1
|
Engstrom CB, Raymond BB, Albeitshawish J, Bogdanovic A, Quarmby LM. Rosetta gen. nov. (Chlorophyta): Resolving the identity of red snow algal rosettes. JOURNAL OF PHYCOLOGY 2024; 60:275-298. [PMID: 38439561 DOI: 10.1111/jpy.13438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
Thick-walled rosette-like snow algae were long thought to be a life stage of various other species of snow algae. Rosette-like cells have not been cultured, but by manually isolating cells from 38 field samples in southern British Columbia, we assigned a variety of rosette morphologies to DNA sequence. Phylogenetic analysis of Rubisco large-subunit (rbcL) gene, ribosomal internal transcribed spacer 2 (ITS2) rRNA region, and 18S rRNA gene revealed that the rosette-like cells form a new clade within the phylogroup Chloromonadinia. Based on these data, we designate a new genus, Rosetta, which comprises five novel species: R. castellata, R. floranivea, R. stellaria, R. rubriterra, and R. papavera. In a survey of 762 snow samples from British Columbia, we observed R. floranivea exclusively on snow overlying high-elevation glaciers, whereas R. castellata was observed at lower elevations, near the tree line. The other three species were rarely observed. Spherical red cells enveloped in a thin translucent sac were conspecific with Rosetta, possibly a developmental stage. These results highlight the unexplored diversity among snow algae and emphasize the utility of single-cell isolation to advance the centuries-old problem of disentangling life stages and cryptic species.
Collapse
Affiliation(s)
- Casey B Engstrom
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Breanna B Raymond
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Joud Albeitshawish
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anastasia Bogdanovic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
2
|
Remias D, Procházková L, Nedbalová L, Benning LG, Lutz S. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiol Ecol 2023; 99:fiad134. [PMID: 37880981 PMCID: PMC10659120 DOI: 10.1093/femsec/fiad134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Melting snow and glacier surfaces host microalgal blooms in polar and mountainous regions. The aim of this study was to determine the dominant taxa at the species level in the European Arctic and the Alps. A standardized protocol for amplicon metabarcoding using the 18S rRNA gene and ITS2 markers was developed. This is important because previous biodiversity studies have been hampered by the dominance of closely related algal taxa in snow and ice. Due to the limited resolution of partial 18S rRNA Illumina sequences, the hypervariable ITS2 region was used to further discriminate between the genotypes. Our results show that red snow was caused by the cosmopolitan Sanguina nivaloides (Chlamydomonadales, Chlorophyta) and two as of yet undescribed Sanguina species. Arctic orange snow was dominated by S. aurantia, which was not found in the Alps. On glaciers, at least three Ancylonema species (Zygnematales, Streptophyta) dominated. Golden-brown blooms consisted of Hydrurus spp. (Hydrurales, Stramenophiles) and these were mainly an Arctic phenomenon. For chrysophytes, only the 18S rRNA gene but not ITS2 sequences were amplified, showcasing how delicate the selection of eukaryotic 'universal' primers for community studies is and that primer specificity will affect diversity results dramatically. We propose our approach as a 'best practice'.
Collapse
Affiliation(s)
- Daniel Remias
- Paris Lodron University of Salzburg, Department of Ecology and Biodiversity, Hellbrunnerstr. 34, 5020 Salzburg, Austria
- University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Liane G Benning
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Stefanie Lutz
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
| |
Collapse
|
3
|
Procházková L, Matsuzaki R, Řezanka T, Nedbalová L, Remias D. The snow alga Chloromonas kaweckae sp. nov. (Volvocales, Chlorophyta) causes green surface blooms in the high tatras (Slovakia) and tolerates high irradiance. JOURNAL OF PHYCOLOGY 2023; 59:236-248. [PMID: 36461636 PMCID: PMC10946730 DOI: 10.1111/jpy.13307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Seasonally slowly melting mountain snowfields are populated by extremophilic microalgae. In alpine habitats, high-light sensitive, green phytoflagellates are usually observed in subsurface layers deeper in the snowpack under dim conditions, while robust orange to reddish cyst stages can be seen exposed on the surface. In this study, uncommon surface green snow was investigated in the High Tatra Mountains (Slovakia). The monospecific community found in the green surface bloom consisted of vegetative Chloromonas cells (Volvocales, Chlorophyta). Molecular data demonstrated that the field sample and the strain isolated and established from the bloom were conspecific, and they represent a new species, Chloromonas kaweckae sp. nov., which is described based on the morphology of the vegetative cells and asexual reproduction and on molecular analyses of the strain. Cells of C. kaweckae accumulated approximately 50% polyunsaturated fatty acids, which is advantageous at low temperatures. In addition, this new species performed active photosynthesis at temperatures close to the freezing point showed a light compensation point of 126 ± 22 μmol photons · m-2 · s-1 and some signs of photoinhibition at irradiances greater than 600 μmol photons · m-2 · s-1 . These data indicate that the photosynthetic apparatus of C. kaweckae could be regarded as adapted to relatively high light intensities, otherwise unusual for most flagellate stages of snow algae.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of EcologyCharles University, Faculty of SciencePrague128 44Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Centre for PhycologyDukelská 135379 82TřeboňCzech Republic
| | - Ryo Matsuzaki
- University of Tsukuba, Faculty of Life and Environmental Sciences1–1–1 TennodaiTsukubaIbaraki305–8572Japan
- National Institute for Environmental Studies, Biodiversity Division16‐2 OnogawaTsukubaIbaraki305‐8506Japan
| | - Tomáš Řezanka
- The Czech Academy of SciencesInstitute of MicrobiologyVídeňská 1083Prague142 20Czech Republic
| | - Linda Nedbalová
- Department of EcologyCharles University, Faculty of SciencePrague128 44Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Centre for PhycologyDukelská 135379 82TřeboňCzech Republic
| | - Daniel Remias
- University of Applied Sciences Upper Austria, School of EngineeringStelzhamerstr. 23Wels4600Austria
| |
Collapse
|
4
|
Chekanov K. Diversity and Distribution of Carotenogenic Algae in Europe: A Review. Mar Drugs 2023; 21:108. [PMID: 36827149 PMCID: PMC9958874 DOI: 10.3390/md21020108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Microalgae are the richest source of natural carotenoids, which are valuable pigments with a high share of benefits. Often, carotenoid-producing algae inhabit specific biotopes with unfavorable or even extremal conditions. Such biotopes, including alpine snow fields and hypersaline ponds, are widely distributed in Europe. They can serve as a source of new strains for biotechnology. The number of algal species used for obtaining these compounds on an industrial scale is limited. The data on them are poor. Moreover, some of them have been reported in non-English local scientific articles and theses. This review aims to summarize existing data on microalgal species, which are known as potential carotenoid producers in biotechnology. These include Haematococcus and Dunaliella, both well-known to the scientific community, as well as less-elucidated representatives. Their distribution will be covered throughout Europe: from the Greek Mediterranean coast in the south to the snow valleys in Norway in the north, and from the ponds in Amieiro (Portugal) in the west to the saline lakes and mountains in Crimea (Ukraine) in the east. A wide spectrum of algal secondary carotenoids is reviewed: β-carotene, astaxanthin, canthaxanthin, echinenone, adonixanthin, and adonirubin. For convenience, the main concepts of biology of carotenoid-producing algae are briefly explained.
Collapse
|
5
|
Schoeters F, Spit J, Azizah RN, Van Miert S. Pilot-Scale Cultivation of the Snow Alga Chloromonas typhlos in a Photobioreactor. Front Bioeng Biotechnol 2022; 10:896261. [PMID: 35757813 PMCID: PMC9218667 DOI: 10.3389/fbioe.2022.896261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The most studied and cultivated microalgae have a temperature optimum between 20 and 35°C. This temperature range hampers sustainable microalgae growth in countries with colder periods. To overcome this problem, psychrotolerant microalgae, such as the snow alga Chloromonas typhlos, can be cultivated during these colder periods. However, most of the research work has been carried out in the laboratory. The step between laboratory-scale and large-scale cultivation is difficult, making pilot-scale tests crucial to gather more information. Here, we presented a successful pilot-scale growth test of C. typhlos. Seven batch mode growth periods were compared during two longer growth tests in a photobioreactor of 350 L. We demonstrated the potential of this alga to be cultivated at colder ambient temperatures. The tests were performed during winter and springtime to compare ambient temperature and sunlight influences. The growth and CO2 usage were continuously monitored to calculate the productivity and CO2 fixation efficiency. A maximum dry weight of 1.082 g L-1 was achieved while a maximum growth rate and maximum daily volumetric and areal productivities of 0.105 d-1, 0.110 g L-1 d-1, and 2.746 g m-2 d-1, respectively, were measured. Future tests to optimize the cultivation of C. typhlos and production of astaxanthin, for example, will be crucial to explore the potential of biomass production of C. typhlos on a commercial scale.
Collapse
Affiliation(s)
- Floris Schoeters
- Radius, Thomas More University of Applied Sciences, Geel, Belgium
| | - Jornt Spit
- Radius, Thomas More University of Applied Sciences, Geel, Belgium
| | - Rahmasari Nur Azizah
- Radius, Thomas More University of Applied Sciences, Geel, Belgium.,I-BioStat, Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Sabine Van Miert
- Radius, Thomas More University of Applied Sciences, Geel, Belgium
| |
Collapse
|
6
|
Perini L, Gostinčar C, Likar M, Frisvad JC, Kostanjšek R, Nicholes M, Williamson C, Anesio AM, Zalar P, Gunde-Cimerman N. Interactions of Fungi and Algae from the Greenland Ice Sheet. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02033-5. [PMID: 35608637 DOI: 10.1007/s00248-022-02033-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Heavily pigmented glacier ice algae Ancylonema nordenskiöldii and Ancylonema alaskanum (Zygnematophyceae, Streptophyta) reduce the bare ice albedo of the Greenland Ice Sheet, amplifying melt from the largest cryospheric contributor to eustatic sea-level rise. Little information is available about glacier ice algae interactions with other microbial communities within the surface ice environment, including fungi, which may be important for sustaining algal bloom development. To address this substantial knowledge gap and investigate the nature of algal-fungal interactions, an ex situ co-cultivation experiment with two species of fungi, recently isolated from the surface of the Greenland Ice Sheet (here proposed new species Penicillium anthracinoglaciei Perini, Frisvad and Zalar, Mycobank (MB 835602), and Articulospora sp.), and the mixed microbial community dominated by glacier ice algae was performed. The utilization of the dark pigment purpurogallin carboxylic acid-6-O-β-D-glucopyranoside (C18H18O12) by the two fungi was also evaluated in a separate experiment. P. anthracinoglaciei was capable of utilizing and converting the pigment to purpurogallin carboxylic acid, possibly using the sugar moiety as a nutrient source. Furthermore, after 3 weeks of incubation in the presence of P. anthracinoglaciei, a significantly slower decline in the maximum quantum efficiency (Fv/Fm, inverse proxy of algal stress) in glacier ice algae, compared to other treatments, was evident, suggesting a positive relationship between these species. Articulospora sp. did uptake the glycosylated purpurogallin, but did not seem to be involved in its conversion to aglycone derivative. At the end of the incubation experiments and, in conjunction with increased algal mortality, we detected a substantially increasing presence of the zoosporic fungi Chytridiomycota suggesting an important role for them as decomposers or parasites of glacier ice algae.
Collapse
Affiliation(s)
- L Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark.
| | - C Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, 266555, China
| | - M Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Fungal Chemodiversity, Technical University of Denmark, Søltofts Plads, Building 221, 2800, Kgs. Lyngby, Denmark
| | - R Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - M Nicholes
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
| | - C Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
| | - A M Anesio
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - P Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| |
Collapse
|
7
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
8
|
Nicoletti C, Procházková L, Nedbalová L, Mócsai R, Altmann F, Holzinger A, Remias D. Thorsmoerkia curvula gen. et spec. nov. (Trebouxiophyceae, Chlorophyta), a semi-terrestrial microalga from Iceland exhibits high levels of unsaturated fatty acids. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:3671-3682. [PMID: 35309180 PMCID: PMC7612509 DOI: 10.1007/s10811-021-02577-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
A terrestrial green alga was isolated at Iceland, and the strain (SAG 2627) was described for its morphology and phylogenetic position and tested for biotechnological capabilities. Cells had a distinctly curved, crescent shape with conical poles and a single parietal chloroplast. Phylogenetic analyses of 18S rDNA and rbcL markers placed the strain into the Trebouxiophyceae (Chlorophyta). The alga turned out to belong to an independent lineage without an obvious sister group within the Trebouxiophyceae. Based on morphological and phylogenetic data, the strain was described as a new genus and species, Thorsmoerkia curvula gen. et sp. nov. Biomass was generated in column reactors and subsequently screened for promising metabolites. Growth was optimized by pH-regulated, episodic CO2 supplement during the logarithmic growth-phase, and half of the biomass was thereafter exposed to nitrogen and phosphate depletion. The biomass yield reached up to 53.5 mg L-1 day-1. Fatty acid (FA) production peaked at 24 mg L-1 day-1 and up to 83% of all FAs were unsaturated. At the end of the log phase, approximately 45% of dry mass were lipids, including eicosapentaenoic acid. Carotenoid production reached up to 2.94 mg L-1 day-1 but it was halted during the stress phase. The N-linked glycans of glycoproteins were assessed to reveal chemotaxonomic patterns. The study demonstrated that new microalgae can be found at Iceland, potentially suitable for applied purposes. The advantage of T. curvula is its robustness and that significant amounts of lipids are already accumulated during log phase, making a subsequent stress exposure dispensable.
Collapse
Affiliation(s)
- Cecilia Nicoletti
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
- Centre for Phycology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 37982 Třeboň, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
- Centre for Phycology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 37982 Třeboň, Czech Republic
| | - Réka Mócsai
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 19, 1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 19, 1190 Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| |
Collapse
|
9
|
Extremophilic Microorganisms in Central Europe. Microorganisms 2021; 9:microorganisms9112326. [PMID: 34835450 PMCID: PMC8620676 DOI: 10.3390/microorganisms9112326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Extremophiles inhabit a wide variety of environments. Here we focus on extremophiles in moderate climates in central Europe, and particularly in Slovenia. Although multiple types of stress often occur in the same habitat, extremophiles are generally combined into groups according to the main stressor to which they are adapted. Several types of extremophiles, e.g., oligotrophs, are well represented and diverse in subsurface environments and karst regions. Psychrophiles thrive in ice caves and depressions with eternal snow and ice, with several globally distributed snow algae and psychrophilic bacteria that have been discovered in alpine glaciers. However, this area requires further research. Halophiles thrive in salterns while thermophiles inhabit thermal springs, although there is little data on such microorganisms in central Europe, despite many taxa being found globally. This review also includes the potential use of extremophiles in biotechnology and bioremediation applications.
Collapse
|
10
|
Yakimovich KM, Gauthier NPG, Engstrom CB, Leya T, Quarmby LM. A Molecular Analysis of Microalgae from Around the Globe to Revise Raphidonema (Trebouxiophyceae, Chlorophyta). JOURNAL OF PHYCOLOGY 2021; 57:1419-1432. [PMID: 33988850 DOI: 10.1111/jpy.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
We isolated five microalgal strains from alpine snow near Vancouver, Canada, which display morphological features suggestive of the genera Koliella and Raphidonema. Due to variations in cell size and shape, we could not make a clear delimitation based on morphology. We proceeded to a molecular analysis and included 22 strains from the CCCryo culture collection, previously identified as members of four closely related genera: Raphidonema, Koliella, Stichococcus, and Pseudochlorella. For greater taxonomic context in our phylogenetic analysis, we also obtained authentic strains for the type species of Koliella and Pseudochlorella, but were unable to find one for Raphidonema. To examine generic boundaries, we did a phylogenetic analysis on the rbcL gene for all strains, establishing distinct lineages. Our novel isolates fell within Raphidonema, and so we analyzed the ITS2 gene of all Raphidonema strains to delimit species. To support species delimitations, we did a Compensatory Base Change analysis using the secondary structure of the ITS2 gene to assist in aligning the sequence. We also computed a maximum likelihood phylogenetic tree to examine species clades of Raphidonema. We assigned epitypes for two Raphidonema species based on the best morphological match to strains in the ITS2 clades. We then amended their diagnoses so they can be more reliably identified using DNA sequence data. We also propose two new species, R. catena and R. monicae, that formed their own species clades according to our ITS2 analysis.
Collapse
Affiliation(s)
- Kurt M Yakimovich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Nick P G Gauthier
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Casey B Engstrom
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research & Biobank CCCryo, Am Muehlenberg 13, Potsdam-Golm, 14476, Germany
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
11
|
Stewart A, Rioux D, Boyer F, Gielly L, Pompanon F, Saillard A, Thuiller W, Valay JG, Maréchal E, Coissac E. Altitudinal Zonation of Green Algae Biodiversity in the French Alps. FRONTIERS IN PLANT SCIENCE 2021; 12:679428. [PMID: 34163510 PMCID: PMC8215661 DOI: 10.3389/fpls.2021.679428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Mountain environments are marked by an altitudinal zonation of habitat types. They are home to a multitude of terrestrial green algae, who have to cope with abiotic conditions specific to high elevation, e.g., high UV irradiance, alternating desiccation, rain and snow precipitations, extreme diurnal variations in temperature and chronic scarceness of nutrients. Even though photosynthetic green algae are primary producers colonizing open areas and potential markers of climate change, their overall biodiversity in the Alps has been poorly studied so far, in particular in soil, where algae have been shown to be key components of microbial communities. Here, we investigated whether the spatial distribution of green algae followed the altitudinal zonation of the Alps, based on the assumption that algae settle in their preferred habitats under the pressure of parameters correlated with elevation. We did so by focusing on selected representative elevational gradients at distant locations in the French Alps, where soil samples were collected at different depths. Soil was considered as either a potential natural habitat or temporary reservoir of algae. We showed that algal DNA represented a relatively low proportion of the overall eukaryotic diversity as measured by a universal Eukaryote marker. We designed two novel green algae metabarcoding markers to amplify the Chlorophyta phylum and its Chlorophyceae class, respectively. Using our newly developed markers, we showed that elevation was a strong correlate of species and genus level distribution. Altitudinal zonation was thus determined for about fifty species, with proposed accessions in reference databases. In particular, Planophila laetevirens and Bracteococcus ruber related species as well as the snow alga Sanguina genus were only found in soil starting at 2,000 m above sea level. Analysis of environmental and bioclimatic factors highlighted the importance of pH and nitrogen/carbon ratios in the vertical distribution in soil. Capacity to grow heterotrophically may determine the Trebouxiophyceae over Chlorophyceae ratio. The intensity of freezing events (freezing degree days), proved also determinant in Chlorophyceae distribution. Guidelines are discussed for future, more robust and precise analyses of environmental algal DNA in mountain ecosystems and address green algae species distribution and dynamics in response to environmental changes.
Collapse
Affiliation(s)
- Adeline Stewart
- Laboratoire de Physiologie Cellulaire et Végétale, CEA, CNRS, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France
- Jardin du Lautaret, CNRS, Université Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Delphine Rioux
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Fréderic Boyer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Ludovic Gielly
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Amélie Saillard
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CEA, CNRS, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France
| | - Eric Coissac
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
12
|
Procházková L, Řezanka T, Nedbalová L, Remias D. Unicellular versus Filamentous: The Glacial Alga Ancylonema alaskana comb. et stat. nov. and Its Ecophysiological Relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms 2021; 9:1103. [PMID: 34065466 PMCID: PMC8161032 DOI: 10.3390/microorganisms9051103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Melting polar and alpine ice surfaces frequently exhibit blooms of dark pigmented algae. These microbial extremophiles significantly reduce the surface albedo of glaciers, thus accelerating melt rates. However, the ecology, physiology and taxonomy of cryoflora are not yet fully understood. Here, a Swiss and an Austrian glacier dominated either by filamentous Ancylonema nordenskioeldii or unicellular Mesotaenium berggrenii var. alaskanum, were sampled. Molecular analysis showed that both species are closely related, sharing identical chloroplast morphologies (parietal-lobed for Ancylonema vs. axial plate-like for Mesotaenium sensu stricto), thus the unicellular species was renamed Ancylonema alaskana. Moreover, an ecophysiological comparison of the two species was performed: pulse-amplitude modulated (PAM) fluorometry confirmed that they have a high tolerance to elevated solar irradiation, the physiological light preferences reflected the conditions in the original habitat; nonetheless, A. nordenskioeldii was adapted to higher irradiances while the photosystems of A. alaskana were able to use efficiently low irradiances. Additionally, the main vacuolar polyphenol, which effectively shields the photosystems, was identical in both species. Also, about half of the cellular fatty acids were polyunsaturated, and the lipidome profiles dominated by triacylglycerols were very similar. The results indicate that A. alaskana is physiologically very similar and closely related but genetically distinct to A. nordenskioeldii.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic;
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic;
- Centre for Phycology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| |
Collapse
|
13
|
Procházková L, Remias D, Bilger W, Křížková H, Řezanka T, Nedbalová L. Cysts of the Snow Alga Chloromonas krienitzii (Chlorophyceae) Show Increased Tolerance to Ultraviolet Radiation and Elevated Visible Light. FRONTIERS IN PLANT SCIENCE 2020; 11:617250. [PMID: 33391329 PMCID: PMC7773729 DOI: 10.3389/fpls.2020.617250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 05/25/2023]
Abstract
Melting mountainous snowfields are populated by extremophilic microorganisms. An alga causing orange snow above timberline in the High Tatra Mountains (Poland) was characterised using multiple methods examining its ultrastructure, genetics, life cycle, photosynthesis and ecophysiology. Based on light and electron microscopy and ITS2 rDNA, the species was identified as Chloromonas krienitzii (Chlorophyceae). Recently, the taxon was described from Japan. However, cellular adaptations to its harsh environment and details about the life cycle were so far unknown. In this study, the snow surface population consisted of egg-shaped cysts containing large numbers of lipid bodies filled presumably with the secondary carotenoid astaxanthin. The outer, spiked cell wall was shed during cell maturation. Before this developmental step, the cysts resembled a different snow alga, Chloromonas brevispina. The remaining, long-lasting smooth cell wall showed a striking UV-induced blue autofluorescence, indicating the presence of short wavelengths absorbing, protective compounds, potentially sporopollenin containing polyphenolic components. Applying a chlorophyll fluorescence assay on intact cells, a significant UV-A and UV-B screening capability of about 30 and 50%, respectively, was measured. Moreover, intracellular secondary carotenoids were responsible for a reduction of blue-green light absorbed by chloroplasts by about 50%. These results revealed the high capacity of cysts to reduce the impact of harmful UV and high visible irradiation to the chloroplast and nucleus when exposed at alpine snow surfaces during melting. Consistently, the observed photosynthetic performance of photosystem II (evaluated by fluorometry) showed no decline up to 2100 μmol photons m-2 s-1. Cysts accumulated high contents of polyunsaturated fatty acids (about 60% of fatty acids), which are advantageous at low temperatures. In the course of this study, C. krienitzii was found also in Slovakia, Italy, Greece and the United States, indicating a widespread distribution in the Northern Hemisphere.
Collapse
Affiliation(s)
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria
| | - Wolfgang Bilger
- Botanical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Heda Křížková
- Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czechia
| | | |
Collapse
|
14
|
Procházková L, Remias D, Holzinger A, Řezanka T, Nedbalová L. Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta). Polar Biol 2020; 44:105-117. [PMID: 33519055 PMCID: PMC7819945 DOI: 10.1007/s00300-020-02778-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Red snow caused by spherical cysts can be found worldwide, while an orange snow phenomenon caused by spherical cells is restricted to (Sub-)Arctic climates. Both bloom types, occurring in the same localities at Svalbard, were compared ecophysiologically. Using a combination of molecular markers and light- and transmission electron microscopy, cells were identified as Sanguina nivaloides and Sanguina aurantia (Chlorophyceae). In search for reasons for a cosmopolitan vs. a more restricted distribution of these microbes, significant differences in fatty acid and pigment profiles of field samples were found. S. aurantia accumulated much lower levels of polyunsaturated fatty acids (21% vs. 48% of total fatty acids) and exhibited lower astaxanthin-to-chlorophyll-a ratio (2-8 vs. 12-18). These compounds play an important role in adaptation to extreme conditions at the snow surface and within snow drifts. Accordingly, the performance of photosystem II showed that one third to nearly half of the photosynthetic active irradiation was sufficient in S. aurantia, compared to S. nivaloides, to become light saturated. Furthermore, formation of plastoglobules observed in S. nivaloides but missing in S. aurantia may contribute to photoprotection. The rapid light curves of the two species show to a certain extent the shade-adapted photosynthesis under the light conditions at Svalbard (high α-value 0.16 vs. 0.11, low saturation point I k 59 vs. 86). These results indicate significant physiological and ultrastructural differences of the two genetically closely related cryoflora species, but the reasons why S. aurantia has not been found at conditions outside (Sub-)Arctic climate types remain unknown. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s00300-020-02778-0) contains supplementary material, which is available to authorised users.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Andreas Holzinger
- Functional Plant Biology, Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
15
|
Brown SP, Tucker AE. Distribution and biogeography of Sanguina snow algae: Fine-scale sequence analyses reveal previously unknown population structure. Ecol Evol 2020; 10:11352-11361. [PMID: 33144969 PMCID: PMC7593155 DOI: 10.1002/ece3.6772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
It has been previously suggested that snow algal species within the genus Sanguina (S. nivaloides and S. aurantia) show no population structure despite being found globally (S. nivaloides) or throughout the Northern Hemisphere (S. aurantia). However, systematic biogeographic research into global distributions is lacking due to few genetic and no genomic resources for these snow algae. Here, using all publicly available and previously unpublished Sanguina sequences of the Internal Transcribed Spacer 2 region, we investigated whether this purported lack of population structure within Sanguina species is supported by additional evidence. Using a minimum entropy decomposition (MED) approach to examine fine-scale genetic population structure, we find that these snow algae populations are largely distinct regionally and have some interesting biogeographic structuring. This is in opposition to the currently accepted idea that Sanguina species lack any observable population structure across their vast ranges and highlights the utility of fine-scale (sub-OTU) analytical tools to delineate geographic and genetic population structure. This work extends the known range of S. aurantia and emphasizes the need for development of genetic and genomic tools for additional studies on snow algae biogeography.
Collapse
Affiliation(s)
- Shawn P. Brown
- Department of Biological SciencesUniversity of MemphisMemphisTNUSA
- Center of Biodiversity ResearchUniversity of MemphisMemphisTNUSA
| | - Avery E. Tucker
- Department of Biological SciencesUniversity of MemphisMemphisTNUSA
- Center of Biodiversity ResearchUniversity of MemphisMemphisTNUSA
| |
Collapse
|
16
|
Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World J Microbiol Biotechnol 2020; 36:149. [PMID: 32914262 PMCID: PMC7496060 DOI: 10.1007/s11274-020-02897-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/12/2020] [Indexed: 11/26/2022]
Abstract
A terrestrial green microalga was isolated at Ås, in Akershus County, Norway. The strain corresponded to a coccoid chlorophyte. Morphological characteristics by light and electron microscopy, in conjunction with DNA amplification and sequencing of the 18 s rDNA gene and ITS sequences, were used to identify the microalgae. The characteristics agree with those of the genus Coelastrella defined by Chodat, and formed a sister group with the recently described C. thermophila var. globulina. Coelastrella is a relatively small numbered genus that has not been observed in continental Norway before; there are no previous cultures available in collections of Norwegian strains. Gas chromatography analyses of the FAME-derivatives showed a high percentage of polyunsaturated fatty acids (44–45%) especially linolenic acid (C18:3n3; 30–34%). After the stationary phase, the cultures were able to accumulate several carotenoids as neoxanthin, pheophytin a, astaxanthin, canthaxanthin, lutein, and violaxanthin. Due to the scarcity of visual characters suitable for diagnostic purposes and the lack of DNA sequence information, there is a high possibility that species of this genus have been neglected in local environmental studies, even though it showed interesting properties for algal biotechnology.
Collapse
|
17
|
Remias D, Nicoletti C, Krennhuber K, Möderndorfer B, Nedbalová L, Procházková L. Growth, fatty, and amino acid profiles of the soil alga Vischeria sp. E71.10 (Eustigmatophyceae) under different cultivation conditions. Folia Microbiol (Praha) 2020; 65:1017-1023. [PMID: 32696198 PMCID: PMC7716935 DOI: 10.1007/s12223-020-00810-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022]
Abstract
In this study, a unicellular soil alga isolated from farmland in Germany was surveyed. The investigation of the hypervariable molecular markers ITS1 rDNA and ITS2 rDNA identified strain E71.10 as conspecific with Vischeria sp. SAG 51.91 (Eustigmatophyceae). The culture was tested for biomass generation and for the yield of fatty acids and amino acids. The survey included four different culture conditions (conventional, elevated CO2, nitrogen depletion, or sodium chloride stress) at room temperature. The best yield of dry biomass was achieved applying 1% CO2, whereas nitrogen-free medium resulted into least growth. The fatty acid content peaked in nitrogen-free medium at 59% per dry mass. Eicosapentaenoic acid was the most abundant fatty acid in all treatments (except for nitrogen free), accounting for 10.44 to 16.72 g/100 g dry mass. The highest content of amino acids (20%) was achieved under conventional conditions. The results show that abiotic factors strongly influence to which extent metabolites are intracellularly stored and they confirm also for this yet undescribed strain of Vischeria that Eustigmatophyceae are promising candidates for biotechnology.
Collapse
Affiliation(s)
- Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, 4600, Wels, Austria.
| | - Cecilia Nicoletti
- School of Engineering, University of Applied Sciences Upper Austria, 4600, Wels, Austria
| | - Klaus Krennhuber
- School of Engineering, University of Applied Sciences Upper Austria, 4600, Wels, Austria
| | - Bettina Möderndorfer
- School of Engineering, University of Applied Sciences Upper Austria, 4600, Wels, Austria
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, 12843, Prague, Czech Republic
| | - Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, 12843, Prague, Czech Republic
| |
Collapse
|
18
|
Luo W, Ding H, Li H, Ji Z, Huang K, Zhao W, Yu Y, Zeng Y. Molecular diversity of the microbial community in coloured snow from the Fildes Peninsula (King George Island, Maritime Antarctica). Polar Biol 2020. [DOI: 10.1007/s00300-020-02716-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Procházková L, Leya T, Křížková H, Nedbalová L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol Ecol 2020; 95:5487888. [PMID: 31074825 PMCID: PMC6545352 DOI: 10.1093/femsec/fiz064] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Melting snowfields in polar and alpine regions often exhibit a red and orange colouration caused by microalgae. The diversity of these organisms is still poorly understood. We applied a polyphasic approach using three molecular markers and light and electron microscopy to investigate spherical cysts sampled from alpine mountains in Europe, North America and South America as well as from both polar regions. Molecular analyses revealed the presence of a single independent lineage within the Chlamydomonadales. The genus Sanguina is described, with Sanguina nivaloides as its type. It is distinguishable from other red cysts forming alga by the number of cell wall layers, cell size, cell surface morphology and habitat preference. Sanguina nivaloides is a diverse species containing a total of 18 haplotypes according to nuclear ribosomal DNA internal transcribed spacer 2, with low nucleotide divergence (≤3.5%). Based on molecular data we demonstrate that it has a cosmopolitan distribution with an absence of geographical structuring, indicating an effective dispersal strategy with the cysts being transported all around the globe, including trans-equatorially. Additionally, Sanguina aurantia is described, with small spherical orange cysts often clustered by means of mucilaginous sheaths, and causing orange blooms in snow in subarctic and Arctic regions.
Collapse
Affiliation(s)
- Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research & Biobank CCCryo, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
| | - Heda Křížková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic.,The Czech Academy of Sciences, Institute of Botany, Dukelská 135, Třeboň, 379 82, Czech Republic
| |
Collapse
|
20
|
Engstrom CB, Yakimovich KM, Quarmby LM. Variation in Snow Algae Blooms in the Coast Range of British Columbia. Front Microbiol 2020; 11:569. [PMID: 32351463 PMCID: PMC7174675 DOI: 10.3389/fmicb.2020.00569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/15/2020] [Indexed: 01/08/2023] Open
Abstract
Snow algae blooms cover vast areas of summer snowfields worldwide, reducing albedo and increasing snow melt. Despite their global prevalence, little is known about the algae species that comprise these blooms. We used 18S and rbcL metabarcoding and light microscopy to characterize algae species composition in 31 snow algae blooms in the Coast Range of British Columbia, Canada. This study is the first to thoroughly document regional variation between blooms. We found all blooms were dominated by the genera Sanguina, Chloromonas, and Chlainomonas. There was considerable variation between blooms, most notably species assemblages above treeline were distinct from forested sites. In contrast to previous studies, the snow algae genus Chlainomonas was abundant and widespread in snow algae blooms. We found few taxa using traditional 18S metabarcoding, but the high taxonomic resolution of rbcL revealed substantial diversity, including OTUs that likely represent unnamed species of snow algae. These three cross-referenced datasets (rbcL, 18S, and microscopy) reveal that alpine snow algae blooms are more diverse than previously thought, with different species of algae dominating different elevations.
Collapse
Affiliation(s)
- Casey B Engstrom
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kurt M Yakimovich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
21
|
Hoham RW, Remias D. Snow and Glacial Algae: A Review 1. JOURNAL OF PHYCOLOGY 2020; 56:264-282. [PMID: 31825096 PMCID: PMC7232433 DOI: 10.1111/jpy.12952] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 05/03/2023]
Abstract
Snow or glacial algae are found on all continents, and most species are in the Chlamydomonadales (Chlorophyta) and Zygnematales (Streptophyta). Other algal groups include euglenoids, cryptomonads, chrysophytes, dinoflagellates, and cyanobacteria. They may live under extreme conditions of temperatures near 0°C, high irradiance levels in open exposures, low irradiance levels under tree canopies or deep in snow, acidic pH, low conductivity, and desiccation after snow melt. These primary producers may color snow green, golden-brown, red, pink, orange, or purple-grey, and they are part of communities that include other eukaryotes, bacteria, archaea, viruses, and fungi. They are an important component of the global biosphere and carbon and water cycles. Life cycles in the Chlamydomonas-Chloromonas-Chlainomonas complex include migration of flagellates in liquid water and formation of resistant cysts, many of which were identified previously as other algae. Species differentiation has been updated through the use of metagenomics, lipidomics, high-throughput sequencing (HTS), multi-gene analysis, and ITS. Secondary metabolites (astaxanthin in snow algae and purpurogallin in glacial algae) protect chloroplasts and nuclei from damaging PAR and UV, and ice binding proteins (IBPs) and polyunsaturated fatty acids (PUFAs) reduce cell damage in subfreezing temperatures. Molecular phylogenies reveal that snow algae in the Chlamydomonas-Chloromonas complex have invaded the snow habitat at least twice, and some species are polyphyletic. Snow and glacial algae reduce albedo, accelerate the melt of snowpacks and glaciers, and are used to monitor climate change. Selected strains of these algae have potential for producing food or fuel products.
Collapse
Affiliation(s)
- Ronald W. Hoham
- Department of BiologyColgate UniversityHamiltonNew York13346USA
| | - Daniel Remias
- School of EngineeringUniversity of Applied Sciences Upper AustriaWels4600Austria
| |
Collapse
|
22
|
Remias D, Procházková L, Nedbalová L, Andersen RA, Valentin K. Two New Kremastochrysopsis species, K. austriaca sp. nov. and K. americana sp. nov. (Chrysophyceae) 1. JOURNAL OF PHYCOLOGY 2020; 56:135-145. [PMID: 31639884 PMCID: PMC7054049 DOI: 10.1111/jpy.12937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/10/2019] [Indexed: 05/20/2023]
Abstract
Melting summer snow in the Austrian Alps exhibited a yellowish bloom that was mainly comprised of an unidentified unicellular chrysophyte. Molecular data (18S rRNA and rbcL genes) showed a close relationship to published sequences from an American pond alga formerly identified as Kremastochrysis sp. The genera Kremastochrysis and Kremastochrysopsis are morphologically distinguished by the number of flagella observed with the light microscope, and therefore we assigned the Austrian snow alga and an American pond alga to the genus Kremastochrysopsis. Transmission and scanning electron microscopy revealed that swimming cells had two flagella oriented in opposite directions, typical for the Hibberdiales. Molecular phylogenetic analyses showed that both new species were closely related to Hibberdia. Kremastochrysopsis ocellata, the type species and only known species, has two chloroplasts per cell and the zoospores have red eyespots. Our two organisms had only a single chloroplast and no zoospore eyespot, but their gene sequences differed substantially. Therefore, we described two new species, Kremastochrysopsis austriaca sp. nov and Kremstochrysopsis americana sp. nov. When grown in culture, both taxa showed a characteristic hyponeustonic growth (hanging below the water surface), whereas older immotile cells grew at the bottom of the culture vessel. Ecologically, Kremastochrysopsis austriaca sp. nov., which caused snow discolorations, had no close phylogenetic relationships to other psychrophilic chrysophytes, for example, Chromulina chionophilia, Hydrurus sp., and Ochromonas-like flagellates.
Collapse
Affiliation(s)
- Daniel Remias
- School of EngineeringUniversity of Applied Sciences Upper Austria4600WelsAustria
| | - Lenka Procházková
- Department of EcologyFaculty of ScienceCharles University12844PragueCzech Republic
| | - Linda Nedbalová
- Department of EcologyFaculty of ScienceCharles University12844PragueCzech Republic
| | - Robert A. Andersen
- Friday Harbor LaboratoriesUniversity of WashingtonFriday HarborWashingtonDC98250USA
| | | |
Collapse
|
23
|
Lutz S, Procházková L, Benning LG, Nedbalová L, Remias D. Evaluating High-Throughput Sequencing Data of Microalgae Living in Melting Snow: Improvements and Limitations 1. FOTTEA (PRAHA) 2019; 19:115-131. [PMID: 33414851 PMCID: PMC7116558 DOI: 10.5507/fot.2019.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Melting snow fields are an extremophilic habitat dominated by closely related Chlamydomonadaceae (Chlorophyta). Microscopy-based classification of these cryophilic microalgae is challenging and may not reveal the true diversity. High-throughput sequencing (HTS) allows for a more comprehensive evaluation of the community. However, HTS approaches have been rarely used in such ecosystems and the output of their application has not been evaluated. Furthermore, there is no consensus on the choice for a suitable DNA marker or data processing workflow. We found that the correct placement of taxonomic strings onto OTUs strongly depends on the quality of the reference databases. We improved the assignments of the HST data by generating additional reference sequences of the locally abundant taxa, guided by light microscopy. Furthermore, a manual inspection of all automated OTU assignments, oligotyping of the most abundant 18S OTUs, as well as ITS2 secondary structure analyses were necessary for accurate species assignments. Moreover, the sole use of one marker can cause misleading results, either because of insufficient variability within the locus (18S) or the scarcity of reference sequences (ITS2). Our evaluation reveals that HTS output needs to be thoroughly checked when the studied habitats or organisms are poorly represented in publicly available databases. We recommend an optimized workflow for an improved biodiversity evaluation of not only snow algal communities, but generally 'exotic' ecosystems where similar problems arise. A consistent sampling strategy, two- molecular marker approach, light microscopy-based guidance, generation of appropriate reference sequences and final manual verification of all taxonomic assignments are highly recommended.
Collapse
Affiliation(s)
| | | | - Liane G. Benning
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany School of Earth & Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Daniel Remias
- University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
| |
Collapse
|
24
|
Procházková L, Remias D, Řezanka T, Nedbalová L. Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), Causing Orange Snow Blooms at Different Light Conditions. Microorganisms 2019; 7:microorganisms7100434. [PMID: 31658718 PMCID: PMC6843554 DOI: 10.3390/microorganisms7100434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
Slowly melting snowfields in mountain and polar regions are habitats of snow algae. Orange blooms were sampled in three European mountain ranges. The cysts within the blooms morphologically resembled those of Chloromonas nivalis (Chlorophyceae). Molecular and morphological traits of field and cultured material showed that they represent a new species, Chloromonas hindakii sp. nov. The performance of photosystem II was evaluated by fluorometry. For the first time for a snow alga, cyst stages collected in a wide altitudinal gradient and the laboratory strain were compared. The results showed that cysts were well adapted to medium and high irradiance. Cysts from high light conditions became photoinhibited at three times higher irradiances (600 µmol photons m−2 s−1) than those from low light conditions, or likewise compared to cultured flagellates. Therefore, the physiologic light preferences reflected the conditions in the original habitat. A high content of polyunsaturated fatty acids (about 60% of total lipids) and the accumulation of the carotenoid astaxanthin was observed. They are regarded as adaptations to cope with extreme environmental conditions of snow that include low temperatures, freeze-thaw cycles, and variable light intensity. The intraspecific ability of adaptation of the photosynthetic apparatus to different irradiance regimes seems to be advantageous for thriving in different snow habitats.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic.
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria.
| | - Tomáš Řezanka
- The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic.
| |
Collapse
|
25
|
Matsuzaki R, Nozaki H, Takeuchi N, Hara Y, Kawachi M. Taxonomic re-examination of "Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes" from Japan and description of C. muramotoi sp. nov. PLoS One 2019; 14:e0210986. [PMID: 30677063 PMCID: PMC6345437 DOI: 10.1371/journal.pone.0210986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/06/2019] [Indexed: 11/19/2022] Open
Abstract
Recent molecular data has strongly suggested that field-collected cysts of snow algae that are morphologically identifiable as the zygotes of Chloromonas nivalis are composed of multiple species. Motile vegetative cells, however, have not been directly obtained from these cysts because of the difficulties involved in inducing their germination. Recently, our comparative molecular analyses, using both field-collected and cultured materials, demonstrated that one Japanese lineage of "C. nivalis zygotes" belongs to C. miwae. Herein, we examined another Japanese lineage of field-collected "C. nivalis zygotes" and a new strain originating from Japan. Our molecular data demonstrated that these two different life cycle stages are conspecific, and that they represent a new species that we herein describe as C. muramotoi sp. nov., based on the vegetative and asexual morphological characteristics of the strain. Multigene phylogenetic analyses showed that this new species was sister to C. miwae. Scanning electron microscopy demonstrated that the cysts of C. muramotoi are different from those of C. miwae, based on the arrangement of the flanges developing on the cell wall.
Collapse
Affiliation(s)
- Ryo Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Yayoicho, Inage ward, Chiba, Chiba, Japan
| | - Yoshiaki Hara
- Institute of Arts and Sciences, Yamagata University, Kojirakawa, Yamagata, Yamagata, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Matsuzaki R, Nozaki H, Kawachi M. Taxonomic revision of Chloromonas nivalis (Volvocales, Chlorophyceae) strains, with the new description of two snow-inhabiting Chloromonas species. PLoS One 2018; 13:e0193603. [PMID: 29570718 PMCID: PMC5865719 DOI: 10.1371/journal.pone.0193603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/14/2018] [Indexed: 01/01/2023] Open
Abstract
Chloromonas nivalis (Volvocales, Chlorophyceae) is considered a cosmopolitan species of a snow-inhabiting microalga because cysts morphologically identifiable as zygotes of the species are distributed worldwide. However, recent molecular data demonstrated that field-collected cysts identified as the zygotes consist of multiple species. Recently, we demonstrated that species identification of snow-inhabiting Chloromonas species is possible based on light and electron microscopy of asexual life cycles in strains and molecular phylogenetic analyses. Vegetative cells without eyespots and of inverted-teardrop shape have been reported once in North American material of C. nivalis; however, strains with such vegetative cells in snow-inhabiting species of Chloromonas have not been examined taxonomically in detail. Here, we used light and transmission electron microscopy together with molecular analyses of multiple DNA sequences to examine several C. nivalis strains. The morphological data demonstrated that one North American strain could be identified as C. nivalis, whereas three other strains should be re-classified as C. hoshawii sp. nov. and C. remiasii sp. nov. based on vegetative cell morphology, the number of zoospores within the parental cell wall during asexual reproduction, and whether cell aggregates (resulting from repeated divisions of daughter cells retained within a parental cell wall) were observed in the culture. This taxonomic treatment was supported by multigene phylogeny and comparative molecular analyses that included a rapidly evolving DNA region. Our molecular phylogenetic analyses also demonstrated that the North American strain of C. nivalis was phylogenetically separated from the Austrian and Japanese specimens previously identified as C. nivalis based on zygote morphology.
Collapse
Affiliation(s)
- Ryo Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Barcytė D, Hodač L, Nedbalová L, Elster J. Chloromonas arctica sp. nov., a psychrotolerant alga from snow in the High Arctic (Chlamydomonadales, Chlorophyta). Int J Syst Evol Microbiol 2018; 68:851-859. [PMID: 29458669 DOI: 10.1099/ijsem.0.002595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With the advent of molecular phylogenetic methods, it has become possible to assess the bioversity of snow algae more accurately. In this study, we focused on a morphological, ultrastructural and taxonomic description of a new Chloromonas-like alga isolated from snow in the High Arctic (Svalbard). Light and transmission electron microscopy revealed broad ellipsoidal or ellipsoidal-cylindrical, occasionally spherical cells with a chloroplast without a pyrenoid, an inconspicuous eyespot and a papilla. The size difference and the aforementioned morphological traits clearly distinguished the alga from its closest counterparts within the genus Chloromonas. Moreover, we were able to cultivate the alga at both 5 and 20 °C, revealing the psychrotolerant nature of the strain. Phylogenetic analyses of the plastid rbcL and nuclear 18S rRNA gene showed that the alga is nested within a clade containing a number of psychrotolerant strains within the Chloromonadinia phylogroup (Chlorophyceae). In the rbcL phylogeny, the alga formed an independent lineage, sister to the freshwater species Chloromonas paraserbinowii. Comparisons of secondary structure models of a highly variable ITS2 rDNA marker showed support for a distinct species identity for the new strain. The ITS2 secondary structure of the new isolate differed from the closest matches 'Chlamydomonas' gerloffii and Choloromonas reticulata by three and five compensatory base changes, respectively. Considering the morphological and molecular differences from its closest relatives, a new psychrotolerant species from the Arctic, Choromonas arctica sp. nov., is proposed.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 44, Czech Republic
| | - Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 44, Czech Republic.,The Czech Academy of Sciences, Institute of Botany, Dukelská 135, Třeboň, 379 82, Czech Republic
| | - Josef Elster
- The Czech Academy of Sciences, Institute of Botany, Dukelská 135, Třeboň, 379 82, Czech Republic.,Centre for Polar Ecology, University of South Bohemia, Na Zlaté stoce 3, České Budějovice, 370 05, Czech Republic
| |
Collapse
|
28
|
Remias D, Procházková L, Holzinger A, Nedbalová L. Ecology, cytology and phylogeny of the snow alga Scotiella cryophila K-1 (Chlamydomonadales, Chlorophyta) from the Austrian Alps. PHYCOLOGIA 2018; 57:581-592. [PMID: 31007285 PMCID: PMC6469580 DOI: 10.2216/18-45.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Long-lasting, slowly melting snowfields in mountainous regions are frequently populated by specialised microalgae whose diversity is still vastly underestimated. Cysts causing sub-surficial green snow were collected in the Austrian Alps, Tyrol, and morphologically accorded to the snow alga Scotiella cryophila sensu Chodat, initially described from Switzerland. The cytology and photobiology of this population were investigated to understand mechanisms of adaptation to the harsh habitat. Cysts of S. cryophila K-1 had secondary cell walls with pronounced rib-like surface structures and contained several small spherical plastids. The cytoplasm was dominated by lipid bodies, which developed reddish secondary pigmentation. Partial life cycle observations showed that daughter cells lacked structured cell walls. Cysts performed active photosynthesis at temperature conditions close to the freezing point and were photoinhibited at irradiances greater than 70 μmol m-2 s-1. This corresponded exactly to habitat conditions 20 to 40 cm below the snow surface. Phylogenetic analyses using 18S rDNA, rbcL and ITS2 rDNA sequences indicated that S. cryophila K-1 is related to Chloromonas, known to contain several snow algae. The taxon forms an independent lineage and is clearly genetically distinct from the type strain of Chloromonas rosae var. psychrophila from North America that is supposed to have morphologically identical cysts. For a taxonomic treatment including a species assignment of S. cryophila K-1 from Europe within Chloromonas, flagellates will have to be cultivated from cysts or from acquired field material for a detailed morphological description. Acquisition and genetic analysis of cysts that resemble S. cryophila from America could elucidate their relationship to European samples.
Collapse
Affiliation(s)
- Daniel Remias
- University of Applied Sciences, Campus Wels, Stelzhamerstr. 23,
A-4600 Wels, Austria
- Corresponding author
()
| | - Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology,
Viničná7, CZ-128 44 Prague, Czech Republic
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Sternwartestr. 15,
A-6020 Innsbruck, Austria
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology,
Viničná7, CZ-128 44 Prague, Czech Republic
| |
Collapse
|