruminant animals, Johne's disease; and, though MAP can be readily detected in the infected ruminants, it is much more difficult to detect in humans. Molecular techniques that can detect MAP in pathologic Crohn's specimens as well as dedicated specialty labs successful in culturing MAP from Crohn's patients have provided strong argument for MAP's role in Crohn's disease. Perhaps more incriminating for MAP as a zoonotic agent is the increasing number of diseases with which MAP has been related: Blau syndrome, type 1 diabetes, Hashimoto thyroiditis, and multiple sclerosis. In this article, we debate about genetic susceptibility to mycobacterial infection and human exposure to MAP; moreover, it suggests that molecular mimicry between protein epitopes of MAP and human proteins is a likely bridge between infection and these autoimmune disorders.
Collapse
Affiliation(s)
- Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari , Sassari , Italy
| | - Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin , Madison, WI , USA ; Chippewa Valley Eye Clinic , Eau Claire, WI , USA
| |
Collapse
|
17
|
Temajo NO, Howard N. The virus-induced HSPs regulate the apoptosis of operatus APCs that results in autoimmunity, not in homeostasis. Autoimmun Rev 2014; 13:1013-9. [PMID: 25183243 DOI: 10.1016/j.autrev.2014.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022]
Abstract
The viruses are salient in the roles of environmental factors that trigger autoimmunity. The virus realizes its effects by the power of its induction of heat shock proteins (HSPs) as well as by the viral IE-axis-mediated conversion of organ epithelial cells into virgin de novo professional antigen-presenting cells (APCs). The HSP is the accomplished operator in homeostasis by the logic of it being the regulator of apoptosis. That HSP which regulates and controls different points in the pathways of apoptosis is rationally propitious as both HSP and apoptosis are highly conserved in multicellular organisms. By virtue of its regulation of apoptosis, the HSP is also involved in human autoimmunity and this involvement is tripartite: (i) adornment of viral IE-axis-generated virgin de novo professional APCs with HSP-induced co-stimulatory molecules which transform these otherwise epithelial cells to achieve the status of fledged competent antigen-presenters, the operatus APCs, which are liable to apoptosis that becomes the initiator of organ damages that can culminate in the autoimmune syndrome(s); apoptosis is a routine fate that befalls all APCs following their antigen presentation; (ii) molecular mimicry mechanism: epitopes on the HSP may be mistaken for viral peptides and be presented by operatus APCs to autoreactive TCRs resulting in the apoptosis of the operatus APCs; and (iii) regulation of MHC class II-DR-mediated apoptosis of operatus APCs which can ultimately consequent in organ-specific autoimmune syndromes. We should remember, however, that Nature's intended purpose for the apoptosis of the professional APCs is benevolence: as a principal regulator of homeostasis. It is only from the apoptosis of our postulated operatus APCs that the apoptotic consequence can be deleterious, an autoimmune syndrome(s). The transformation of virgin de novo professional APCs to operatus APCs mirrors the maturation of DCs, through their acquisition of HSP-induced co-stimulatory molecules; and what happens to mature DCs as antigen-presenters that ends in homeostasis is replicated by what happens to operatus APCs that ends instead in autoimmune syndromes (Fig. 1).
Collapse
Affiliation(s)
- Norbert O Temajo
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| | - Neville Howard
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Silva CL, Bonato VLD, dos Santos-Júnior RR, Zárate-Bladés CR, Sartori A. Recent advances in DNA vaccines for autoimmune diseases. Expert Rev Vaccines 2014; 8:239-52. [DOI: 10.1586/14760584.8.2.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Jiang J, Xie D, Zhang W, Xiao G, Wen J. Fusion of Hsp70 to Mage-a1 enhances the potency of vaccine-specific immune responses. J Transl Med 2013; 11:300. [PMID: 24314011 PMCID: PMC4029478 DOI: 10.1186/1479-5876-11-300] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/27/2013] [Indexed: 11/17/2022] Open
Abstract
Background Heat shock proteins (HSPs) are capable of promoting antigen presentation of chaperoned peptides through interactions with receptors on antigen presenting cells. This property of HSPs suggests a potential function as an adjuvant-free carrier to stimulate immune responses against a covalently linked fusion partner. MAGE-A1 is a likely candidate for tumor immunotherapy due to its abundant immunogenic epitopes and strict tumor specificity. To analyze the influence of HSP70 conjugation to MAGE-A1, towards developing a novel effective vaccine against MAGE-expressing tumors, we cloned the murine counterpart of the human HSP70 and MAGE-A1 genes. Methods Recombinant proteins expressing Mage-a1 (aa 118–219), Hsp70, and Mage-a1-Hsp70 fusion were purified and used to immunize C57BL/6 mice. The humoral and cellular responses elicited against Mage-a1 were measured by ELISA, IFN-γ ELISPOT assay, and cytotoxicity assay. Results Immunization of mice with Mage-a1-Hsp70 fusion protein elicited significantly higher Mage-a1-specific antibody titers than immunization with either Mage-a1 alone or a combination of Mage-a1 + Hsp70. The frequency of IFN-γ-producing cells and the cytotoxic T lymphocyte (CTL) activity was also elevated. Consistent with the elevated immune response, immunization with fusion protein induced potent in vivo antitumor immunity against MAGE-a1-expressing tumors. Conclusions These results indicate that the fusion of Hsp70 to Mage-a1 can enhance immune responses and anti-tumor effects against Mage-a1-expressing tumors. Fusion of HSP70 to a tumor antigen may greatly enhance the potency of protein vaccines and can potentially be applied to other cancer systems with known tumor-specific antigens. These findings provide a scientific basis for the development of a novel HSP70 and MAGE fusion protein vaccine against MAGE-expressing tumors.
Collapse
Affiliation(s)
- Juhong Jiang
- Department of Pathology, The First Affiliated Hospital, Guangzhou Medical University, 151, Yanjiang Road, Guangzhou 510120, China.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJL. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 2013; 18:185-208. [PMID: 24286280 DOI: 10.1517/14728222.2014.856417] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hsp60 (Cpn60) assembles into a tetradecamer that interacts with the co-chaperonin Hsp10 (Cpn10) to assist client polypeptides to fold, but it also has other roles, including participation in pathogenic mechanisms. AREA COVERED Hsp60 chaperonopathies are pathological conditions, inherited or acquired, in which the chaperone plays a determinant etiologic-pathogenic role. These diseases justify selection of Hsp60 as a target for developing agents that interfere with its pathogenic effects. We provide information on how to proceed. EXPERT OPINION The information available encourages the development of ways to improve Hsp60 activity (positive chaperonotherapy) when deficient or to block it (negative chaperonotherapy) when pathogenic. Many questions are still unanswered and obstacles are obvious. More information is needed to establish when and why autologous Hsp60 becomes a pathogenic autoantigen, or induces cytokine formation and inflammation, or favors carcinogenesis. Clarification of these points will take considerable time. However, analysis of the Hsp60 molecule and a search for active compounds aimed at structural sites that will affect its functioning should continue without interruption. No doubt that some of these compounds will offer therapeutic hopes and will also be instrumental for dissecting structure-function relationships at the biochemical and biological (using animal models and cultured cells) levels.
Collapse
Affiliation(s)
- Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Hjelholt A, Carlsen T, Deleuran B, Jurik AG, Schiøttz-Christensen B, Christiansen G, Birkelund S. Increased levels of IgG antibodies against human HSP60 in patients with spondyloarthritis. PLoS One 2013; 8:e56210. [PMID: 23424650 PMCID: PMC3570413 DOI: 10.1371/journal.pone.0056210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Spondyloarthritis (SpA) comprises a heterogeneous group of inflammatory diseases, with strong association to human leukocyte antigen (HLA)-B27. A triggering bacterial infection has been considered as the cause of SpA, and bacterial heat shock protein (HSP) seems to be a strong T cell antigen. Since bacterial and human HSP60, also named HSPD1, are highly homologous, cross-reactivity has been suggested in disease initiation. In this study, levels of antibodies against bacterial and human HSP60 were analysed in SpA patients and healthy controls, and the association between such antibodies and disease severity in relation to HLA-B27 was evaluated.Serum samples from 82 patients and 50 controls were analysed by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G1, IgG2, IgG3 and IgG4 antibodies against human HSP60 and HSP60 from Chlamydia trachomatis, Salmonella enteritidis and Campylobacter jejuni. Disease severity was assessed by the clinical scorings Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Metrology Index (BASMI). Levels of IgG1 and IgG3 antibodies against human HSP60, but not antibodies against bacterial HSP60, were elevated in the SpA group compared with the control group. Association between IgG3 antibodies against human HSP60 and BASMI was shown in HLA-B27⁺ patients. Only weak correlation between antibodies against bacterial and human HSP60 was seen, and there was no indication of cross-reaction. These results suggest that antibodies against human HSP60 is associated with SpA, however, the theory that antibodies against human HSP60 is a specific part of the aetiology, through cross-reaction to bacterial HSP60, cannot be supported by results from this study. We suggest that the association between elevated levels of antibodies against human HSP60 and disease may reflect a general activation of the immune system and an increased expression of human HSP60 in the synovium of patients with SpA.
Collapse
Affiliation(s)
- Astrid Hjelholt
- Department of Biomedicine-Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu T, Jiang W, Han D, Yu L. DNAJC25 is downregulated in hepatocellular carcinoma and is a novel tumor suppressor gene. Oncol Lett 2012. [PMID: 23205125 DOI: 10.3892/ol.2012.903] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HSP40, also known as DnaJ, is one of the subfamilies of the heat shock protein family. DnaJ/Hsp40 proteins act as co-chaperones by binding to the chaperone Hsp70 through their J domain and stimulating ATP hydrolysis to aid protein translation, folding, unfolding, translocation and degradation. They are implicated in various human diseases, including neurodegenerative disorders and cancer. In the present study, we cloned and identified a new gene, DnaJ (HSP40) homolog, subfamily C, member 25 (DNAJC25), which is localized to the cytoplasm. Real-time PCR revealed that the expression of DNAJC25 is particularly high in the liver and is down-regulated in hepatocellular carcinoma (HCC) compared with adjacent normal tissues. The overexpression of DNAJC25 led to an inhibition of colony growth both in quantity and size. Flow cytometry analysis indicated that DNAJC25 also significantly increased cell apoptosis. Our data, therefore, indicate that DNAJC25 plays an important role in hepatocellular carcinogenesis, and should be further studied as a potential tumor suppressor candidate.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | | | | | | |
Collapse
|
24
|
Dow CT. Mycobacterium paratuberculosis and autism: is this a trigger? Med Hypotheses 2011; 77:977-81. [PMID: 21903338 DOI: 10.1016/j.mehy.2011.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/14/2011] [Indexed: 12/21/2022]
Abstract
Autism is a heterogeneous group of life-long neurologic problems that begin in childhood. Success in efforts to understand and treat autism has been mostly elusive. The role of autoimmunity in autism has gained recognition both for associated systemic autoimmune disease and the presence of brain autoantibodies in autistic children and their family members. There is an acknowledged genetic susceptibility to autism--most notably allotypes of complement C4. C4 defects are associated with several autoimmune diseases and also confer susceptibility to mycobacterial infections. Mycobacterium avium ss. paratuberculosis (MAP) causes an enteric inflammatory disease in ruminant animals (Johne's disease) and is the putative cause of the very similar Crohn's disease in humans. Humans are widely exposed to MAP in food and water. MAP has been also linked to ulcerative colitis, irritable bowel syndrome, sarcoidosis, Blau syndrome, autoimmune (Type 1) diabetes, Hashimoto's thyroiditis and multiple sclerosis. Environmental agents are thought to trigger autism in the genetically at risk. Molecular mimicry is the proposed mechanism by which MAP is thought to trigger autoantibodies. Autoantibodies to brain myelin basic protein (MBP) is a common feature of autism. This article considers the subset of autoimmunity-related autism patients and postulates that MAP, through molecular mimicry to its heat shock protein HSP65, triggers autism by stimulating antibodies that cross react with myelin basic protein (MBP).
Collapse
Affiliation(s)
- Coad Thomas Dow
- UW Eye Research Institute, 445 Henry Mall #307, Madison, WI 53706, United States.
| |
Collapse
|
25
|
Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta Rev Cancer 2011; 1816:89-104. [PMID: 21605630 DOI: 10.1016/j.bbcan.2011.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 02/08/2023]
Abstract
Heat shock proteins (HSP) are a family of proteins induced in cells exposed to different insults. This induction of HSPs allows cells to survive stress conditions. Mammalian HSPs have been classified into six families according to their molecular size: HSP100, HSP90, HSP70, HSP60, HSP40 and small HSPs (15 to 30kDa) including HSP27. These proteins act as molecular chaperones either helping in the refolding of misfolded proteins or assisting in their elimination if they become irreversibly damaged. In recent years, proteomic studies have characterized several different HSPs in various tumor types which may be putative clinical biomarkers or molecular targets for cancer therapy. This has led to the development of a series of molecules capable of inhibiting HSPs. Numerous studies speculated that over-expression of HSP is in part responsible for resistance to many anti-tumor agents and chemotherapeutics. Hence, from a pharmacological point of view, the co-administration of HSP inhibitors together with other anti-tumor agents is of major importance in overcoming therapeutic resistance. In this review, we provide an overview of the current status of HSPs in autoimmune, cardiovascular, and neurodegenerative diseases with special emphasis on cancer.
Collapse
Affiliation(s)
- Ashraf A Khalil
- Department of Protein Technology, Institute of Genetic Engineering and Biotechnology, Mubarak City for Scientific Research, New Borg Elarab, Alexandria, Egypt.
| | | | | | | |
Collapse
|
26
|
Liao KW, Lin CS, Chen WL, Yang CT, Lin CM, Hsu WT, Lin YY, Chiu YH, Huang KC, Wu HY, Wu MS, Wu CJ, Mao SJT, Tsai NM. Antibodies against Helicobacter pylori heat shock protein 60 aggravate HSP60-mediated proinflammatory responses. Cytokine 2011; 55:174-80. [PMID: 21565524 DOI: 10.1016/j.cyto.2011.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 03/29/2011] [Accepted: 04/15/2011] [Indexed: 12/23/2022]
Abstract
Anti-Helicobacter pylori heat shock protein 60 (HpHSP60) antibodies are usually found in H. pylori-infected patients and are known to be associated with the progression of gastric diseases. However, the effects of these antibodies on the functions of HpHSP60 have not been identified. This study aims to investigate the effects of the interaction between anti-HSP60 antibodies and HpHSP60 on inflammatory responses. Anti-HpHSP60 polyclonal sera and monoclonal antibodies (mAbs) were produced to evaluate their effects on HpHSP60-induced IL-8 and TNF-α activity. The results indicated that anti-HpHSP60 polyclonal sera collected from patients infected with H. pylori or from rabbit and mice immunized with HpHSP60 could significantly enhance HpHSP60-mediated IL-8 and TNF-α secretion from monocytic THP-1 cells. Similar effects were also found with anti-HpHSP60 mAbs. Further analysis revealed that this phenomenon was only carried out by anti-HpHSP60 antibody but not by other non-specific mAbs. Moreover, the non-specific mAbs decreased the synergism of HpHSP60 and anti-HpHSP60 mAbs in proinflammatory cytokine induction. Herein, we have examined the role of anti-HpHSP60 antibody in host immune responses for the first time. This study demonstrated that H. pylori HSP60/mAbs could modulate helicobacterial pathogenesis by increasing IL-8 and TNF-α production. The pathogen-specific antibodies may execute potential immune functions rather than recognize or neutralize microbes.
Collapse
Affiliation(s)
- Kuang-Wen Liao
- Department of Biological Science and Technology and Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mašek J, Bartheldyová E, Turánek-Knotigová P, Skrabalová M, Korvasová Z, Plocková J, Koudelka S, Skodová P, Kulich P, Křupka M, Zachová K, Czerneková L, Horynová M, Kratochvílová I, Miller AD, Zýka D, Michálek J, Vrbková J, Sebela M, Ledvina M, Raška M, Turánek J. Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: preparation, structural study and immune response towards rHsp90. J Control Release 2011; 151:193-201. [PMID: 21256901 DOI: 10.1016/j.jconrel.2011.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/06/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
Hsp90-CA is present in cell wall of Candida pseudohyphae or hyphae-typical pathogenic morphotype for both systemic and mucosal Candida infections. Heat shock protein from Candida albicans (hsp90-CA) is an important target for protective antibodies during disseminated candidiasis of experimental mice and human. His-tagged protein rHsp90 was prepared and used as the antigen for preparation of experimental recombinant liposomal vaccine. Nickel-chelating liposomes (the size around 100nm, PDI≤0.1) were prepared from the mixture of egg phosphatidyl choline and nickel-chelating lipid DOGS-NTA-Ni (molar ratio 95:5%) by hydration of lipid film and extrusion methods. New non-pyrogenic hydrophobised derivative of MDP (C18-O-6-norAbuMDP) was incorporated into liposomes as adjuvans. rHsp90 was attached onto the surface of metallochelating liposomes by metallochelating bond and the structure of these proteoliposomes was studied by dynamic light scattering, AF microscopy, TEM and GPC. The liposomes with surface-exposed C18-O-6-norAbuMDP were well recognised and phagocyted by human dendritic cells in vitro. In vivo the immune response towards this experimental vaccine applied in mice (i.d.) demonstrated both TH1 and TH2 response comparable to FCA, but without any side effects. Metallochelating liposomes with lipophilic derivatives of muramyl dipeptide represent a new biocompatible platform for construction of experimental recombinant vaccines and drug-targeting systems.
Collapse
Affiliation(s)
- Josef Mašek
- Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Campanella C, Marino Gammazza A, Mularoni L, Cappello F, Zummo G, Di Felice V. A comparative analysis of the products of GROEL-1 gene from Chlamydia trachomatis serovar D and the HSP60 var1 transcript from Homo sapiens suggests a possible autoimmune response. Int J Immunogenet 2009; 36:73-8. [PMID: 19207939 DOI: 10.1111/j.1744-313x.2008.00819.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlamydia trachomatis serovar D produces large quantities of HSP60-1 during infections, which accumulate inside the host cell inducing autoimmunity. We compare the aminoacid sequences of the human HSP60 with the bacterial counterpart to better elucidate how CTHSP60 may simulate HSP60 from human origin during infection and may induce an autoimmune response. As a result of the comparison we suggest several possible epitopes of the CTHSP60, which may induce autoimmunity.
Collapse
Affiliation(s)
- C Campanella
- Sezione di Anatomia Umana 'E. Luna', Dipartimento di Medicina Sperimentale, Università di Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Thomas Dow C. Cows, Crohn’s and more: Is Mycobacterium paratuberculosis a superantigen? Med Hypotheses 2008; 71:858-61. [DOI: 10.1016/j.mehy.2008.07.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
30
|
Abstract
Neurodegeneration develops in association with inflammation and demyelination in multiple sclerosis. Available data suggest that the progressive neuroaxonal loss begins in the earliest stages of the disease and underlies the accumulation of clinical disability. The loss of neurons and their processes is driven by a complex molecular mechanism involving cellular and humoral immune histotoxicity, demyelination, reduced neurotrophic support, metabolic impairment, and altered intracellular processes. Here we survey available data concerning the role of autoreactive immunoglobulins in neurotoxicity. A better understanding of molecular pathways leading to immune-mediated neurodegeneration may have key importance in the successful treatment of the disease.
Collapse
|
31
|
Raska M, Bĕláková J, Krupka M, Weigl E. Candidiasis--do we need to fight or to tolerate the Candida fungus? Folia Microbiol (Praha) 2007; 52:297-312. [PMID: 17702470 DOI: 10.1007/bf02931313] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Candidiases, infections caused by germination forms of the Candida fungus, represent a heterogeneous group of diseases from systemic infection, through mucocutaneous form, to vulvovaginal form. Although caused by one organism, each form is controlled by distinct host immune mechanisms. Phagocytosis by polymorphonuclears and macrophages is generally accepted as the host immune mechanism for Candida elimination. Phagocytes require proinflammatory cytokine stimulation which could be harmful and must be regulated during the course of infection by the activity of CD8+ and CD4+ T cells. In the vaginal tissue the phagocytes are inefficient and inflammation is generally an unwanted reaction because it could damage mucosal tissue and break the tolerance to common vagina antigens including the otherwise saprophyting Candida yeast. Recurrent form of vulvovaginal candidiasis is probably associated with breaking of such tolerance. Beside the phagocytosis, specific antibodies, complement, and mucosal epithelial cell comprise Candida eliminating immune mechanisms. They are regulated by CD4+ and CD8+ T cells which produce cytokines IL-12, IFN-gamma, IL-10, TGF-beta, etc. as the response to signals from dendritic cells specialized to sense actual Candida morphotypes. During the course of Candida infection proinflammatory signals (if initially necessary) are replaced successively by antiinflammatory signals. This balance is absolutely distinct during each candidiasis form and it is crucial to describe and understand the basic principles before designing new therapeutic and/or preventive approaches.
Collapse
Affiliation(s)
- M Raska
- Department of Immunology, Medical Faculty, Palacký University, 772 00 Olomouc, Czechia.
| | | | | | | |
Collapse
|
32
|
Kiszel P, Fust G, Pessi T, Hurme M, Prohászka Z. Associations between Interleukin-6 Genetic Polymorphisms and Levels of Autoantibodies to 60-kDa Heat-Shock Proteins. Hum Hered 2006; 62:77-83. [PMID: 17047337 DOI: 10.1159/000096095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 08/10/2006] [Indexed: 11/19/2022] Open
Abstract
AIMS Previously we reported an association between levels of anti-Hsp60 autoantibodies and interleukin-6 (IL-6) -174 SNP in Finnish population. The aim of this study was to investigate the same association in an independent population and to study four recently described SNP in IL-6. MATERIALS AND METHODS 313 healthy Hungarian subjects were recruited and genotyped for IL-6 -174(G-->C), -9316(T-->C), -1363(G-->T), +1753(C-->G), +2954(G-->C). IgG antibodies to Hsp60 were measured by ELISA. LD between SNPs was computed by Haploview 3.2 software. RESULTS A strong association between IL-6 -174 polymorphism and anti-Hsp60 autoantibody levels was observed. Carriers of -174 CC genotype had significantly lower levels of anti-Hsp60 (p = 0.0052). Eight haplotypes were observed with five SNP-s and autoantibody levels in individuals carrying the most common haplotype (containing allele C of -174) were significantly lower than in all other genotype combinations (p = 0.026). CONCLUSIONS Allele C of -174 promoter polymorphism of the IL-6 gene was repeatedly shown to be associated with low anti-Hsp60 autoantibody levels. Strong linkage in the IL-6 gene was observed and the most frequent haplotype containing the -174 C allele was significantly associated with autoantibody levels. Since the -174 SNP of IL-6 is a functional polymorphism, our results indicate for a direct regulatory effect of IL-6 genotypes in the determination of autoantibody levels.
Collapse
Affiliation(s)
- Petra Kiszel
- IIIrd Department of Internal Medicine and Szentágothai János Knowledge Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|