1
|
Rizo‐Roca D, Henderson JD, Zierath JR. Metabolomics in cardiometabolic diseases: Key biomarkers and therapeutic implications for insulin resistance and diabetes. J Intern Med 2025; 297:584-607. [PMID: 40289598 PMCID: PMC12087830 DOI: 10.1111/joim.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cardiometabolic diseases-including Type 2 diabetes and obesity-remain leading causes of global mortality. Recent advancements in metabolomics have facilitated the identification of metabolites that are integral to the development of insulin resistance, a characteristic feature of cardiometabolic disease. Key metabolites, such as branched-chain amino acids (BCAAs), ceramides, glycine, and glutamine, have emerged as valuable biomarkers for early diagnosis, risk stratification, and potential therapeutic targets. Elevated BCAAs and ceramides are strongly associated with insulin resistance and Type 2 diabetes, whereas glycine exhibits an inverse relationship with insulin resistance, making it a promising therapeutic target. Metabolites involved in energy stress, including ketone bodies, lactate, and nicotinamide adenine dinucleotide (NAD⁺), regulate insulin sensitivity and metabolic health, with ketogenic diets and NAD⁺ precursor supplementation showing potential benefits. Additionally, the novel biomarker N-lactoyl-phenylalanine further underscores the complexity of metabolic regulation and its therapeutic potential. This review underscores the potential of metabolite-based diagnostics and precision medicine, which could enhance efforts in the prevention, diagnosis, and treatment of cardiometabolic diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- David Rizo‐Roca
- Department of Physiology and Pharmacology, Integrative PhysiologyKarolinska InstitutetStockholmSweden
| | - John D. Henderson
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Juleen R. Zierath
- Department of Physiology and Pharmacology, Integrative PhysiologyKarolinska InstitutetStockholmSweden
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Molecular Medicine and Surgery, Integrative PhysiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
2
|
Fernàndez‐Bernal A, Sol J, Galo‐Licona JD, Mota‐Martorell N, Mas‐Bargues C, Belenguer‐Varea Á, Obis È, Viña J, Borrás C, Jové M, Pamplona R. Phenotypic upregulation of hexocylceramides and ether-linked phosphocholines as markers of human extreme longevity. Aging Cell 2025; 24:e14429. [PMID: 39639682 PMCID: PMC11984674 DOI: 10.1111/acel.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/14/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Centenarians and their relatives possess a notable survival advantage, with higher longevity and reduced susceptibility to major age-related diseases. To date, characteristic omics profiles of centenarians have been described, demonstrating that these individuals with exceptional longevity regulate their metabolism to adapt and incorporate more resilient biomolecules into their cells. Among these adaptations, the lipidomic profile stands out. However, it has not yet been determined whether this lipidomic profile is specific to centenarians or is the consequence of extreme longevity genetics and is also present in centenarians' offspring. This distinction is crucial for defining potential therapeutic targets that could help delay the aging process and associated pathologies. We applied mass-spectrometry-based techniques to quantify 569 lipid species in plasma samples from 39 centenarians, 63 centenarians' offspring, and 69 noncentenarians' offspring without familial connections. Based on this profile, we calculated different indexes to characterize the functional and structural properties of plasma lipidome. Our findings demonstrate that extreme longevity genetics (centenarians and centenarians' offspring) determines a specific lipidomic signature characterized by (i) an enrichment of hexosylceramides, (ii) a decrease of specific species of ceramides and sulfatides, (iii) a global increase of ether-PC and ether-LPC, and (iv) changes in the fluidity and diversity of specific lipid classes. We point out the conversion of ceramides to hexosylceramides and the maintenance of the levels of the ether-linked PC as a phenotypic trait to guarantee extreme longevity. We propose that this molecular signature is the result of an intrinsic adaptive program that preserves protective mechanisms and cellular identity.
Collapse
Affiliation(s)
- Anna Fernàndez‐Bernal
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - Joaquim Sol
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
- Catalan Health Institute (ICS), Lleida Research Support Unit (USR)Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol)LleidaSpain
| | - José Daniel Galo‐Licona
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - Natàlia Mota‐Martorell
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - Cristina Mas‐Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable‐Instituto de Salud Carlos III (CIBERFES‐ISCIII)Institute of Health Research‐INCLIVA, University of ValenciaValènciaSpain
| | - Ángel Belenguer‐Varea
- Division of Geriatrics, Hospital Universitario de La Ribera (Alzira, Valencia, Spain), School of DoctorateUniversidad Católica de ValenciaValenciaSpain
| | - Èlia Obis
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable‐Instituto de Salud Carlos III (CIBERFES‐ISCIII)Institute of Health Research‐INCLIVA, University of ValenciaValènciaSpain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable‐Instituto de Salud Carlos III (CIBERFES‐ISCIII)Institute of Health Research‐INCLIVA, University of ValenciaValènciaSpain
| | - Mariona Jové
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - Reinald Pamplona
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| |
Collapse
|
3
|
Chen Y, Gowda SGB, Gowda D, Jayaprakash J, Nath LR, Ikeda A, Bamai YA, Ketema RM, Kishi R, Chiba H, Hui SP. Application of Liquid Chromatography/Tandem Mass Spectrometry for Quantitative Analysis of Plasmalogens in Preadolescent Children-The Hokkaido Study. Diagnostics (Basel) 2025; 15:743. [PMID: 40150086 PMCID: PMC11941332 DOI: 10.3390/diagnostics15060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Plasmalogens (Pls) are phospholipids with a unique structure, abundant in the brain and heart. Due to their chemical instability and analytical difficulties, less information is available compared to other phospholipids. The importance of Pls in several cellular processes is known, one of which is their protective effect against oxidative damage. The physiological role of Pls in human development has not been elucidated. Despite their clinical importance, the quantitative analysis of Pls in children's plasma has been limited. Methods: This study aims to determine the plasma levels of Pls in prepubertal children using liquid chromatography/tandem mass spectrometry (LC-MS/MS). The plasma samples used were obtained from 9- to 12-year-old girls (n = 156) and boys (n = 178), n = 334 in total, who participated in the Hokkaido study. Results: Ethanolamine plasmalogen (PlsEtn) and choline plasmalogen (PlsCho), both carrying eicosapentaenoic acid, were significantly lower in girls than in boys. In both sexes, the plasmalogen levels for the 12-year-old children were lower than those for the 9-year-old children. PlsCho (16:0/18:2) was lower in the overweight children than in the normal-weight children for both sexes. PlsEtn (18:0/20:4) was the most abundant ethanolamine-type plasmalogen in both sexes. Conclusions: This study is the first report on plasmalogen levels and molecular types in children's plasma. This study provides the information needed to understand the role of Pls in human developmental processes and may open up new opportunities in the future to control age-related changes in Pls.
Collapse
Affiliation(s)
- Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| | - Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Lipsa Rani Nath
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Atusko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo 070-0894, Japan;
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| |
Collapse
|
4
|
Alharithi YJ, Phillips EA, Wilson TD, Couvillion SP, Nicora CD, Darakjian P, Rakshe S, Fei SS, Counts B, Metz TO, Searles R, Kumar S, Maloyan A. Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity. Am J Physiol Endocrinol Metab 2025; 328:E254-E271. [PMID: 39792089 PMCID: PMC12147657 DOI: 10.1152/ajpendo.00333.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Maternal obesity puts the offspring at high risk of developing obesity and cardiometabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared with the offspring of regular diet-fed mothers (Off-RD). We have previously reported significant immune perturbations in the bone marrow of newly weaned Off-HFD. Here, we hypothesized that lipid metabolism is altered in the bone marrow of Off-HFD versus Off-RD. To test this hypothesis, we investigated the lipidomic profile of bone marrow cells collected from 3-week-old Off-RD and Off-HFD. Diacylglycerols (DAGs), triacylglycerols (TAGs), sphingolipids, and phospholipids were remarkably different between the groups, independent of fetal sex. Levels of cholesteryl esters were significantly decreased in Off-HFD, suggesting reduced delivery of cholesterol. These were accompanied by age-dependent progression of mitochondrial dysfunction in bone marrow cells. We subsequently isolated CD11b+ myeloid cells from 3-wk-old mice and conducted metabolomic, lipidomic, and transcriptomic analyses. The lipidomic profiles of myeloid cells were similar to those of bone marrow cells and included increases in DAGs and decreased TAGs. Transcriptomics revealed altered expression of genes related to immune pathways, including macrophage alternative activation, B-cell receptors, and transforming growth factor-β signaling. All told, this study revealed lipidomic, metabolomic, and gene expression abnormalities in bone marrow cells broadly, and in bone marrow myeloid cells particularly, in the newly weaned offspring of mothers with obesity, which might at least partially explain the progression of metabolic and cardiovascular diseases in their adulthood.NEW & NOTEWORTHY Our data revealed significant immunometabolic perturbations in the bone marrow and myeloid cells in the newly weaned offspring born to mothers with obesity. Adaptation to an adverse maternal intrauterine environment affects bone marrow metabolism at a very young age and might affect responses to immune challenges that appear later in life, for example, infections or cancer.
Collapse
Affiliation(s)
- Yem J Alharithi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Elysse A. Phillips
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Tim D. Wilson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, USA
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, USA
| | - Priscila Darakjian
- Massively Parallel Sequencing Shared Resource, Oregon Health & Science University, Portland, OR, 97239
| | - Shauna Rakshe
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Portland, OR, 97006
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Suzanne S. Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Portland, OR, 97006
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Brittany Counts
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, USA
| | - Robert Searles
- Massively Parallel Sequencing Shared Resource, Oregon Health & Science University, Portland, OR, 97239
| | - Sushil Kumar
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239
| |
Collapse
|
5
|
Yamada S, Shirai M, Katsumata M, Kurono M, Matahira Y, Ono K, Kageyama S. Beneficial Effects of a Formulated Supplement of Ascidiacea (Halocynthia-roretzi)-derived Plasmalogen and Tuna-derived Elastin on Memory Function in Elderly Japanese Subjects; A Randomized, Double-blind, Placebo-controlled Study. J Oleo Sci 2024; 73:1319-1328. [PMID: 39313395 DOI: 10.5650/jos.ess24128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The beneficial effects of a formulated supplement of plasmalogen and elastin on the memory function in healthy elderly subjects were investigated by a randomized, double-blind, placebo-controlled, parallel-group analysis. Plasmalogen has been shown to exert beneficial effects on cognitive function in animal models and human clinical trials, while elastin improves vascular elasticity and increases blood flow. The levels of plasmalogen and elastin decreases with aging. The supplement containing Ascidiacea (Halocynthia-roretzi)-derived plasmalogen (0.5 mg) and Tuna-derived elastin (100 mg) was administered to elderly Japanese subjects once a day for 16 weeks. The Japanese version of Rivermead Behavioral Memory Test (RBMT) was used as a primary evaluation item for the assessment of memory. Data from a protocolmatched population (per protocol set) (n=123) were analyzed. A comparison of mean difference between the baseline and evaluation points in cognition function in RBMT showed significantly higher scores for the categories of "first name" and "face recognition" in the test group than in the placebo group. In the stratified analysis of subjects ≧ 75 years, the test group scored significantly higher than the placebo group for the categories of "belonging", "face recognition and picture recognition". The stratified analysis of female subjects showed a significantly higher scores for categories of "first and second names" and "belonging" of RBMT in the test group. Also, the score of "physical functioning" was significantly higher in the test group. These results indicate that formulated supplement of plasmalogen and elastin may be beneficial for improving memory dysfunction in healthy elderly subjects.
Collapse
Affiliation(s)
- Shizuo Yamada
- Center for Pharma-Food Research, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Michiyo Shirai
- Center for Pharma-Food Research, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | | | | |
Collapse
|
6
|
Wang C, Li Y, Feng J, Liu H, Wang Y, Wan Y, Zheng M, Li X, Chen T, Xiao X. Plasmalogens and Octanoylcarnitine Serve as Early Warnings for Central Retinal Artery Occlusion. Mol Neurobiol 2024; 61:8026-8037. [PMID: 38459364 DOI: 10.1007/s12035-024-04093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Central retinal artery occlusion (CRAO) is a kind of ophthalmic emergency which may cause loss of functional visual acuity. However, the limited treatment options emphasize the significance of early disease prevention. Metabolomics has the potential to be a powerful tool for early identification of individuals at risk of CRAO. The aim of the study was to identify potential biomarkers for CRAO through a comprehensive analysis. We employed metabolomics analysis to compare venous blood samples from CRAO patients with cataract patients for the venous difference, as well as arterial and venous blood from CRAO patients for the arteriovenous difference. The analysis of metabolites showed that PC(P-18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PC(P-18:0/20:4(5Z,8Z,11Z,14Z)) and octanoylcarnitine were strongly correlated with CRAO. We also used univariate logistic regression, random forest (RF), and support vector machine (SVM) to screen clinical parameters of patients and found that HDL-C and ApoA1 showed significant predictive efficacy in CRAO patients. We compared the predictive performance of the clinical parameter model with combined model. The prediction efficiency of the combined model was significantly better with area under the receiver operating characteristic curve (AUROC) of 0.815. Decision curve analysis (DCA) also exhibited a notably higher net benefit rate. These results underscored the potency of these three substances as robust predictors of CRAO occurrence.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Jiaqing Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Hang Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuedan Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuwei Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Mengxue Zheng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Xuejie Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Alharithi YJ, Phillips EA, Wilson TD, Couvillion SP, Nicora CD, Darakjian P, Rakshe S, Fei SS, Counts B, Metz TO, Searles R, Kumar S, Maloyan A. Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608809. [PMID: 39229218 PMCID: PMC11370391 DOI: 10.1101/2024.08.20.608809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, using a mouse model of maternal high-fat diet (HFD)-induced obesity, we show that whole body fat content of the offspring of HFD-fed mothers (Off-HFD) increases significantly from very early age when compared to the offspring regular diet-fed mothers (Off-RD). We have previously shown significant metabolic and immune perturbations in the bone marrow of newly-weaned offspring of obese mothers. Therefore, we hypothesized that lipid metabolism is altered in the bone marrow Off-HFD in newly-weaned offspring of obese mothers when compared to the Off-RD. To test this hypothesis, we investigated the lipidomic profile of bone marrow cells collected from three-week-old offspring of regular and high fat diet-fed mothers. Diacylgycerols (DAGs), triacylglycerols (TAGs), sphingolipids and phospholipids, including plasmalogen, and lysophospholipids were remarkably different between the groups, independent of fetal sex. Levels of cholesteryl esters were significantly decreased in offspring of obese mothers, suggesting reduced delivery of cholesterol to bone marrow cells. This was accompanied by age-dependent progression of mitochondrial dysfunction in bone marrow cells. We subsequently isolated CD11b+ myeloid cells from three-week-old mice and conducted metabolomics, lipidomics, and transcriptomics analyses. The lipidomic profiles of these bone marrow myeloid cells were largely similar to that seen in bone marrow cells and included increases in DAGs and phospholipids alongside decreased TAGs, except for long-chain TAGs, which were significantly increased. Our data also revealed significant sex-dependent changes in amino acids and metabolites related to energy metabolism. Transcriptomic analysis revealed altered expression of genes related to major immune pathways including macrophage alternative activation, B-cell receptor signaling, TGFβ signaling, and communication between the innate and adaptive immune systems. All told, this study revealed lipidomic, metabolomic, and gene expression abnormalities in bone marrow cells broadly, and in bone marrow myeloid cells particularly, in the newly-weaned offspring of obese mothers, which might at least partially explain the progression of metabolic and cardiovascular diseases in their adulthood.
Collapse
|
8
|
Beyene HB, Huynh K, Wang T, Paul S, Cinel M, Mellett NA, Olshansky G, Meikle TG, Watts GF, Hung J, Hui J, Beilby J, Blangero J, Moses EK, Shaw JE, Magliano DJ, Giles C, Meikle PJ. Development and validation of a plasmalogen score as an independent modifiable marker of metabolic health: population based observational studies and a placebo-controlled cross-over study. EBioMedicine 2024; 105:105187. [PMID: 38861870 PMCID: PMC11215217 DOI: 10.1016/j.ebiom.2024.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Decreased levels of circulating ethanolamine plasmalogens [PE(P)], and a concurrent increase in phosphatidylethanolamine (PE) are consistently reported in various cardiometabolic conditions. Here we devised, a plasmalogen score (Pls Score) that mirrors a metabolic signal that encompasses the levels of PE(P) and PE and captures the natural variation in circulating plasmalogens and perturbations in their metabolism associated with disease, diet, and lifestyle. METHODS We utilised, plasma lipidomes from the Australian Obesity, Diabetes and Lifestyle study (AusDiab; n = 10,339, 55% women) a nationwide cohort, to devise the Pls Score and validated this in the Busselton Health Study (BHS; n = 4,492, 56% women, serum lipidome) and in a placebo-controlled crossover trial involving Shark Liver Oil (SLO) supplementation (n = 10, 100% men). We examined the association of the Pls Score with cardiometabolic risk factors, type 2 diabetes mellitus (T2DM), cardiovascular disease and all-cause mortality (over 17 years). FINDINGS In a model, adjusted for age, sex and BMI, individuals in the top quintile of the Pls Score (Q5) relative to Q1 had an OR of 0.31 (95% CI 0.21-0.43), 0.39 (95% CI 0.25-0.61) and 0.42 (95% CI 0.30-0.57) for prevalent T2DM, incident T2DM and prevalent cardiovascular disease respectively, and a 34% lower mortality risk (HR = 0.66; 95% CI 0.56-0.78). Significant associations between diet and lifestyle habits and Pls Score exist and these were validated through dietary supplementation of SLO that resulted in a marked change in the Pls Score. INTERPRETATION The Pls Score as a measure that captures the natural variation in circulating plasmalogens, was not only inversely related to cardiometabolic risk and all-cause mortality but also associate with diet and lifestyle. Our results support the potential utility of the Pls Score as a biomarker for metabolic health and its responsiveness to dietary interventions. Further research is warranted to explore the underlying mechanisms and optimise the practical implementation of the Pls Score in clinical and population settings. FUNDING National Health and Medical Research Council (NHMRC grant 233200), National Health and Medical Research Council of Australia (Project grant APP1101320), Health Promotion Foundation of Western Australia, and National Health and Medical Research Council of Australia Senior Research Fellowship (#1042095).
Collapse
Affiliation(s)
- Habtamu B Beyene
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | | - Thomas G Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, WA, Australia; Cardiometabolic Service, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia
| | - Joseph Hung
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia; School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
| | - John Beilby
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric K Moses
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Dianna J Magliano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia.
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Farid I, Ali A, Holman AP, Osborne L, Kurouski D. Length and saturation of choline plasmalogens alter the aggregation rate of α-synuclein but not the toxicity of amyloid fibrils. Int J Biol Macromol 2024; 264:130632. [PMID: 38447831 DOI: 10.1016/j.ijbiomac.2024.130632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Plasmalogens comprise a large fraction of the total phospholipids in plasma membranes. These molecules modulate membrane fluidity, produce inflammatory mediators mitigating effects of metabolic stresses. A growing body of evidence suggests that an onset of Parkinson's disease (PD), a severe neurodegenerative pathology, can be triggered by metabolic changes in plasma membranes. However, the role of plasmalogens in the aggregation of α-synuclein (α-syn), an expected molecular cause of PD, remains unclear. In this study we examine the effect of choline plasmalogens (CPs), unique phospholipids that have a vinyl ether linkage at the sn-1 position of glycerol, on the aggregation rate of α-syn. We found that the length and saturation of fatty acids (FAs) in CPs change rates of protein aggregation. We also found drastic changes in the morphology of α-syn fibrils formed in the presence of different CPs compared to α-syn fibrils grown in the lipid-free environment. At the same time, we did not observe substantial changes in the secondary structure and toxicity of α-syn fibrils formed in the presence of different CPs. These results indicate that the length and saturation of FAs in CPs present in the plasma membrane can alter α-syn stability and modulate its aggregation properties, which, in turn can accelerate or delay the onset of PD.
Collapse
Affiliation(s)
- Ifrah Farid
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Aidan P Holman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Luke Osborne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
10
|
Russell KL, Rodman HR, Pak VM. Sleep insufficiency, circadian rhythms, and metabolomics: the connection between metabolic and sleep disorders. Sleep Breath 2023; 27:2139-2153. [PMID: 37147557 DOI: 10.1007/s11325-023-02828-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE US adults who report experiencing insufficient sleep are more likely to suffer from metabolic disorders such as hyperlipidemia, diabetes, and obesity than those with sufficient sleep. Less is understood about the underlying molecular mechanisms connecting these phenomena. A systematic, qualitative review of metabolomics studies exploring metabolic changes in response to sleep insufficiency, sleep deprivation, or circadian disruption was conducted in accordance with PRISMA guidelines. METHODS An electronic literature review in the PubMed database was performed considering publications through May 2021 and screening and eligibility criteria were applied to articles retrieved. The following keywords were used: "metabolomics" and "sleep disorders" or "sleep deprivation" or "sleep disturbance" or "circadian rhythm." After screening and addition of studies included from reference lists of retrieved studies, 16 records were identified for review. RESULTS Consistent changes in metabolites were observed across studies between individuals experiencing sleep deprivation compared to non-sleep deprived controls. Significant increases in phosphatidylcholines, acylcarnitines, sphingolipids, and other lipids were consistent across studies. Increased levels of amino acids such as tryptophan and phenylalanine were also noted. However, studies were limited to small samples of young, healthy, mostly male participants conducted in short inpatient sessions, limiting generalizability. CONCLUSION Changes in lipid and amino acid metabolites accompanying sleep deprivation and/or circadian rhythms may indicate cellular membrane and protein breakdown underlying the connection between sleep disturbance, hyperlipidemia, and other metabolic disorders. Larger epidemiological studies examining changes in the human metabolome in response to chronic insufficient sleep would help elucidate this relationship.
Collapse
Affiliation(s)
| | | | - Victoria M Pak
- Emory Nell Hodgson School of Nursing, Atlanta, GA, USA.
- Emory Rollins School of Public Health, Atlanta, GA, USA.
| |
Collapse
|
11
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
12
|
Yamashita S, Miyazawa T, Higuchi O, Kinoshita M, Miyazawa T. Marine Plasmalogens: A Gift from the Sea with Benefits for Age-Associated Diseases. Molecules 2023; 28:6328. [PMID: 37687157 PMCID: PMC10488995 DOI: 10.3390/molecules28176328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Aging increases oxidative and inflammatory stress caused by a reduction in metabolism and clearance, thus leading to the development of age-associated diseases. The quality of our daily diet and exercise is important for the prevention of these diseases. Marine resources contain various valuable nutrients, and unique glycerophospholipid plasmalogens are found abundantly in some marine invertebrates, including ascidians. One of the major classes, the ethanolamine class (PlsEtn), exists in a high ratio to phospholipids in the brain and blood, while decreased levels have been reported in patients with age-associated diseases, including Alzheimer's disease. Animal studies have shown that the administration of marine PlsEtn prepared from marine invertebrates improved PlsEtn levels in the body and alleviated inflammation. Animal and human studies have reported that marine PlsEtn ameliorates cognitive impairment. In this review, we highlight the biological significance, relationships with age-associated diseases, food functions, and healthcare materials of plasmalogens based on recent knowledge and discuss the contribution of marine plasmalogens to health maintenance in aging.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.); (M.K.)
| | - Taiki Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| | - Ohki Higuchi
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.); (M.K.)
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| |
Collapse
|
13
|
Ferreri C, Ferocino A, Batani G, Chatgilialoglu C, Randi V, Riontino MV, Vetica F, Sansone A. Plasmalogens: Free Radical Reactivity and Identification of Trans Isomers Relevant to Biological Membranes. Biomolecules 2023; 13:biom13050730. [PMID: 37238600 DOI: 10.3390/biom13050730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Plasmalogens are membrane phospholipids with two fatty acid hydrocarbon chains linked to L-glycerol, one containing a characteristic cis-vinyl ether function and the other one being a polyunsaturated fatty acid (PUFA) residue linked through an acyl function. All double bonds in these structures display the cis geometrical configuration due to desaturase enzymatic activity and they are known to be involved in the peroxidation process, whereas the reactivity through cis-trans double bond isomerization has not yet been identified. Using 1-(1Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphocholine (C18 plasm-20:4 PC) as a representative molecule, we showed that the cis-trans isomerization can occur at both plasmalogen unsaturated moieties, and the product has characteristic analytical signatures useful for omics applications. Using plasmalogen-containing liposomes and red blood cell (RBC) ghosts under biomimetic Fenton-like conditions, in the presence or absence of thiols, peroxidation, and isomerization processes were found to occur with different reaction outcomes due to the particular liposome compositions. These results allow gaining a full scenario of plasmalogen reactivity under free radical conditions. Moreover, clarification of the plasmalogen reactivity under acidic and alkaline conditions was carried out, identifying the best protocol for RBC membrane fatty acid analysis due to their plasmalogen content of 15-20%. These results are important for lipidomic applications and for achieving a full scenario of radical stress in living organisms.
Collapse
Affiliation(s)
- Carla Ferreri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Alessandra Ferocino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Gessica Batani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Vanda Randi
- Centro Regionale Sangue Regione Emilia Romagna (CRS-RER), Casa dei Donatori di Sangue, Via dell'Ospedale, 20, 40133 Bologna, Italy
| | - Maria Vittoria Riontino
- Centro Regionale Sangue Regione Emilia Romagna (CRS-RER), Casa dei Donatori di Sangue, Via dell'Ospedale, 20, 40133 Bologna, Italy
| | - Fabrizio Vetica
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Anna Sansone
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| |
Collapse
|
14
|
Classification of Common Food Lipid Sources Regarding Healthiness Using Advanced Lipidomics: A Four-Arm Crossover Study. Int J Mol Sci 2023; 24:ijms24054941. [PMID: 36902372 PMCID: PMC10003363 DOI: 10.3390/ijms24054941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Prospective studies have failed to establish a causal relationship between animal fat intake and cardiovascular diseases in humans. Furthermore, the metabolic effects of different dietary sources remain unknown. In this four-arm crossover study, we investigated the impact of consuming cheese, beef, and pork meat on classic and new cardiovascular risk markers (obtained from lipidomics) in the context of a healthy diet. A total of 33 young healthy volunteers (23 women/10 men) were assigned to one out of four test diets in a Latin square design. Each test diet was consumed for 14 days, with a 2-week washout. Participants received a healthy diet plus Gouda- or Goutaler-type cheeses, pork, or beef meats. Before and after each diet, fasting blood samples were withdrawn. A reduction in total cholesterol and an increase in high density lipoprotein particle size were detected after all diets. Only the pork diet upregulated plasma unsaturated fatty acids and downregulated triglycerides species. Improvements in the lipoprotein profile and upregulation of circulating plasmalogen species were also observed after the pork diet. Our study suggests that, within the context of a healthy diet rich in micronutrients and fiber, the consumption of animal products, in particular pork meat, may not induce deleterious effects, and reducing the intake of animal products should not be regarded as a way of reducing cardiovascular risk in young individuals.
Collapse
|
15
|
Jové M, Mota-Martorell N, Obis È, Sol J, Martín-Garí M, Ferrer I, Portero-Otin M, Pamplona R. Ether Lipid-Mediated Antioxidant Defense in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:293. [PMID: 36829852 PMCID: PMC9952080 DOI: 10.3390/antiox12020293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
One of the richest tissues in lipid content and diversity of the human body is the brain. The human brain is constitutively highly vulnerable to oxidative stress. This oxidative stress is a determinant in brain aging, as well as in the onset and progression of sporadic (late-onset) Alzheimer's disease (sAD). Glycerophospholipids are the main lipid category widely distributed in neural cell membranes, with a very significant presence for the ether lipid subclass. Ether lipids have played a key role in the evolution of the human brain compositional specificity and functionality. Ether lipids determine the neural membrane structural and functional properties, membrane trafficking, cell signaling and antioxidant defense mechanisms. Here, we explore the idea that ether lipids actively participate in the pathogenesis of sAD. Firstly, we evaluate the quantitative relevance of ether lipids in the human brain composition, as well as their role in the human brain evolution. Then, we analyze the implications of ether lipids in neural cell physiology, highlighting their inherent antioxidant properties. Finally, we discuss changes in ether lipid content associated with sAD and their physiopathological implications, and propose a mechanism that, as a vicious cycle, explains the potential significance of ether lipids in sAD.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Èlia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
- Research Support Unit (USR), Catalan Institute of Health (ICS), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), E-25007 Lleida, Spain
| | - Meritxell Martín-Garí
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), E-08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research of Bellvitge (IDIBELL), E-08907 Barcelona, Spain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, E-08907 Barcelona, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| |
Collapse
|
16
|
Dorninger F, Werner ER, Berger J, Watschinger K. Regulation of plasmalogen metabolism and traffic in mammals: The fog begins to lift. Front Cell Dev Biol 2022; 10:946393. [PMID: 36120579 PMCID: PMC9471318 DOI: 10.3389/fcell.2022.946393] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their unique chemical structure, plasmalogens do not only exhibit distinct biophysical and biochemical features, but require specialized pathways of biosynthesis and metabolization. Recently, major advances have been made in our understanding of these processes, for example by the attribution of the gene encoding the enzyme, which catalyzes the final desaturation step in plasmalogen biosynthesis, or by the identification of cytochrome C as plasmalogenase, which allows for the degradation of plasmalogens. Also, models have been presented that plausibly explain the maintenance of adequate cellular levels of plasmalogens. However, despite the progress, many aspects around the questions of how plasmalogen metabolism is regulated and how plasmalogens are distributed among organs and tissues in more complex organisms like mammals, remain unresolved. Here, we summarize and interpret current evidence on the regulation of the enzymes involved in plasmalogen biosynthesis and degradation as well as the turnover of plasmalogens. Finally, we focus on plasmalogen traffic across the mammalian body - a topic of major importance, when considering plasmalogen replacement therapies in human disorders, where deficiencies in these lipids have been reported. These involve not only inborn errors in plasmalogen metabolism, but also more common diseases including Alzheimer's disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| |
Collapse
|
17
|
Hossain MS, Mawatari S, Fujino T. Plasmalogen-Mediated Activation of GPCR21 Regulates Cytolytic Activity of NK Cells against the Target Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:310-325. [PMID: 35777853 DOI: 10.4049/jimmunol.2200183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
It is widely known that the immune system becomes slower to respond among elderly people, making them more susceptible to viral infection and cancer. The mechanism of aging-related immune deficiency remained mostly elusive. In this article, we report that plasmalogens (Pls), special phospholipids found to be reduced among the elderly population, critically control cytolytic activity of human NK cells, which is associated with activation of a cell surface receptor, G protein-coupled receptor 21 (GPCR21). We found the extracellular glycosylation site of GPCR21, which is conserved among the mammalian species, to be critically important for the activation of NK cells by Pls. The Pls-GPCR21 signaling cascade induces the expression of Perforin-1, a cytolytic pore-forming protein, via activation of STAT5 transcription factor. Inhibition of STAT5 abrogates GPCR21-mediated cytolytic activation of NK cells against the target cancer cells. In addition, oral ingestion of Pls inhibited cancer growth in SCID mice and inhibited the systemic spread of murine CMV in adult C57BL/6J mice. These findings advocate that Pls-GPCR21 signaling could be critical in maintaining NK cell function, and that the age-related reduction of this signaling cascade could be one of the factors behind immune deficiency in mammals, including humans.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Institute of Rheological Functions of Food, Kasuya-gun, Fukuoka, Japan
| | - Shiro Mawatari
- Institute of Rheological Functions of Food, Kasuya-gun, Fukuoka, Japan
| | - Takehiko Fujino
- Institute of Rheological Functions of Food, Kasuya-gun, Fukuoka, Japan
| |
Collapse
|
18
|
Sato N, Kanehama A, Kashiwagi A, Yamada M, Nishimukai M. Lymphatic Absorption of Microbial Plasmalogens in Rats. Front Cell Dev Biol 2022; 10:836186. [PMID: 35392167 PMCID: PMC8980267 DOI: 10.3389/fcell.2022.836186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmalogens, functional glycerophospholipids with biological roles in the human body, are associated with various diseases. Although a variety of saturated and/or unsaturated fatty acids in plasmalogens are presumed to have different functions in the human body, there are limited reports validating such functions of plasmalogens. In this study, we focused on the bacterial plasmalogen derived from Selenomonas ruminantium subsp. lactilytica (NBRC No. 103574) with different main species of hydrocarbon chains at the sn-1 position and shorter fatty acids at the sn-2 position than animal plasmalogens. Optimum culture conditions of S. ruminantium for high-yield production of plasmalogens, such as pH and the concentration of caproic acid, were investigated under anaerobic conditions using a 2-L scale jar fermenter. The obtained plasmalogen mainly consisted of the ethanolamine plasmalogen (PlsEtn). The molar ratios of PlsEtn species obtained from S. ruminantium, at sn-1/sn-2 positions, were p16:1/14:0 (68.4%), p16:1/16:1 (29.2%), p16:1/16:0 (0.7%), p16:1/15:0 (0.3%), and p17:1/14:0 (0.3%). Subsequently, duodenal infusion of the emulsion carrying the lipid extracted from S. ruminantium was carried out in lymph duct-cannulated rats. In the lymphatic plasmalogen of rats, the level of PlsEtns with molar ratios p16:1/14:0 and p16:1/16:1, the main species of plasmalogens from S. ruminantium, increased gradually until 3–4 h after lipid injection and then gradually decreased. In addition, the level of PlsEtns with p16:1/20:4 and p16:1/22:6 rapidly increased, peaking at 1–1.5 h and 1.5–2 h after lipid injection, respectively. The increase in the number of PlsEtns with p16:1/20:4 and p16:1/22:6 suggested that 20:4 and 22:6, the main fatty acids at the sn-2 position in the rat lymphatic plasmalogen, were preferentially re-esterified at the sn-2 position, regardless of the types of hydrocarbon chains at the sn-1 position. Thus, we showed that bacterial PlsEtns with “unnatural” structures against rats could be absorbed into the lymph. Our findings provide insights into the association between the chemical structure of plasmalogens and their biological functions in humans.
Collapse
Affiliation(s)
- Nana Sato
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Aki Kanehama
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Miwa Yamada
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
- Agri-Innovation Center, Iwate University, Morioka, Japan
- *Correspondence: Miwa Yamada, ; Megumi Nishimukai,
| | - Megumi Nishimukai
- Agri-Innovation Center, Iwate University, Morioka, Japan
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
- *Correspondence: Miwa Yamada, ; Megumi Nishimukai,
| |
Collapse
|
19
|
Bozelli JC, Azher S, Epand RM. Plasmalogens and Chronic Inflammatory Diseases. Front Physiol 2021; 12:730829. [PMID: 34744771 PMCID: PMC8566352 DOI: 10.3389/fphys.2021.730829] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
It is becoming widely acknowledged that lipids play key roles in cellular function, regulating a variety of biological processes. Lately, a subclass of glycerophospholipids, namely plasmalogens, has received increased attention due to their association with several degenerative and metabolic disorders as well as aging. All these pathophysiological conditions involve chronic inflammatory processes, which have been linked with decreased levels of plasmalogens. Currently, there is a lack of full understanding of the molecular mechanisms governing the association of plasmalogens with inflammation. However, it has been shown that in inflammatory processes, plasmalogens could trigger either an anti- or pro-inflammation response. While the anti-inflammatory response seems to be linked to the entire plasmalogen molecule, its pro-inflammatory response seems to be associated with plasmalogen hydrolysis, i.e., the release of arachidonic acid, which, in turn, serves as a precursor to produce pro-inflammatory lipid mediators. Moreover, as plasmalogens comprise a large fraction of the total lipids in humans, changes in their levels have been shown to change membrane properties and, therefore, signaling pathways involved in the inflammatory cascade. Restoring plasmalogen levels by use of plasmalogen replacement therapy has been shown to be a successful anti-inflammatory strategy as well as ameliorating several pathological hallmarks of these diseases. The purpose of this review is to highlight the emerging role of plasmalogens in chronic inflammatory disorders as well as the promising role of plasmalogen replacement therapy in the treatment of these pathologies.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| | - Sayed Azher
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Plasmalogen Replacement Therapy. MEMBRANES 2021; 11:membranes11110838. [PMID: 34832067 PMCID: PMC8620983 DOI: 10.3390/membranes11110838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Plasmalogens, a subclass of glycerophospholipids containing a vinyl-ether bond, are one of the major components of biological membranes. Changes in plasmalogen content and molecular species have been reported in a variety of pathological conditions ranging from inherited to metabolic and degenerative diseases. Most of these diseases have no treatment, and attempts to develop a therapy have been focusing primarily on protein/nucleic acid molecular targets. However, recent studies have shifted attention to lipids as the basis of a therapeutic strategy. In these pathological conditions, the use of plasmalogen replacement therapy (PRT) has been shown to be a successful way to restore plasmalogen levels as well as to ameliorate the disease phenotype in different clinical settings. Here, the current state of PRT will be reviewed as well as a discussion of future perspectives in PRT. It is proposed that the use of PRT provides a modern and innovative molecular medicine approach aiming at improving health outcomes in different conditions with clinically unmet needs.
Collapse
|
21
|
Lipidomics study of plasma from patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Sci Rep 2021; 11:13562. [PMID: 34193885 PMCID: PMC8245424 DOI: 10.1038/s41598-021-92112-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/14/2020] [Indexed: 12/04/2022] Open
Abstract
Motor neuron disorders (MND) include a group of pathologies that affect upper and/or lower motor neurons. Among them, amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle weakness, with fatal outcomes only in a few years after diagnosis. On the other hand, primary lateral sclerosis (PLS), a more benign form of MND that only affects upper motor neurons, results in life-long progressive motor dysfunction. Although the outcomes are quite different, ALS and PLS present with similar symptoms at disease onset, to the degree that both disorders could be considered part of a continuum. These similarities and the lack of reliable biomarkers often result in delays in accurate diagnosis and/or treatment. In the nervous system, lipids exert a wide variety of functions, including roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, the study of the absolute and relative concentrations of a subset of lipids in human pathology can shed light into these cellular processes and unravel alterations in one or more pathways. In here, we report the lipid composition of longitudinal plasma samples from ALS and PLS patients initially, and after 2 years following enrollment in a clinical study. Our analysis revealed common aspects of these pathologies suggesting that, from the lipidomics point of view, PLS and ALS behave as part of a continuum of motor neuron disorders.
Collapse
|
22
|
Spears LD, Adak S, Dong G, Wei X, Spyropoulos G, Zhang Q, Yin L, Feng C, Hu D, Lodhi IJ, Hsu FF, Rajagopal R, Noguchi KK, Halabi CM, Brier L, Bice AR, Lananna BV, Musiek ES, Avraham O, Cavalli V, Holth JK, Holtzman DM, Wozniak DF, Culver JP, Semenkovich CF. Endothelial ether lipids link the vasculature to blood pressure, behavior, and neurodegeneration. J Lipid Res 2021; 62:100079. [PMID: 33894211 PMCID: PMC8144742 DOI: 10.1016/j.jlr.2021.100079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular disease contributes to neurodegeneration, which is associated with decreased blood pressure in older humans. Plasmalogens, ether phospholipids produced by peroxisomes, are decreased in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. However, the mechanistic links between ether phospholipids, blood pressure, and neurodegeneration are not fully understood. Here, we show that endothelium-derived ether phospholipids affect blood pressure, behavior, and neurodegeneration in mice. In young adult mice, inducible endothelial-specific disruption of PexRAP, a peroxisomal enzyme required for ether lipid synthesis, unexpectedly decreased circulating plasmalogens. PexRAP endothelial knockout (PEKO) mice responded normally to hindlimb ischemia but had lower blood pressure and increased plasma renin activity. In PEKO as compared with control mice, tyrosine hydroxylase was decreased in the locus coeruleus, which maintains blood pressure and arousal. PEKO mice moved less, slept more, and had impaired attention to and recall of environmental events as well as mild spatial memory deficits. In PEKO hippocampus, gliosis was increased, and a plasmalogen associated with memory was decreased. Despite lower blood pressure, PEKO mice had generally normal homotopic functional connectivity by optical neuroimaging of the cerebral cortex. Decreased glycogen synthase kinase-3 phosphorylation, a marker of neurodegeneration, was detected in PEKO cerebral cortex. In a co-culture system, PexRAP knockdown in brain endothelial cells decreased glycogen synthase kinase-3 phosphorylation in co-cultured astrocytes that was rescued by incubation with the ether lipid alkylglycerol. Taken together, our findings suggest that endothelium-derived ether lipids mediate several biological processes and may also confer neuroprotection in mice.
Collapse
Affiliation(s)
- Larry D Spears
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Guifang Dong
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | | | - Qiang Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Donghua Hu
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Rithwick Rajagopal
- Department of Ophthalmology & Visual Sciences, Washington University, St. Louis, MO, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Lindsey Brier
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Annie R Bice
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Brian V Lananna
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Erik S Musiek
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Oshri Avraham
- Department of Neuroscience, Washington University, St. Louis, MO, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University, St. Louis, MO, USA
| | - Jerrah K Holth
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Joseph P Culver
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
23
|
Abstract
Life expectancy, and longevity have been increasing in recent years. However, this is, in most cases, accompanied by age-related diseases. Thus, it became essential to better understand the mechanisms inherent to aging, and to establish biomarkers that characterize this physiological process. Among all biomolecules, lipids appear to be a good target for the study of these biomarkers. In fact, some lipids have already been associated with age-related diseases. With the development of analytical techniques such as Mass Spectrometry, and Nuclear Magnetic Resonance, Lipidomics has been increasingly used to study pathological, and physiological states of an organism. Thus, the study of serum, and plasma lipidome in centenarians, and elderly individuals without age-related diseases can be a useful tool for the identification of aging biomarkers, and to understand physiological aging, and longevity. This review focus on the importance of lipids as biomarkers of aging, and summarize the changes in the lipidome that have been associated with aging, and longevity.
Collapse
|
24
|
Wang Y, Wang Y, Chen C, Ren F, Cao R, Wang Y, Han P, Zhang X, Xu C, Liu X, Xu G. Serum lipid profiling analysis and potential marker discovery for ovarian cancer based on liquid chromatography-Mass spectrometry. J Pharm Biomed Anal 2021; 199:114048. [PMID: 33836461 DOI: 10.1016/j.jpba.2021.114048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Low early diagnosis rate and unclear pathogenesis are the primary reasons for the high mortality of epithelial ovarian cancer (EOC). Lipidomics is a powerful tool for marker discovery and mechanism explanation. Hence, a ultra high-performance liquid chromatography-mass spectrometry based non-targeted lipidomics analysis was performed to acquire lipid profiling of 153 serum samples including healthy control (HC, n = 50), benign ovarian tumor (BOT, n = 41), and EOC (n = 62) to reveal lipid disturbance, then differential lipids were verified in another sample set including 187 sera. Significant lipid disturbance occurred in BOT and EOC, fatty acid, lyso-phosphatidylcholine, and lyso-phosphatidylethanolamine were observed to be increased in BOT and EOC subjects, while phosphatidylcoline, ether phosphatidylcoline (PC-O), ether phosphatidylethanolamine (PE-O), and sphingomyelin significantly decreased. Compared with BOT, PC-Os and PE-Os presented a greater reduction in EOC, and serum ceramide increased only in EOC. Moreover, potential markers consisting of 4 lipids were defined and validated for EOC diagnosis. High areas under the curve (0.854∼0.865 and 0.903∼0.923 for distinguishing EOC and early EOC from non-cancer, respectively) as well as good specificity and sensitivity were obtained. This study not only revealed the characteristics of lipid metabolism in EOC, but also provided a potential marker pattern for aiding EOC diagnosis.
Collapse
Affiliation(s)
- Yuting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yisheng Wang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Gynecology, The Maternity Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Fang Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Cao
- Department of Gynecology, The Maternity Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Yuefei Wang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, 200032, China
| | - Pin Han
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyan Zhang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, 200032, China
| | - Congjian Xu
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, 200032, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
25
|
Gwanyanya A, Godsmark CN, Kelly-Laubscher R. Ethanolamine: A Potential Promoiety with Additional Effects in the Brain. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:108-117. [PMID: 33319663 DOI: 10.2174/1871527319999201211204645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological ac-tions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer's disease. This mini-review focuses on the effects of ethanolamine in the CNS and highlights the possible implications of these effects for drug design.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town,. South Africa
| | - Christie Nicole Godsmark
- School of Public Health, College of Medicine and Health, University College Cork, Cork,. Ireland
| | - Roisin Kelly-Laubscher
- Department of Pharmacology and Therapeutics, School of Medicine, College of Medicine and Health, University College Cork, Cork,. Ireland
| |
Collapse
|
26
|
Kling MA, Goodenowe DB, Senanayake V, MahmoudianDehkordi S, Arnold M, Massaro TJ, Baillie R, Han X, Leung YY, Saykin AJ, Nho K, Kueider-Paisley A, Tenenbaum JD, Wang LS, Shaw LM, Trojanowski JQ, Kaddurah-Daouk RF. Circulating ethanolamine plasmalogen indices in Alzheimer's disease: Relation to diagnosis, cognition, and CSF tau. Alzheimers Dement 2020; 16:1234-1247. [PMID: 32715599 DOI: 10.1002/alz.12110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Altered lipid metabolism is implicated in Alzheimer's disease (AD), but the mechanisms remain obscure. Aging-related declines in circulating plasmalogens containing omega-3 fatty acids may increase AD risk by reducing plasmalogen availability. METHODS We measured four ethanolamine plasmalogens (PlsEtns) and four closely related phosphatidylethanolamines (PtdEtns) from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 1547 serum) and University of Pennsylvania (UPenn; n = 112 plasma) cohorts, and derived indices reflecting PlsEtn and PtdEtn metabolism: PL-PX (PlsEtns), PL/PE (PlsEtn/PtdEtn ratios), and PBV (plasmalogen biosynthesis value; a composite index). We tested associations with baseline diagnosis, cognition, and cerebrospinal fluid (CSF) AD biomarkers. RESULTS Results revealed statistically significant negative relationships in ADNI between AD versus CN with PL-PX (P = 0.007) and PBV (P = 0.005), late mild cognitive impairment (LMCI) versus cognitively normal (CN) with PL-PX (P = 2.89 × 10-5 ) and PBV (P = 1.99 × 10-4 ), and AD versus LMCI with PL/PE (P = 1.85 × 10-4 ). In the UPenn cohort, AD versus CN diagnosis associated negatively with PL/PE (P = 0.0191) and PBV (P = 0.0296). In ADNI, cognition was negatively associated with plasmalogen indices, including Alzheimer's Disease Assessment Scale 13-item cognitive subscale (ADAS-Cog13; PL-PX: P = 3.24 × 10-6 ; PBV: P = 6.92 × 10-5 ) and Mini-Mental State Examination (MMSE; PL-PX: P = 1.28 × 10-9 ; PBV: P = 6.50 × 10-9 ). In the UPenn cohort, there was a trend toward a similar relationship of MMSE with PL/PE (P = 0.0949). In ADNI, CSF total-tau was negatively associated with PL-PX (P = 5.55 × 10-6 ) and PBV (P = 7.77 × 10-6 ). Additionally, CSF t-tau/Aβ1-42 ratio was negatively associated with these same indices (PL-PX, P = 2.73 × 10-6 ; PBV, P = 4.39 × 10-6 ). In the UPenn cohort, PL/PE was negatively associated with CSF total-tau (P = 0.031) and t-tau/Aβ1-42 (P = 0.021). CSF Aβ1-42 was not significantly associated with any of these indices in either cohort. DISCUSSION These data extend previous studies by showing an association of decreased plasmalogen indices with AD, mild cognitive impairment (MCI), cognition, and CSF tau. Future studies are needed to better define mechanistic relationships, and to test the effects of interventions designed to replete serum plasmalogens.
Collapse
Affiliation(s)
- Mitchel A Kling
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Behavioral Health Service, Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tyler J Massaro
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | | | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yuk-Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Jessica D Tenenbaum
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rima F Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA.,Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA.,Department of Medicine, Duke University, Durham, North Carolina, USA
| | -
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Sung HH, Sinclair AJ, Huynh K, Smith AT, Mellett NA, Meikle PJ, Su XQ. Differential plasma postprandial lipidomic responses to krill oil and fish oil supplementations in women: A randomized crossover study. Nutrition 2019; 65:191-201. [DOI: 10.1016/j.nut.2019.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/14/2019] [Accepted: 03/01/2019] [Indexed: 10/26/2022]
|
28
|
Paul S, Lancaster GI, Meikle PJ. WITHDRAWN: Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019:100993. [PMID: 31442528 DOI: 10.1016/j.plipres.2019.100993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Graeme I Lancaster
- Haematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
29
|
de Diego I, Peleg S, Fuchs B. The role of lipids in aging-related metabolic changes. Chem Phys Lipids 2019; 222:59-69. [DOI: 10.1016/j.chemphyslip.2019.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
|
30
|
Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019; 74:186-195. [DOI: 10.1016/j.plipres.2019.04.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/23/2023]
|
31
|
Cotte AK, Cottet V, Aires V, Mouillot T, Rizk M, Vinault S, Binquet C, de Barros JPP, Hillon P, Delmas D. Phospholipid profiles and hepatocellular carcinoma risk and prognosis in cirrhotic patients. Oncotarget 2019; 10:2161-2172. [PMID: 31040908 PMCID: PMC6481329 DOI: 10.18632/oncotarget.26738] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Phospholipids are now well-recognised players in tumour progression. Their metabolic tissue alterations can be associated with plasmatic modifications. The aim of this study was to evaluate the potential of the plasma phospholipid profile as a risk and prognostic biomarker in HCC. Methods Ninety cirrhotic patients with (cases) or without HCC (controls) were studied after matching for inclusion centre, age, gender, virus infection, cirrhosis duration and Child-Pugh grade. High-performance liquid chromatography coupled with tandem-mass spectrometry was used to quantify the main species of seven categories of phospholipids in plasma. Results Elevated concentrations of phosphatidylcholine (PC) 16:0/16:1 (p=0.0180), PC 16:0/16:0 (p=0.0327), PC 16:0/18:1 (p=0.0264) and sphingomyelin (SM) 18:2/24:1 (p=0.0379) and low concentrations of lysophosphatidylcholine 20:4 (0.0093) and plasmalogen-phosphatidylethanolamine (pPE) 16:0/20:4 (p=0.0463), pPE 18:0/20:4 (p=0.0077), pPE 18:0/20:5 (p=0.0163), pPE 18:0/20:3 (p=0.0463) discriminated HCC patients from cirrhotic controls. Two ceramide species were associated with increased HCC risk of death while lysophospholipids, a polyunsaturated phosphatidylinositol, some PC and SM species were associated with low risk of death in HCC patients in 1 and/or 3 years. Conclusion This study identified phospholipid profiles related to HCC risk in liver cirrhotic patients and showed for the first time the potential of some phospholipids in predicting HCC patient mortality.
Collapse
Affiliation(s)
- Alexia Karen Cotte
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Cancer and Adaptive Immune Response (CADIR), Dijon, France
| | - Vanessa Cottet
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France.,Inserm, Clinical Investigation Center, Dijon, France
| | - Virginie Aires
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Cancer and Adaptive Immune Response (CADIR), Dijon, France
| | - Thomas Mouillot
- Department of Hepatogastroenterology, University Hospital, Dijon, France
| | - Maud Rizk
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France
| | - Sandrine Vinault
- University of Bourgogne, Franche-Comté, Dijon, France.,Inserm, Clinical Investigation Center, Dijon, France
| | - Christine Binquet
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France.,Department of Hepatogastroenterology, University Hospital, Dijon, France
| | | | - Patrick Hillon
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France.,Department of Hepatogastroenterology, University Hospital, Dijon, France
| | - Dominique Delmas
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Cancer and Adaptive Immune Response (CADIR), Dijon, France
| |
Collapse
|
32
|
Ageing Investigation Using Two-Time-Point Metabolomics Data from KORA and CARLA Studies. Metabolites 2019; 9:metabo9030044. [PMID: 30841604 PMCID: PMC6468431 DOI: 10.3390/metabo9030044] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023] Open
Abstract
Ageing, one of the largest risk factors for many complex diseases, is highly interconnected to metabolic processes. Investigating the changes in metabolite concentration during ageing among healthy individuals offers us unique insights to healthy ageing. We aim to identify ageing-associated metabolites that are independent from chronological age to deepen our understanding of the long-term changes in metabolites upon ageing. Sex-stratified longitudinal analyses were performed using fasting serum samples of 590 healthy KORA individuals (317 women and 273 men) who participated in both baseline (KORA S4) and seven-year follow-up (KORA F4) studies. Replication was conducted using serum samples of 386 healthy CARLA participants (195 women and 191 men) in both baseline (CARLA-0) and four-year follow-up (CARLA-1) studies. Generalized estimation equation models were performed on each metabolite to identify ageing-associated metabolites after adjusting for baseline chronological age, body mass index, physical activity, smoking status, alcohol intake and systolic blood pressure. Literature researches were conducted to understand their biochemical relevance. Out of 122 metabolites analysed, we identified and replicated five (C18, arginine, ornithine, serine and tyrosine) and four (arginine, ornithine, PC aa C36:3 and PC ae C40:5) significant metabolites in women and men respectively. Arginine decreased, while ornithine increased in both sexes. These metabolites are involved in several ageing processes: apoptosis, mitochondrial dysfunction, inflammation, lipid metabolism, autophagy and oxidative stress resistance. The study reveals several significant ageing-associated metabolite changes with two-time-point measurements on healthy individuals. Larger studies are required to confirm our findings.
Collapse
|
33
|
Ikuta A, Sakurai T, Nishimukai M, Takahashi Y, Nagasaka A, Hui SP, Hara H, Chiba H. Composition of plasmalogens in serum lipoproteins from patients with non-alcoholic steatohepatitis and their susceptibility to oxidation. Clin Chim Acta 2019; 493:1-7. [PMID: 30796899 DOI: 10.1016/j.cca.2019.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Plasmalogens are ether phospholipids (PL) with an alkenyl group including vinyl ether bound at the sn-1 position and a polyunsaturated fatty acid bound at the sn-2 position, and are susceptible to oxidation. To date, there are no reports on the relationship between plasmalogen in serum lipoproteins and non-alcoholic steatohepatitis (NASH), caused by multiple factors including oxidative stress. Here, we have investigated the distribution of plasmalogens in serum lipoproteins isolated from NASH patients and healthy volunteers. METHODS Serum lipoproteins were separated by gel-filtration chromatography, and analyzed for ethanolamine and choline plasmalogens using liquid chromatography-mass spectrometry. RESULTS Both plasmalogen levels were higher in HDL than in VLDL or LDL. The plasmalogens/PL ratio was significantly lower in NASH than controls, for all lipoprotein fractions. Ethanolamine plasmalogens containing 20:4 and 22:6 at the sn-2 position and choline plasmalogens containing 16:0 at the sn-1 position were predominant in each group. In oxidation test using LDL from healthy serum, both types of plasmalogens were decreased during the early stages of oxidation. CONCLUSION Plasmalogens could be a potential biomarker for evaluating the early stages of oxidation in NASH.
Collapse
Affiliation(s)
- Akiko Ikuta
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Megumi Nishimukai
- Department of Animal Science Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka 020-8550, Japan
| | - Yuji Takahashi
- Department of Clinical Laboratory, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Atsushi Nagasaka
- Department of Gastroenterology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hiroshi Hara
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Hitoshi Chiba
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo 007-0894, Japan
| |
Collapse
|
34
|
Dorninger F, Moser AB, Kou J, Wiesinger C, Forss-Petter S, Gleiss A, Hinterberger M, Jungwirth S, Fischer P, Berger J. Alterations in the Plasma Levels of Specific Choline Phospholipids in Alzheimer's Disease Mimic Accelerated Aging. J Alzheimers Dis 2019; 62:841-854. [PMID: 29480199 PMCID: PMC5837024 DOI: 10.3233/jad-171036] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease and of continuously rising prevalence. The identification of easy-to-measure biomarkers capable to assist in the prediction and early diagnosis of AD is currently a main research goal. Lipid metabolites in peripheral blood of human patients have recently gained major attention in this respect. Here, we analyzed plasma of 174 participants (not demented at baseline; mean age: 75.70±0.44 years) of the Vienna Transdanube Aging (VITA) study, a longitudinal, population-based birth cohort study, at baseline and after 90 months or at diagnosis of probable AD. We determined the levels of specific choline phospholipids, some of which have been suggested as potential biomarkers for the prediction of AD. Our results show that during normal aging the levels of lysophosphatidylcholine, choline plasmalogen, and lyso-platelet activating factor increase significantly. Notably, we observed similar but more pronounced changes in the group that developed probable AD. Thus, our results imply that, in terms of choline-containing plasma phospholipids, the conversion to AD mimics an accelerated aging process. We conclude that age, even in the comparatively short time frame between 75 and 82.5 years, is a crucial factor in the quest for plasma lipid biomarkers for AD that must be carefully considered in future studies and trials.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ann B Moser
- Peroxisomal Diseases Laboratory, The Hugo W Moser Research Institute, The Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jianqiu Kou
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Susanne Jungwirth
- Ludwig Boltzmann Institute of Aging Research, Danube Hospital, Vienna, Austria
| | - Peter Fischer
- Ludwig Boltzmann Institute of Aging Research, Danube Hospital, Vienna, Austria.,Department of Psychiatry, Medical Research Society Vienna D.C., Danube Hospital, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Pradas I, Jové M, Huynh K, Puig J, Ingles M, Borras C, Viña J, Meikle PJ, Pamplona R. Exceptional human longevity is associated with a specific plasma phenotype of ether lipids. Redox Biol 2019; 21:101127. [PMID: 30711699 PMCID: PMC6357979 DOI: 10.1016/j.redox.2019.101127] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
A lipid profile resistant to oxidative damage is an inherent trait associated with animal lifespan. However, there is a lack of lipidomic studies on human longevity. Here we use mass spectrometry based technologies to detect and quantify 137 ether lipids to define a phenotype of healthy humans with exceptional lifespan. Ether lipids were chosen because of their antioxidant properties and ability to modulate oxidative stress. Our results demonstrate that a specific ether lipid signature can be obtained to define the centenarian state. This profile comprises higher level of alkyl forms derived from phosphatidylcholine with shorter number of carbon atoms and double bonds; and decreased content in alkenyl forms from phosphatidylethanolamine with longer chain length and higher double bonds. This compositional pattern suggests that ether lipids from centenarians are more resistant to lipid peroxidation, and that ether lipid signature expresses an optimized feature associated with exceptional human longevity. These results are in keeping with the free radical theory of aging.
Collapse
Affiliation(s)
- I Pradas
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida 25198, Spain.
| | - M Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida 25198, Spain.
| | - K Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | - J Puig
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari Dr Josep Trueta, Girona 17007, Spain.
| | - M Ingles
- Department of Physiology, University of Valencia, Valencia 46004, Spain.
| | - C Borras
- Department of Physiology, University of Valencia, Valencia 46004, Spain.
| | - J Viña
- Department of Physiology, University of Valencia, Valencia 46004, Spain.
| | - P J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | - R Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida 25198, Spain.
| |
Collapse
|
36
|
Rauschert S, Gázquez A, Uhl O, Kirchberg FF, Demmelmair H, Ruíz-Palacios M, Prieto-Sánchez MT, Blanco-Carnero JE, Nieto A, Larqué E, Koletzko B. Phospholipids in lipoproteins: compositional differences across VLDL, LDL, and HDL in pregnant women. Lipids Health Dis 2019; 18:20. [PMID: 30670033 PMCID: PMC6343318 DOI: 10.1186/s12944-019-0957-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to analyse the differences in the phospholipid composition of very low density (VLDL), low density (LDL) and high density lipoprotein (HDL) monolayers in pregnant lean and obese women. Methods LDL, HDL, and VLDL were isolated from plasma samples of 10 lean and 10 obese pregnant women, and their species composition of phosphatidylcholines (PC) and sphingomyelins (SM) was analysed by liquid-chromatography tandem mass-spectrometry. Wilcoxon-Mann-Whitney U test and principal component analysis (PCA) were used to investigate if metabolite profiles differed between the lean/obese group and between lipoprotein species. Results No significant differences have been found in the metabolite levels between obese and non-obese pregnant women. The PCA components 1 and 2 separated between LDL, HDL, and VLDL but not between normal weight and obese women. Twelve SM and one PCae were more abundant in LDL than in VLDL. In contrast, four acyl-alkyl-PC and two diacyl-PC were significantly higher in HDL compared to LDL. VLDL and HDL differed in three SM, seven acyl-alkyl-PC and one diacyl-PC (higher values in HDL) and 13 SM (higher in VLDL). We also found associations of some phospholipid species with HDL and LDL cholesterol. Conclusion In pregnant women phospholipid composition differs significantly in HDL, LDL and VLDL, similar to previous findings in men and non-pregnant women. Obese and lean pregnant women showed no significant differences in their lipoprotein associated metabolite profile. Electronic supplementary material The online version of this article (10.1186/s12944-019-0957-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Rauschert
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - Antonio Gázquez
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany.,Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Olaf Uhl
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - Franca F Kirchberg
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - Hans Demmelmair
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - María Ruíz-Palacios
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María T Prieto-Sánchez
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Murcia, Spain
| | - José E Blanco-Carnero
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Murcia, Spain
| | - Anibal Nieto
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Berthold Koletzko
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany.
| |
Collapse
|
37
|
Induced Pluripotent Stem Cells for Regenerative Medicine: Quality Control Based on Evaluation of Lipid Composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:49-56. [PMID: 31228130 DOI: 10.1007/5584_2019_394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Clinical application of induced pluripotent stem cells (iPSCs), which can be differentiated into a wide variety of functional cells, is underway and some clinical trials have already been performed or are ongoing. On the other hand, the risk of carcinogenesis is an issue and the mechanism of cellular reprograming remains unknown. When iPSCs and differentiated cells are used for medical applications, quality control is also important. Here we discuss the possibility of performing quality control of iPSCs by evaluation of phospholipids, which are not just structural components of lipid bilayer membranes, but also have multiple physiological functions. Recently, methods for analysis of lipids have become more widely available and easier to perform. This article reviews the role of iPSCs in regenerative medicine and examines the possibility of using phospholipids for quality control of iPSCs and differentiated cells.
Collapse
|
38
|
Metabolic Signature Differentiated Diabetes Mellitus from Lipid Disorder in Elderly Taiwanese. J Clin Med 2018; 8:jcm8010013. [PMID: 30577665 PMCID: PMC6352219 DOI: 10.3390/jcm8010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Aging is a complex progression of biological processes and is the causal contributor to the development of diabetes mellitus (DM). DM is the most common degenerative disease and is the fifth leading cause of death in Taiwan, where the trend of DM mortality has been steadily increasing. Metabolomics, important branch of systems biology, has been mainly utilized to understand endogenous metabolites in biological systems and their dynamic changes as they relate to endogenous and exogenous factors. The purpose of this study was to elucidate the metabolomic profiles in elderly people and its relation to lipid disorder (LD). We collected 486 elderly individuals aged ≥65 years and performed untargeted and targeted metabolite analysis using nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography—mass spectrometry (LC/MS). Several metabolites, including branched-chain amino acids, alanine, glutamate and alpha-aminoadipic acid were elevated in LD compared to the control group. Based on multivariate analysis, four metabolites were selected in the best model to predict DM progression: phosphatidylcholine acyl-alkyl (PC ae) C34:3, PC ae C44:3, SM C24:1 and PCae C36:3. The combined area under the curve (AUC) of those metabolites (0.82) was better for DM classification than individual values. This study found that targeted metabolic signatures not only distinguish the LD within the control group but also differentiated DM from LD in elderly Taiwanese. These metabolites could indicate the nutritional status and act as potential metabolic biomarkers for the elderly in Taiwan.
Collapse
|
39
|
Maeba R, Araki A, Fujiwara Y. Serum Ethanolamine Plasmalogen and Urine Myo-Inositol as Cognitive Decline Markers. Adv Clin Chem 2018; 87:69-111. [PMID: 30342713 DOI: 10.1016/bs.acc.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have suggested that metabolic disorders, particularly type 2 diabetes mellitus (T2DM), and dementia, including Alzheimer's disease (AD), were linked at the clinical and molecular levels. Brain insulin deficiency and resistance may be key events in AD pathology mechanistically linking AD to T2DM. Ethanolamine plasmalogens (PlsEtns) are abundant in the brain and play essential roles in neuronal function and myelin formation. As such, PlsEtn deficiency may be pathologically relevant in some neurodegenerative disorders such as AD. Decreased brain PlsEtn associated with dementia may reflect serum PlsEtn deficiency. We hypothesized that myo-inositol plays a role in myelin formation through its facilitation of PlsEtn biosynthesis. Excessive urinary myo-inositol (UMI) loss would likely result in PlsEtn deficiency potentially leading to demyelinating diseases such as dementia. Accordingly, measurement of both serum PlsEtn and baseline UMI excretion could improve the detection of cognitive impairment (CI) in a more specific and reliable manner. To verify our hypothesis, we conducted a clinical observational study of memory clinic outpatients (MCO) and cognitively normal elderly (NE) for nearly 4.5years. We demonstrated that serum PlsEtn concentration associated with UMI excretion was useful for predicting advancing dementia in patients with mild CI. Because hyperglycemia and associated insulin resistance might be a leading cause of increased baseline UMI excretion, serum PlsEtn quantitation would be useful in detecting CI among the elderly with hyperglycemia. Our findings suggest that myo-inositol is a novel candidate molecule linking T2DM to AD.
Collapse
Affiliation(s)
- Ryouta Maeba
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
40
|
Rubio JM, Astudillo AM, Casas J, Balboa MA, Balsinde J. Regulation of Phagocytosis in Macrophages by Membrane Ethanolamine Plasmalogens. Front Immunol 2018; 9:1723. [PMID: 30087680 PMCID: PMC6066501 DOI: 10.3389/fimmu.2018.01723] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophages, as professional phagocytes of the immune system, possess the ability to detect and clear invading pathogens and apoptotic cells through phagocytosis. Phagocytosis involves membrane reorganization and remodeling events on the cell surface, which play an essential role in innate immunity and tissue homeostasis and the control of inflammation. In this work, we report that cells deficient in membrane ethanolamine plasmalogen demonstrate a reduced capacity to phagocytize opsonized zymosan particles. Amelioration of plasmalogen deficiency in these cells by incubation with lysoplasmalogen results in a significant augmentation of the phagocytic capacity of the cells. In parallel with these increases, restoration of plasmalogen levels in the cells also increases the number and size of lipid rafts in the membrane, reduces membrane fluidity down to levels found in cells containing normal plasmalogen levels, and improves receptor-mediated signaling. Collectively, these results suggest that membrane plasmalogen level determines characteristics of the plasma membrane such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages.
Collapse
Affiliation(s)
- Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Departamento de Bioquímica y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
41
|
de la Barca JMC, Boueilh T, Simard G, Boucret L, Ferré-L'Hotellier V, Tessier L, Gadras C, Bouet PE, Descamps P, Procaccio V, Reynier P, May-Panloup P. Targeted metabolomics reveals reduced levels of polyunsaturated choline plasmalogens and a smaller dimethylarginine/arginine ratio in the follicular fluid of patients with a diminished ovarian reserve. Hum Reprod 2018; 32:2269-2278. [PMID: 29040513 DOI: 10.1093/humrep/dex303] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Does the metabolomic profile of the follicular fluid (FF) of patients with a diminished ovarian reserve (DOR) differ from that of patients with a normal ovarian reserve (NOR)? SUMMARY ANSWER The metabolomic signature of the FF reveals a significant decrease in polyunsaturated choline plasmalogens and methyl arginine transferase activity in DOR patients compared to NOR patients. WHAT IS KNOWN ALREADY The composition of the FF reflects the exchanges between the oocyte and its microenvironment during its acquisition of gametic competence. Studies of the FF have allowed identification of biomarkers and metabolic pathways involved in various pathologies affecting oocyte quality, but no large metabolomic analysis in the context of ovarian ageing and DOR has been undertaken so far. STUDY DESIGN, SIZE, DURATION This was an observational study of the FF retrieved from 57 women undergoing in vitro fertilization at the University Hospital of Angers, France, from November 2015 to September 2016. The women were classified in two groups: one including 28 DOR patients, and the other including 29 NOR patients, serving as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients were enrolled in the morning of oocyte retrieval after ovarian stimulation. Once the oocytes were isolated for fertilization and culture, the FF was pooled and centrifuged for analysis. A targeted quantitative metabolomic analysis was performed using high-performance liquid chromatography coupled with tandem mass spectrometry, and the Biocrates Absolute IDQ p180 kit. The FF levels of 188 metabolites and several sums and ratios of metabolic significance were assessed by multivariate and univariate analyses. MAIN RESULTS AND THE ROLE OF CHANCE A total of 136 metabolites were accurately quantified and used for calculating 23 sums and ratios. Samples were randomly divided into training and validation sets. The training set, allowed the construction of multivariate statistical models with a projection-supervised method, i.e. orthogonal partial least squares discriminant analysis (OPLS-DA), applied to the full set of metabolites, or the penalized least absolute shrinkage and selection operator with logistic regression (LASSO-LR), applied to the ratios and sums of the metabolites. Both multivariate models showed good predictive performances when applied to the validation set. The final penalized model retained the three most significant variables, i.e. the total dimethylarginine-to-arginine ratio (Total DMA/Arginine), the sum of the polyunsaturated choline plasmalogens (PUFA ae), and the patient's age. The negative coefficients of Total DMA/Arginine and PUFA ae indicated that these FF variables had lower values in DOR patients than in NOR patients. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION This study presents two limitations. First, with this targeted metabolomics analysis, we have explored only a limited portion of the FF metabolome. Second, although the signature found was highly significant, the mechanism underlying the dysfunction remains undetermined. WIDER IMPLICATIONS OF THE FINDINGS The understanding of the mechanisms implied in ovarian ageing is essential for providing an adequate response to affected women desiring pregnancy. Our study proposes an incoming signature that may open new paths towards this goal. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the University Hospital of Angers, the University of Angers, and the French national research centers, INSERM and the CNRS. There were no competing interests.
Collapse
Affiliation(s)
- J M Chao de la Barca
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - T Boueilh
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - G Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,INSERM U1063, Université d'Angers, Angers, France
| | - L Boucret
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.,Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - V Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - L Tessier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - C Gadras
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - P E Bouet
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - P Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - V Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - P Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - P May-Panloup
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.,Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
42
|
Petit J, Wakx A, Gil S, Fournier T, Auzeil N, Rat P, Laprévote O. Lipidome-wide disturbances of human placental JEG-3 cells by the presence of MEHP. Biochimie 2018; 149:1-8. [DOI: 10.1016/j.biochi.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/05/2018] [Indexed: 01/05/2023]
|
43
|
Koivuniemi A. The biophysical properties of plasmalogens originating from their unique molecular architecture. FEBS Lett 2017; 591:2700-2713. [PMID: 28710769 DOI: 10.1002/1873-3468.12754] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/11/2022]
Abstract
Plasmalogens are a unique class of phospholipids that are present in many organisms. Their presence in cell membranes has intrigued researchers for decades due to their unique molecular structure, namely the vinyl-ether bond at the sn-1 position, and their association with brain related disorders. Apparently, based on their amount in the cell membranes, their function is to provide exclusive structural and dynamical properties to these complex molecular assemblies. Yet, many of their physiological roles manifested through their biophysical properties have been challenging to identify. In this review, the biophysical properties of plasmalogens are discussed and compared to other lipid species. The role of plasmalogens is examined in the context of cell membrane function, and some future directions are given.
Collapse
Affiliation(s)
- Artturi Koivuniemi
- The Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
44
|
Moxon JV, Jones RE, Wong G, Weir JM, Mellett NA, Kingwell BA, Meikle PJ, Golledge J. Baseline serum phosphatidylcholine plasmalogen concentrations are inversely associated with incident myocardial infarction in patients with mixed peripheral artery disease presentations. Atherosclerosis 2017; 263:301-308. [PMID: 28728066 DOI: 10.1016/j.atherosclerosis.2017.06.925] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Despite current best care, patients with peripheral artery disease (PAD) remain at high risk of myocardial infarction, and biomarkers to more accurately assess cardiovascular risk are needed. This study assessed the relationship between the serum lipidome and incident myocardial infarction in a cohort of PAD patients. METHODS 265 PAD patients were followed up for a median of 23 months, during which 18 people suffered a myocardial infarction. Fasting serum concentrations of 332 lipid species were measured via mass spectrometry and their association with incident myocardial infarction was assessed via Cox regression. Secondary analyses investigated prognostic potential of specific lipid species. RESULTS Total serum concentrations of alkyl-phosphatidylcholine and alkenylphospatidylcholine (plasmalogen) lipids were inversely associated with incident myocardial infarction after adjusting for multiple testing (hazards ratio (95% confidence intervals): 0.43 (0.24-0.74); p = 0.032; and 0.28 (0.14-0.56), p = 0.010, respectively). Specifically, 10 alkenylphosphatidylcholine species and 6 alkyl-phosphatidylcholine species were negatively associated with incident myocardial infarction after adjusting for traditional risk factors and correcting for multiple testing (hazards ratios ranging from 0.07 to 0.51, p < 0.05). Incorporation of serum phosphatidylcholine plasmalogen species PC(P-40:6) concentration within analyses designed to determine subsequent myocardial infarction incidence led to an improvement in predictive accuracy compared to traditional risk factors alone. CONCLUSIONS Serum concentrations of phosphatidylcholine plasmalogens and alkyl-phosphatidylcholines were negatively associated with incident myocardial infarction and have potential to act as novel prognostic markers in at-risk populations.
Collapse
Affiliation(s)
- Joseph V Moxon
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Rhondda E Jones
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Gerard Wong
- Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Jacquelyn M Weir
- Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Natalie A Mellett
- Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Bronwyn A Kingwell
- Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia.
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia; Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia.
| |
Collapse
|
45
|
Grigoletto J, Pukaß K, Gamliel A, Davidi D, Katz-Brull R, Richter-Landsberg C, Sharon R. Higher levels of myelin phospholipids in brains of neuronal α-Synuclein transgenic mice precede myelin loss. Acta Neuropathol Commun 2017; 5:37. [PMID: 28482862 PMCID: PMC5421332 DOI: 10.1186/s40478-017-0439-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/26/2017] [Indexed: 01/22/2023] Open
Abstract
α-Synuclein is a protein involved in the pathogenesis of synucleinopathies, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). We investigated the role of neuronal α-Syn in myelin composition and abnormalities. The phospholipid content of purified myelin was determined by 31P NMR in two mouse lines modeling PD, PrP-A53T α-Syn and Thy-1 wt-α-Syn. Significantly higher levels of phospholipids were detected in myelin purified from brains of these α-Syn transgenic mouse models than in control mice. Nevertheless, myelin ultrastructure appeared intact. To further investigate the effect of α-Syn on myelin abnormalities, we systematically analyzed the striatum, a brain region associated with neurodegeneration in PD. An age and disease-dependent loss of myelin basic protein (MBP) signal was detected by immunohistochemistry in striatal striosomes (patches). The age-dependent loss of MBP signal was associated with lower P25α levels in oligodendrocytes. In addition, we found that α-Syn inhibited oligodendrocyte maturation and the formation of membranous sheets in vitro. Based on these results we concluded that neuronal α-Syn is involved in the regulation and/or maintenance of myelin phospholipid. However, axonal hypomyelination in the PD models is evident only in progressive stages of the disease and associated with α-Syn toxicity.
Collapse
|
46
|
Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol 2017; 13:79-91. [PMID: 27767036 DOI: 10.1038/nrendo.2016.169] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus and cardiovascular disease form a metabolic disease continuum that has seen a dramatic increase in prevalence in developed and developing countries over the past two decades. Dyslipidaemia resulting from hypercaloric diets is a major contributor to the pathogenesis of metabolic disease, and lipid-lowering therapies are the main therapeutic option for this group of disorders. However, the fact that dysfunctional lipid metabolism extends far beyond cholesterol and triglycerides is becoming increasingly clear. Lipidomic studies and mouse models are helping to explain the complex interactions between diet, lipid metabolism and metabolic disease. These studies are not only improving our understanding of this complex biology, but are also identifying potential therapeutic avenues to combat this growing epidemic. This Review examines what is currently known about phospholipid and sphingolipid metabolism in the setting of obesity and how metabolic pathways are being modulated for therapeutic effect.
Collapse
Affiliation(s)
- Peter J Meikle
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, Australia
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 201 Presidents Circle, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
47
|
Simbari F, McCaskill J, Coakley G, Millar M, Maizels RM, Fabriás G, Casas J, Buck AH. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology. J Extracell Vesicles 2016; 5:30741. [PMID: 27389011 PMCID: PMC4937767 DOI: 10.3402/jev.v5.30741] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) mediate communication between cells and organisms across all 3 kingdoms of life. Several reports have demonstrated that EVs can transfer molecules between phylogenetically diverse species and can be used by parasites to alter the properties of the host environment. Whilst the concept of vesicle secretion and uptake is broad reaching, the molecular composition of these complexes is expected to be diverse based on the physiology and environmental niche of different organisms. Exosomes are one class of EVs originally defined based on their endocytic origin, as these derive from multivesicular bodies that then fuse with the plasma membrane releasing them into the extracellular environment. The term exosome has also been used to describe any small EVs recovered by high-speed ultracentrifugation, irrespective of origin since this is not always well characterized. Here, we use comparative global lipidomic analysis to examine the composition of EVs, which we term exosomes, that are secreted by the gastrointestinal nematode, Heligmosomoides polygyrus, in relation to exosomes secreted by cells of its murine host. Ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) analysis reveals a 9- to 62-fold enrichment of plasmalogens, as well as other classes of ether glycerophospholipids, along with a relative lack of cholesterol and sphingomyelin (SM) in the nematode exosomes compared with those secreted by murine cells. Biophysical analyses of the membrane dynamics of these exosomes demonstrate increased rigidity in those from the nematode, and parallel studies with synthetic vesicles support a role of plasmalogens in stabilizing the membrane structure. These results suggest that nematodes can maintain exosome membrane structure and integrity through increased plasmalogens, compensating for diminished levels of other lipids, including cholesterol and SM. This work also illuminates the prevalence of plasmalogens in some EVs, which has not been widely reported and could have implications for the biochemical or immunomodulatory properties of EVs. Further comparative analyses such as those described here will shed light on diversity in the molecular properties of EVs that enable them to function in cross-species communication.
Collapse
Affiliation(s)
- Fabio Simbari
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jana McCaskill
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gillian Coakley
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Marissa Millar
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow, UK
| | - Gemma Fabriás
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish Council for Scientific Research (IQAC-CSIC), Barcelona, Spain
| | - Josefina Casas
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish Council for Scientific Research (IQAC-CSIC), Barcelona, Spain
| | - Amy H Buck
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK;
| |
Collapse
|
48
|
Sutter I, Klingenberg R, Othman A, Rohrer L, Landmesser U, Heg D, Rodondi N, Mach F, Windecker S, Matter CM, Lüscher TF, von Eckardstein A, Hornemann T. Decreased phosphatidylcholine plasmalogens – A putative novel lipid signature in patients with stable coronary artery disease and acute myocardial infarction. Atherosclerosis 2016; 246:130-40. [DOI: 10.1016/j.atherosclerosis.2016.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 10/22/2022]
|
49
|
Chua ECP, Shui G, Cazenave-Gassiot A, Wenk MR, Gooley JJ. Changes in Plasma Lipids during Exposure to Total Sleep Deprivation. Sleep 2015; 38:1683-91. [PMID: 26194579 DOI: 10.5665/sleep.5142] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. DESIGN Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. SETTING Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. PARTICIPANTS Healthy ethnic-Chinese males aged 21-28 y (n = 20). INTERVENTIONS Subjects were kept awake for 40 consecutive hours. MEASUREMENTS AND RESULTS Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. CONCLUSIONS The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep.
Collapse
Affiliation(s)
- Eric Chern-Pin Chua
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Life Sciences Institute, National University of Singapore, Singapore
| | | | - Markus R Wenk
- Life Sciences Institute, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - Joshua J Gooley
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
50
|
Reichel M, Hönig S, Liebisch G, Lüth A, Kleuser B, Gulbins E, Schmitz G, Kornhuber J. Alterations of plasma glycerophospholipid and sphingolipid species in male alcohol-dependent patients. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1501-10. [DOI: 10.1016/j.bbalip.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/08/2015] [Accepted: 08/14/2015] [Indexed: 12/25/2022]
|